Maternal Dietary Patterns During Pregnancy and Child Autism-Related Traits in the Environmental Influences on Child Health Outcomes Consortium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Dietary Pattern Indices
2.4. Outcome Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Susser, E.S.; Lin, S.P. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch. Gen. Psychiatry 1992, 49, 983–988. [Google Scholar] [CrossRef] [PubMed]
- De-Regil, L.M.; Fernández-Gaxiola, A.C.; Dowswell, T.; Peña-Rosas, J.P. Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2010, 10, CD007950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dean, S.V.; Lassi, Z.S.; Imam, A.M.; Bhutta, Z.A. Preconception care: Nutritional risks and interventions. Reprod. Health 2014, 11 (Suppl. S3), S3. [Google Scholar] [CrossRef]
- Hibbeln, J.R.; Spiller, P.; Brenna, J.T.; Golding, J.; Holub, B.J.; Harris, W.S.; Kris-Etherton, P.; Lands, B.; Connor, S.L.; Myers, G.; et al. Relationships between seafood consumption during pregnancy and childhood and neurocognitive development: Two systematic reviews. Prostaglandins Leukot. Essent. Fatty Acids 2019, 151, 14–36. [Google Scholar] [CrossRef]
- Zhong, C.; Tessing, J.; Lee, B.K.; Lyall, K. Maternal Dietary Factors and the Risk of Autism Spectrum Disorders: A Systematic Review of Existing Evidence. Autism Res. 2020, 13, 1634–1658. [Google Scholar] [CrossRef]
- APA. Diagnostic and Statistical Manual of Mental Disorders: DSM V; American Psychiatric Association: Washington, DC, USA, 2013.
- Rodier, P.M. The early origins of autism. Sci. Am. 2000, 282, 56–63. [Google Scholar] [CrossRef]
- Newschaffer, C.J.; Croen, L.A.; Daniels, J.; Giarelli, E.; Grether, J.K.; Levy, S.E.; Mandell, D.S.; Miller, L.A.; Pinto-Martin, J.; Reaven, J.; et al. The epidemiology of autism spectrum disorders. Annu. Rev. Public Health 2007, 28, 235–258. [Google Scholar] [CrossRef]
- DeVilbiss, E.A.; Gardner, R.M.; Newschaffer, C.J.; Lee, B.K. Maternal folate status as a risk factor for autism spectrum disorders: A review of existing evidence. Br. J. Nutr. 2015, 114, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Maitin-Shepard, M.; O’Tierney-Ginn, P.; Kraneveld, A.D.; Lyall, K.; Fallin, D.; Arora, M.; Fasano, A.; Mueller, N.T.; Wang, X.; Caulfield, L.E.; et al. Food, nutrition, and autism: From soil to fork. Am. J. Clin. Nutr. 2024, 120, 240–256. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Kleinman, K.P.; Oken, E.; Gillman, M.W. Dietary quality during pregnancy varies by maternal characteristics in Project Viva: A US cohort. J. Am. Diet. Assoc. 2009, 109, 1004–1011. [Google Scholar] [CrossRef]
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef]
- Lopez-Garcia, E.; Schulze, M.B.; Fung, T.T.; Meigs, J.B.; Rifai, N.; Manson, J.E.; Hu, F.B. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2004, 80, 1029–1035. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute (NHLBI). DASH Eating Plan; National Heart, Lung, and Blood Institute (NHLBI): Bethesda, MD, USA, 2021.
- Vogt, T.M.; Appel, L.J.; Obarzanek, E.; Moore, T.J.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Cutler, J.A.; Windhauser, M.M.; et al. Dietary Approaches to Stop Hypertension: Rationale, design, and methods. DASH Collaborative Research Group. J. Am. Diet. Assoc. 1999, 99, S12–S18. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Giovannucci, E.L. An Empirical Dietary Inflammatory Pattern Score Enhances Prediction of Circulating Inflammatory Biomarkers in Adults. J. Nutr. 2017, 147, 1567–1577. [Google Scholar] [CrossRef]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Wu, K.; Fuchs, C.S.; Hu, F.B.; Chan, A.T.; Willett, W.C.; Giovannucci, E.L. Development and Validation of an Empirical Dietary Inflammatory Index. J. Nutr. 2016, 146, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Nardone, S.; Elliott, E. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders. Front. Neurosci. 2016, 10, 329. [Google Scholar] [CrossRef] [PubMed]
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 2021, 17, 564–579. [Google Scholar] [CrossRef] [PubMed]
- Beversdorf, D.Q.; Stevens, H.E.; Jones, K.L. Prenatal Stress, Maternal Immune Dysregulation, and Their Association with Autism Spectrum Disorders. Curr. Psychiatry Rep. 2018, 20, 76. [Google Scholar] [CrossRef]
- Gonzalez-Nahm, S.; Mendez, M.; Robinson, W.; Murphy, S.K.; Hoyo, C.; Hogan, V.; Rowley, D. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants. Environ. Epigenet. 2017, 3, dvx007. [Google Scholar] [CrossRef]
- Friel, C.; Leyland, A.H.; Anderson, J.J.; Havdahl, A.; Brantsæter, A.L.; Dundas, R. Healthy Prenatal Dietary Pattern and Offspring Autism. JAMA Netw. Open 2024, 7, e2422815. [Google Scholar] [CrossRef]
- House, J.S.; Mendez, M.; Maguire, R.L.; Gonzalez-Nahm, S.; Huang, Z.; Daniels, J.; Murphy, S.K.; Fuemmeler, B.F.; Wright, F.A.; Hoyo, C. Periconceptional Maternal Mediterranean Diet Is Associated with Favorable Offspring Behaviors and Altered CpG Methylation of Imprinted Genes. Front. Cell Dev. Biol. 2018, 6, 107. [Google Scholar] [CrossRef]
- Li, Y.M.; Shen, Y.D.; Li, Y.J.; Xun, G.L.; Liu, H.; Wu, R.R.; Xia, K.; Zhao, J.P.; Ou, J.J. Maternal dietary patterns, supplements intake and autism spectrum disorders: A preliminary case-control study. Medicine 2018, 97, e13902. [Google Scholar] [CrossRef]
- Gao, L.; Cui, S.S.; Han, Y.; Dai, W.; Su, Y.Y.; Zhang, X. Does Periconceptional Fish Consumption by Parents Affect the Incidence of Autism Spectrum Disorder and Intelligence Deficiency? A Case-control Study in Tianjin, China. Biomed. Environ. Sci. 2016, 29, 885–892. [Google Scholar] [CrossRef]
- Vecchione, R.; Wang, S.; Rando, J.; Chavarro, J.E.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Newschaffer, C.J.; Schmidt, R.J.; Lyall, K. Maternal Dietary Patterns during Pregnancy and Child Autism-Related Traits: Results from Two US Cohorts. Nutrients 2022, 14, 2729. [Google Scholar] [CrossRef]
- Knapp, E.A.; Kress, A.M.; Parker, C.B.; Page, G.P.; McArthur, K.; Gachigi, K.K.; Alshawabkeh, A.N.; Aschner, J.L.; Bastain, T.M.; Breton, C.V.; et al. The Environmental Influences on Child Health Outcomes (ECHO)-Wide Cohort. Am. J. Epidemiol. 2023, 192, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Bragg, M.G.; Westlake, M.; Alshawabkeh, A.N.; Bekelman, T.A.; Camargo, C.A., Jr.; Catellier, D.J.; Comstock, S.S.; Dabelea, D.; Dunlop, A.L.; Hedderson, M.M.; et al. Opportunities for Examining Child Health Impacts of Early-Life Nutrition in the ECHO Program: Maternal and Child Dietary Intake Data from Pregnancy to Adolescence. Curr. Dev. Nutr. 2023, 7, 102019. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health. Environmental Influences on Child Health Outcomes (ECHO) Program; National Institute of Health: Durham, NC, USA, 2024.
- Block, G.; Woods, M.; Potosky, A.; Clifford, C. Validation of a self-administered diet history questionnaire using multiple diet records. J. Clin. Epidemiol. 1990, 43, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- National Cancer Institute. National Institutes of Health, Epidemiology and Genomics Research Program; National Cancer Institute: Bethesda, MD, USA, 2010.
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef]
- Constantino, J.N.; Davis, S.A.; Todd, R.D.; Schindler, M.K.; Gross, M.M.; Brophy, S.L.; Metzger, L.M.; Shoushtari, C.S.; Splinter, R.; Reich, W. Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. J. Autism Dev. Disord. 2003, 33, 427–433. [Google Scholar] [CrossRef]
- Constantino, J.N.; Gruber, C. Social Responsiveness Scale (SRS); Western Psychological Services: Los Angeles, CA, USA, 2005. [Google Scholar]
- Constantino, J.N.; Gruber, C. Social Responsiveness Scale, 2nd ed.; Western Psychological Services: Los Angeles, CA, USA, 2012. [Google Scholar]
- Patti, M.A.; Croen, L.A.; Dickerson, A.S.; Joseph, R.M.; Ames, J.L.; Ladd-Acosta, C.; Ozonoff, S.; Schmidt, R.J.; Volk, H.E.; Hipwell, A.E.; et al. Reproducibility between preschool and school-age Social Responsiveness Scale forms in the Environmental influences on Child Health Outcomes program. Autism Res. 2024, 17, 1187–1204. [Google Scholar] [CrossRef] [PubMed]
- Sturm, A.; Kuhfeld, M.; Kasari, C.; McCracken, J.T. Development and validation of an item response theory-based Social Responsiveness Scale short form. J. Child. Psychol. Psychiatry 2017, 58, 1053–1061. [Google Scholar] [CrossRef]
- Patti, M.A.; Ning, X.; Hosseini, M.; Croen, L.A.; Joseph, R.M.; Karagas, M.R.; Ladd-Acosta, C.; Landa, R.; Messinger, D.S.; Newschaffer, C.J.; et al. A Comparative Analysis of the Full and Short Versions of the Social Responsiveness Scale in Estimating an Established Autism Risk Factor Association in ECHO: Do we Get the Same Estimates? J. Autism Dev. Disord. 2023. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.; Hosseini, M.; Ladd-Acosta, C.; Ning, X.; Catellier, D.; Constantino, J.N.; Croen, L.A.; Kaat, A.J.; Botteron, K.; Bush, N.R.; et al. Distributional Properties and Criterion Validity of a Shortened Version of the Social Responsiveness Scale: Results from the ECHO Program and Implications for Social Communication Research. J. Autism Dev. Disord. 2021, 51, 2241–2253. [Google Scholar] [CrossRef]
- Lyall, K.; Rando, J.; Toroni, B.; Ezeh, T.; Constantino, J.N.; Croen, L.A.; Garvin, B.; Piselli, K.; Connell, J.; Kaat, A.J.; et al. Examining shortened versions of the Social Responsiveness Scale for use in autism spectrum disorder prediction and as a quantitative trait measure: Results from a validation study of 3–5 year old children. JCPP Adv. 2022, 2, e12106. [Google Scholar] [CrossRef] [PubMed]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Sandin, S.; Hultman, C.M.; Kolevzon, A.; Gross, R.; MacCabe, J.H.; Reichenberg, A. Advancing maternal age is associated with increasing risk for autism: A review and meta-analysis. J. Am. Acad. Child. Adolesc. Psychiatry 2012, 51, 477–486.e471. [Google Scholar] [CrossRef]
- Li, Y.M.; Ou, J.J.; Liu, L.; Zhang, D.; Zhao, J.P.; Tang, S.Y. Association Between Maternal Obesity and Autism Spectrum Disorder in Offspring: A Meta-analysis. J. Autism Dev. Disord. 2016, 46, 95–102. [Google Scholar] [CrossRef]
- Croen, L.A.; Grether, J.K.; Selvin, S. Descriptive epidemiology of autism in a California population: Who is at risk? J. Autism Dev. Disord. 2002, 32, 217–224. [Google Scholar] [CrossRef]
- Hertz-Picciotto, I.; Korrick, S.A.; Ladd-Acosta, C.; Karagas, M.R.; Lyall, K.; Schmidt, R.J.; Dunlop, A.L.; Croen, L.A.; Dabelea, D.; Daniels, J.L.; et al. Maternal tobacco smoking and offspring autism spectrum disorder or traits in ECHO cohorts. Autism Res. 2022, 15, 551–569. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Han, V.X.; Patel, S.; Jones, H.F.; Nielsen, T.C.; Mohammad, S.S.; Hofer, M.J.; Gold, W.; Brilot, F.; Lain, S.J.; Nassar, N.; et al. Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: A systematic review. Transl. Psychiatry 2021, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Majerczyk, D.; Ayad, E.G.; Brewton, K.L.; Saing, P.; Hart, P.C. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci. Rep. 2022, 42, BSR20220713. [Google Scholar] [CrossRef]
- Holingue, C.; Brucato, M.; Ladd-Acosta, C.; Hong, X.; Volk, H.; Mueller, N.T.; Wang, X.; Fallin, M.D. Interaction between Maternal Immune Activation and Antibiotic Use during Pregnancy and Child Risk of Autism Spectrum Disorder. Autism Res. 2020, 13, 2230–2241. [Google Scholar] [CrossRef]
- Millar, S.R.; Navarro, P.; Harrington, J.M.; Perry, I.J.; Phillips, C.M. Dietary Quality Determined by the Healthy Eating Index-2015 and Biomarkers of Chronic Low-Grade Inflammation: A Cross-Sectional Analysis in Middle-to-Older Aged Adults. Nutrients 2021, 13, 222. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Tang, L.; Hu, M.; Xiang, Z.; Hu, Y. Changes of serum interleukin-6 in healthy pregnant women and establishment of relevant reference intervals. Clin. Chim. Acta 2020, 502, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Na, X.; Glasier, C.M.; Andres, A.; Ou, X. Maternal Diet Quality during Pregnancy Is Associated with Neonatal Brain White Matter Development. Nutrients 2023, 15, 5114. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J.J.; Gu, H.; Gerig, G.; Elison, J.T.; Styner, M.; Gouttard, S.; Botteron, K.N.; Dager, S.R.; Dawson, G.; Estes, A.M.; et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am. J. Psychiatry 2012, 169, 589–600. [Google Scholar] [CrossRef]
Characteristics | Participants with any Data Available for ASD Diagnosis and/or SRS Score |
---|---|
N (%) | |
Cohort Type | |
High Familial Likelihood | 309(5%) |
Population-based | 5775(95%) |
Maternal and Child Characteristics | |
Maternal Race | |
Asian or Pacific Islander | 491(8%) |
Black/African American | 1222(20%) |
Native American or Native Alaskan | 31(1%) |
White | 3728(61%) |
Multiple/Other Race | 374(6%) |
Unknown/Missing | 238(4%) |
Maternal Ethnicity | |
Hispanic/Latino | 1029(17%) |
Not Hispanic/Latino | 5037(83%) |
Missing | 18(0%) |
Maternal Age, Years | |
<18–28 Years | 1981(33%) |
29–34 Years | 2551(42%) |
35–40 Years | 1371(23%) |
41+ years | 181(3%) |
Maternal Education | |
Less than High School | 309(5%) |
HS Degree, GED, or Equivalent | 1011(17%) |
Some College, No Degree, Assoc/Trade | 1410(23%) |
Bachelor’s Degree (BA, BS) | 1783(29%) |
Masters, Prof, or Doctorate Degree | 1491(25%) |
Missing | 80(1%) |
Pre-Pregnancy BMI, kg/m2 | |
<18.5 | 173(3%) |
18.5–24.9 | 2837(47%) |
25–29.9 | 1544(25%) |
≥30 | 1466(24%) |
Missing | 64(1%) |
Prenatal Smoking | |
Active | 322(5%) |
Not Active | 5730(94%) |
Missing | 32(1%) |
Ever Breastfeed | |
Yes | 4259(70%) |
No | 117(2%) |
Missing | 1708(28%) |
Prenatal Vitamin Use | |
Yes | 2947(48%) |
No | 178(3%) |
Missing | 2959(49%) |
Prenatal Vitamin Use (First Month) | |
Yes | 296(5%) |
No | 190(3%) |
Missing | 5598(92%) |
Child Sex | |
Male | 3195(53%) |
Female | 2889(47%) |
Child Year of Birth | |
1999–2004 | 671(11%) |
2005–2009 | 805(13%) |
2010–2014 | 2674(44%) |
2015+ | 1934(32%) |
Birthweight | |
Small for Gestational Age | 326(5%) |
Normal for Gestational Age | 4573(75%) |
Large for Gestational Age | 996(16%) |
Missing | 189(3%) |
ASD Diagnosis | |
Yes | 441(7%) |
No | 5381(88%) |
Missing | 262(4%) |
Total SRS Raw Score | |
SRS Not Available | 1537(25%) |
SRS Available | 4547(75%) |
Mean (Std) | |
Parity (Prior to Current Pregnancy) | 0.83(0.98) |
Total Caloric Intake, kcal | 2065(1053) |
SRS Score | 29.3(22.5) |
n | Crude (ß, 95% CI) | Adjusted (ß, 95% CI) | Test of Trend (p) | Energy Adjusted (ß, 95% CI) | Test of Trend (p) | |
---|---|---|---|---|---|---|
EDIP | 2433 | |||||
Q1 | 608 | 0 (reference) | 0 (reference) | 0.44 | 0 (reference) | 0.20 |
Q2 | 608 | −1.00 (−14.10, 17.10) | −1.25 (−3.73, 0.65) | −1.20 (−3.79, 0.54) | ||
Q3 | 609 | −2.00 (−14.60, 15.10) | −0.42 (−3.44, 2.11) | −0.40 (−3.43, 2.16) | ||
Q4 | 608 | −4.00 (−17.10, 13.10) | 0.64 (−1.91, 2.85) | 0.72 (−2.76, 2.67) | ||
AHEIP | 1671 | |||||
Q1 | 417 | 0 (reference) | 0 (reference) | 0.02 | 0 (reference) | 0.02 |
Q2 | 418 | −2.00 (−15.67, 4.67) | 0.00 (−2.56, 1.79) | −0.46 (−2.61, 1.69) | ||
Q3 | 418 | −4.00 (−20.18, 4.18) | −1.50 (−3.95, 0.86) | −2.12 (−4.73, 0.50) | ||
Q4 | 418 | −4.00 (−19.18, 3.18) | −1.50 (−3.27, 0.39) | −2.52 (−4.59, −0.45) | ||
HEI 1 | 2876 | |||||
Q1 | 719 | 0 (reference) | 0 (reference) | 0.12 | 0 (reference) | - |
Q2 | 719 | 0.00 (−17.09, 13.09) | −1.84 (−3.99, −0.20) | - | ||
Q3 | 719 | 0.00 (−16.09, 15.09) | −4.24 (−6.17, −2.26) | - | ||
Q4 | 719 | 1.00 (−14.09, 14.09) | −3.41 (−5.15, −1.26) | - |
n Case/Total | Crude (OR, 95% CI) | Adjusted (OR, 95% CI) | Test of Trend (p) | Energy Adjusted (OR, 95% CI) | Test of Trend (p) | |
---|---|---|---|---|---|---|
EDIP | 3614 | |||||
Q1 | 90/904 | 1 (reference) | 1 (reference) | 0.25 | 1 (reference) | 0.25 |
Q2 | 90/901 | 1.00 (0.74, 1.37) | 1.27 (0.88, 1.82) | 1.27 (0.88, 1.83) | ||
Q3 | 108/906 | 1.22 (0.91, 1.65) | 1.27 (0.89, 1.81) | 1.26 (0.88, 1.79) | ||
Q4 | 103/903 | 1.16 (0.86, 1.57) | 1.29 (0.89, 1.86) | 1.25 (0.83, 1.89) | ||
AHEIP | 1694 | |||||
Q1 | 17/423 | 1 (reference) | 1 (reference) | 0.89 | 1 (reference) | 0.89 |
Q2 | 16/424 | 0.94 (0.47, 1.88) | 1.14 (0.49, 2.65) | 1.19 (0.50, 2.83) | ||
Q3 | 15/424 | 0.88 (0.43, 1.78) | 1.23 (0.52, 2.90) | 1.20 (0.50, 2.90) | ||
Q4 | 10/423 | 0.58 (0.26, 1.28) | 0.89 (0.35, 2.28) | 0.85 (0.31, 2.32) | ||
HEI 1 | 4128 | |||||
Q1 | 65/1032 | 1 (reference) | 1 (reference) | 0.81 | 1 (reference) | - |
Q2 | 116/1032 | 1.88 (1.37, 2.59) | 1.04 (0.71, 1.51) | - | ||
Q3 | 109/1032 | 1.76 (1.28, 2.42) | 0.92 (0.62, 1.35) | - | ||
Q4 | 93/1032 | 1.47 (1.06, 2.05) | 0.99 (0.66, 1.49) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecchione, R.; Westlake, M.; Bragg, M.G.; Rando, J.; Bennett, D.H.; Croen, L.A.; Dunlop, A.L.; Ferrara, A.; Hedderson, M.M.; Kerver, J.M.; et al. Maternal Dietary Patterns During Pregnancy and Child Autism-Related Traits in the Environmental Influences on Child Health Outcomes Consortium. Nutrients 2024, 16, 3802. https://doi.org/10.3390/nu16223802
Vecchione R, Westlake M, Bragg MG, Rando J, Bennett DH, Croen LA, Dunlop AL, Ferrara A, Hedderson MM, Kerver JM, et al. Maternal Dietary Patterns During Pregnancy and Child Autism-Related Traits in the Environmental Influences on Child Health Outcomes Consortium. Nutrients. 2024; 16(22):3802. https://doi.org/10.3390/nu16223802
Chicago/Turabian StyleVecchione, Rachel, Matt Westlake, Megan G. Bragg, Juliette Rando, Deborah H. Bennett, Lisa A. Croen, Anne L. Dunlop, Assiamira Ferrara, Monique M. Hedderson, Jean M. Kerver, and et al. 2024. "Maternal Dietary Patterns During Pregnancy and Child Autism-Related Traits in the Environmental Influences on Child Health Outcomes Consortium" Nutrients 16, no. 22: 3802. https://doi.org/10.3390/nu16223802
APA StyleVecchione, R., Westlake, M., Bragg, M. G., Rando, J., Bennett, D. H., Croen, L. A., Dunlop, A. L., Ferrara, A., Hedderson, M. M., Kerver, J. M., Lee, B. K., Lin, P. -I. D., Hertz-Picciotto, I., Schmidt, R. J., Strakovsky, R. S., & Lyall, K., for the ECHO Cohort Consortium. (2024). Maternal Dietary Patterns During Pregnancy and Child Autism-Related Traits in the Environmental Influences on Child Health Outcomes Consortium. Nutrients, 16(22), 3802. https://doi.org/10.3390/nu16223802