The Association Between Dietary Iron, the SNP of the JAZF1 rs864745, and Glucose Metabolism in a Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Laboratory Measurements
2.4. Genotyping
2.5. Identification of Glucose Metabolism and Calculation of HOMA2
2.6. Potential Confounders
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Genotypes of the JAZF1 rs864745
3.3. The Associations of Elevated Fasting Glucose with Dietary Iron and the JAZF1 rs864745
3.3.1. Associations Between Dietary Iron, the JAZF1 rs864745 Site, and Risk of Elevated Fasting Glucose
3.3.2. Associations Between Dietary Iron and Risk of Elevated Fasting Glucose Stratified by JAZF1 rs864745
3.4. The Association of Liver Metabolic Indicators with Ferritin and the JAZF1 rs864745
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Worldwide Trends in Diabetes Since 1980: A Pooled Analysis of 751 Population-Based Studies with 4.4 Million Participants. Lancet 2016, 387, 1513–1530. [CrossRef]
- Wang, L.; Peng, W.; Zhao, Z.; Zhang, M.; Shi, Z.; Song, Z.; Zhang, X.; Li, C.; Huang, Z.; Sun, X.; et al. Prevalence and Treatment of Diabetes in China, 2013–2018. JAMA 2021, 326, 2498–2506. [Google Scholar] [CrossRef]
- Giwa, A.M.; Ahmed, R.; Omidian, Z.; Majety, N.; Karakus, K.E.; Omer, S.M.; Donner, T.; Hamad, A.R.A. Current Understandings of the Pathogenesis of Type 1 Diabetes: Genetics to Environment. World J. Diabetes 2020, 11, 13–25. [Google Scholar] [CrossRef]
- Shahinfar, H.; Jayedi, A.; Shab-Bidar, S. Dietary Iron Intake and the Risk of Type 2 Diabetes: A Systematic Review and Dose-response Meta-Analysis of Prospective Cohort Studies. Eur. J. Nutr. 2022, 61, 2279–2296. [Google Scholar] [CrossRef]
- Wang, F.; Glenn, A.J.; Tessier, A.J.; Mei, Z.; Haslam, D.E.; Guasch-Ferré, M.; Tobias, D.K.; Eliassen, A.H.; Manson, J.E.; Clish, C.; et al. Integration of Epidemiological and Blood Biomarker Analysis Links Haem Iron Intake to Increased Type 2 Diabetes Risk. Nat. Metab. 2024, 6, 1807–1818. [Google Scholar] [CrossRef]
- Wang, X.; Fang, X.; Zheng, W.; Zhou, J.; Song, Z.; Xu, M.; Min, J.; Wang, F. Genetic Support of A Causal Relationship Between Iron Status and Type 2 Diabetes: A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2021, 106, e4641–e4651. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Zang, J.; Lu, Y.; Xiao, Z.; Zheng, G.; Wu, F. The SNP rs516946 Interacted in the Association of MetS with Dietary Iron Among Chinese Males But Not Females. Nutrients 2022, 14, 2024. [Google Scholar] [CrossRef]
- Ahanchi, N.S.; Khatami, F.; Llanaj, E.; Quezada-Pinedo, H.G.; Dizdari, H.; Bano, A.; Glisic, M.; Eisenga, M.F.; Vidal, P.M.; Muka, T. The Complementary Roles of Iron and Estrogen in Menopausal Differences in Cardiometabolic Outcomes. Clin. Nutr. 2024, 43, 1136–1150. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Z.; Zang, J.; Liu, H.; Lu, Y.; He, X.; Wu, C.; Su, J.; Zhu, Z. The Association between Dietary Iron Intake, SNP of the MTNR1B rs10830963, and Glucose Metabolism in Chinese Population. Nutrients 2023, 15, 1986. [Google Scholar] [CrossRef]
- Ho, M.M.; Yoganathan, P.; Chu, K.Y.; Karunakaran, S.; Johnson, J.D.; Clee, S.M. Diabetes Genes Identified by Genome-Wide Association Studies Are Regulated in Mice by Nutritional Factors in Metabolically Relevant Tissues and by Glucose Concentrations in Islets. BMC Genet. 2013, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Kobiita, A.; Godbersen, S.; Araldi, E.; Ghoshdastider, U.; Schmid, M.W.; Spinas, G.; Moch, H.; Stoffel, M. The Diabetes Gene JAZF1 Is Essential for the Homeostatic Control of Ribosome Biogenesis and Function in Metabolic Stress. Cell Rep. 2020, 32, 107846. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kwon, W.; Park, S.; Jeong, J.; Kim, D.; Jang, S.; Kim, S.Y.; Sung, Y.; Kim, M.O.; Choi, S.K.; et al. Jazf1 Acts as a Regulator of Insulin-Producing β-Cell Differentiation in Induced Pluripotent Stem Cells and Glucose Homeostasis in Mice. FEBS J. 2021, 288, 4412–4427. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.J.; Nati, M.; Chavakis, T.; Chatzigeorgiou, A. Innate Immune Cells in the Adipose Tissue. Rev. Endocr. Metab. Disord. 2018, 19, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhou, B.; Yang, G.; Hu, W.; Zhang, L.; Liu, R.; Li, M.; Wang, K.; Gu, H.F.; Guan, Y.; et al. JAZF1 Ameliorates Age and Diet-Associated Hepatic Steatosis Through SREBP-1c -Dependent Mechanism. Cell Death Dis. 2018, 9, 859. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.J.; Yang, D.R.; Yang, G.; Lin, C.Y.; Chang, H.C.; Li, G.; Chang, C. TR2 and TR4 Orphan Nuclear Receptors: An Overview. Curr. Top. Dev. Biol. 2017, 125, 357–373. [Google Scholar] [CrossRef]
- Liao, Z.Z.; Wang, Y.D.; Qi, X.Y.; Xiao, X.H. JAZF1, a Relevant Metabolic Regulator in Type 2 Diabetes. Diabetes Metab. Res. Rev. 2019, 35, e3148. [Google Scholar] [CrossRef]
- Grarup, N.; Andersen, G.; Krarup, N.T.; Albrechtsen, A.; Schmitz, O.; Jørgensen, T.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. Association Testing of Novel Type 2 Diabetes Risk Alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 Loci with Insulin Release, Insulin Sensitivity, and Obesity in a Population-Based Sample of 4516 Glucose-Tolerant Middle-Aged Danes. Diabetes 2008, 57, 2534–2540. [Google Scholar] [CrossRef]
- Gamboa-Meléndez, M.A.; Huerta-Chagoya, A.; Moreno-Macías, H.; Vázquez-Cárdenas, P.; Ordóñez-Sánchez, M.L.; Rodríguez-Guillén, R.; Riba, L.; Rodríguez-Torres, M.; Guerra-García, M.T.; Guillén-Pineda, L.E.; et al. Contribution of Common Genetic Variation to the Risk of Type 2 Diabetes in the Mexican Mestizo Population. Diabetes 2012, 61, 3314–3321. [Google Scholar] [CrossRef]
- Song, M.; Zhao, F.; Ran, L.; Dolikun, M.; Wu, L.; Ge, S.; Dong, H.; Gao, Q.; Zhai, Y.; Zhang, L.; et al. The Uyghur Population and Genetic Susceptibility to Type 2 Diabetes: Potential Role for Variants in CDKAL1, JAZF1, and IGF1 Genes. Omics 2015, 19, 230–237. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Lu, F.; Guo, Z.; Cai, S.; Huo, T. Excess Iron Intake Induced Liver Injury: The Role of Gut-Liver Axis and Therapeutic Potential. Biomed. Pharmacother. 2023, 168, 115728. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.G.; Pan, X. Chinese Food Composition Book 1; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Gong, W.; Liu, A.; Yao, Y.; Ma, Y.; Ding, C.; Song, C.; Yuan, F.; Zhang, Y.; Feng, G.; Chen, Z.; et al. Nutrient Supplement Use Among the Chinese Population: A Cross-Sectional Study of the 2010–2012 China Nutrition and Health Surveillance. Nutrients 2018, 10, 1733. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Weng, J.; Zhu, D.; Ji, L.; Lu, J.; Zhou, Z.; Zou, D.; Guo, L.; Ji, Q.; Chen, L.; et al. Standards of Medical Care for Type 2 Diabetes in China 2019. Diabetes Metab Res. Rev. 2019, 35, e3158. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Backe, M.B.; Moen, I.W.; Ellervik, C.; Hansen, J.B.; Mandrup-Poulsen, T. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress. Annu. Rev. Nutr. 2016, 36, 241–273. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yan, J.; Zhang, Q.; Lin, H.; Zhu, L.; Liu, Q.; Zhao, C. Association between Serum Ferritin and Blood Lipids: Influence of Diabetes and hs-CRP Levels. J. Diabetes Res. 2020, 2020, 4138696. [Google Scholar] [CrossRef]
- Jahng, J.W.S.; Alsaadi, R.M.; Palanivel, R.; Song, E.; Hipolito, V.E.B.; Sung, H.K.; Botelho, R.J.; Russell, R.C.; Sweeney, G. Iron Overload Inhibits Late Stage Autophagic Flux Leading to Insulin Resistance. EMBO Rep. 2019, 20, e47911. [Google Scholar] [CrossRef]
- Simcox, J.A.; McClain, D.A. Iron and Diabetes Risk. Cell Metab. 2013, 17, 329–341. [Google Scholar] [CrossRef]
- Gao, H.; Yang, J.; Pan, W.; Yang, M. Iron Overload and the Risk of Diabetes in the General Population: Results of the Chinese Health and Nutrition Survey Cohort Study. Diabetes Metab. J. 2022, 46, 307–318. [Google Scholar] [CrossRef]
- Omori, S.; Tanaka, Y.; Horikoshi, M.; Takahashi, A.; Hara, K.; Hirose, H.; Kashiwagi, A.; Kaku, K.; Kawamori, R.; Kadowaki, T.; et al. Replication Study for the Association of New Meta-Analysis-Derived Risk Loci with Susceptibility to Type 2 Diabetes in 6244 Japanese Individuals. Diabetologia 2009, 52, 1554–1560. [Google Scholar] [CrossRef]
- Dai, H.; Qian, Y.; Lv, H.; Jiang, L.; Jiang, H.; Shen, M.; Chen, H.; Chen, Y.; Zheng, S.; Fu, Q.; et al. Rs864745 in JAZF1, an Islet Function Associated Variant, Correlates With Plasma Lipid Levels in Both Type 1 and Type 2 Diabetes Status, But Not Healthy Subjects. Front. Endocrinol. 2022, 13, 898893. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Yang, X.; Fang, Y.; Zhang, J.; Yang, Z.; Wang, Z.; Liu, A.; He, L.; Sun, J.; Lian, Y.; et al. Trends and Disparities of Energy Intake and Macronutrient Composition in China: A Series of National Surveys, 1982–2012. Nutrients 2020, 12, 2168. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Ma, S.; Zhang, N.; Lin, H.; Xiang, T.; Chen, M.; Tan, H. AST-to-ALT Ratio in the First Trimester and The Risk of Gestational Diabetes Mellitus. Front. Endocrinol. 2022, 13, 1017448. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Tang, L.; Jiang, R.; Chen, Y.; Yang, S.; Li, L.; Li, P. The Relationship Between Aspartate Aminotransferase to Alanine Aminotransferase Ratio and Metabolic Syndrome in Adolescents in Northeast China. Diabetes Metab. Syndr. Obes. 2019, 12, 2387–2394. [Google Scholar] [CrossRef]
- Singh, A.; Garg, R.; Lopez, R.; Alkhouri, N. Diabetes Liver Fibrosis Score to Detect Advanced Fibrosis in Diabetics with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2022, 20, e624–e626. [Google Scholar] [CrossRef]
- Ko, S.H.; Baeg, M.K.; Han, K.D.; Ko, S.H.; Ahn, Y.B. Increased Liver Markers Are Associated with Higher Risk of Type 2 Diabetes. World J. Gastroenterol. 2015, 21, 7478–7487. [Google Scholar] [CrossRef]
- Moore, M.C.; Coate, K.C.; Winnick, J.J.; An, Z.; Cherrington, A.D. Regulation of Hepatic Glucose Uptake and Storage In Vivo. Adv. Nutr. 2012, 3, 286–294. [Google Scholar] [CrossRef]
All | Male | Female | |
---|---|---|---|
n (%) | 3298 (100.0) | 1584 (48.0) | 1714 (52.0) |
Age (%) | |||
15–44 years | 972 (29.5) | 458 (29.0) | 514 (30.0) |
45–59 years | 1263 (38.3) | 600 (37.9) | 663 (38.7) |
60 years | 1059 (32.1) | 524 (33.1) | 535 (31.2) |
Annual Household Income (%) | |||
Above average level (RMB > 60,000) 1 | 119 (4.5) | 61 (4.9) | 58 (4.2) |
Average level (RMB 30,000–59,999) | 1473 (56.2) | 693 (55.9) | 780 (56.5) |
Below average level (RMB < 30,000) | 810 (30.9) | 391 (31.5) | 419 (30.3) |
No answer | 219 (8.4) | 95 (7.7) | 124 (9.0) |
Years of Education, years (SD) 2 | 9.5 (4.5) | 10.1 (4.1) | 8.9 (4.8) |
Intentional Physical Exercise (%) | |||
Yes | 2454 (74.8) | 1184 (75.2) | 1270 (74.4) |
no | 828 (25.2) | 391 (24.8) | 437 (25.6) |
Smoking Status (%) | |||
Never smoked | 2312 (70.2) | 620 (39.2) | 1692 (98.8) |
Former smoker | 177 (5.4) | 171 (10.8) | 6 (0.4) |
Current smoker | 805 (24.4) | 790 (50.0) | 15 (0.9) |
Alcohol Use (%) | |||
Lifetime abstainers | 2471 (79.3) | 899 (61.6) | 1572 (94.9) |
Nonheavy drinkers | 503 (16.1) | 429 (29.4) | 74 (4.5) |
Infrequent heavy drinkers | 45 (1.4) | 41 (2.8) | 4 (0.2) |
Frequent heavy drinkers | 96 (3.1) | 90 (6.2) | 6 (0.4) |
BMI 3 (SD) | 24.0 (5.0) | 24.1 (5.7) | 23.8 (3.5) |
Dietary Intake | |||
Energy, kcal/day (SD) | 1772.5 (890.5) | 1957.2 (1002.1) | 1601.8 (733.2) |
Total iron, mg/day (SD) | 19.3 (15.6) | 21.5 (19.3) | 17.3 (10.6) |
Glucose Metabolism Index | |||
Elevated Fasting Glucose (%) | |||
Yes | 442 (13.4) | 242 (15.3) | 200 (11.7) |
No | 2856 (86.6) | 1342 (84.7) | 1514 (88.3) |
FPG 4, mmol/L (SD) | 5.4 (1.6) | 5.4 (1.6) | 5.3 (1.5) |
HbA1c 5, mmol/L (SD) | 5.8 (1.2) | 5.9 (1.3) | 5.8 (1.1) |
HOMA-β 6 (SD) | 76.8 (91.5) | 74.3 (96.8) | 79.1 (86.5) |
HOMA2-IR 7 (SD) | 1.4 (1.9) | 1.4 (2.4) | 1.4 (1.5) |
Liver Function Index | |||
ALT 8, mmol/L (SD) | 20.1 (19.9) | 22.4 (16.8) | 18.0 (22.2) |
AST 9, mmol/L (SD) | 22.4 (11.6) | 23.4 (10.5) | 21.5 (12.4) |
AST/ALT (SD) | 1.3 (0.5) | 1.2 (0.5) | 1.4 (0.5) |
Body Iron Load Index | |||
Ferritin, mmol/L (SD) | 121.2(117.4) | 160.6 (132.1) | 85.7 (88.6) |
Frequency (%) | ||||
---|---|---|---|---|
All | Male | Female | p Value 6 | |
Genotype | ||||
C allele carriers 1 | 0.339 | |||
TC 2 | 849 (32.2) | 376 (30.3) | 470 (34.0) | |
CC 3 | 130(4.9) | 73 (5.9) | 56 (4.1) | |
C allele non-carriers | ||||
TT 4 | 1655 (62.8) | 792 (63.8) | 856 (61.9) | |
MAF 5 | ||||
C | 21.1 | 21.0 | 21.1 | 1.000 |
Model 1 2 | Model 2 3 | |||||
---|---|---|---|---|---|---|
OR (95% CI) 4 | ptrend 5 | pINTM 6 | OR (95% CI) | ptrend | pINTM | |
All | ||||||
Dietary iron | 0.663 | 0.620 | ||||
Q1 (<12.63 mg/day) | Reference | 0.008 | Reference | 0.012 | ||
Q2 (12.63–16.53 mg/day) | 0.93 (0.64, 1.36) | 0.98 (0.65, 1.46) | ||||
Q3 (16.53–21.62 mg/day) | 1.08 (0.75, 1.55) | 1.18 (1.00, 1.69) | ||||
Q4 (≥21.62 mg/day) | 1.27 (0.89, 1.81) | 1.73 (1.11, 2.72) | ||||
rs864745 | ||||||
Non-C allele carriers | Reference | 0.983 | Reference | 0.932 | ||
C allele carriers | 0.99 (0.58, 1.68) | 1.05 (0.60, 1.81) | ||||
Male | ||||||
Dietary iron | 0.043 | 0.041 | ||||
Q1 (<14.07 mg/day) | Reference | 0.046 | Reference | 0.006 | ||
Q2 (14.07–17.79 mg/day) | 1.18 (0.65, 2.19) | 1.52 (1.01, 2.45) | ||||
Q3 (17.79–23.59 mg/day) | 1.52 (1.07, 1.73) | 1.73 (1.05, 3.00) | ||||
Q4 (≥23.59 mg/day) | 1.75 (1.03, 3.07) | 2.49 (1.33, 4.74) | ||||
rs864745 | ||||||
Non-C allele carriers | Reference | 0.049 | Reference | 0.047 | ||
C allele carriers | 1.95 (1.01, 3.93) | 2.15 (1.02, 4.51) | ||||
Female | ||||||
Dietary iron | 0.186 | 0.302 | ||||
Q1 (<11.61 mg/day) | Reference | 0.974 | Reference | 0.999 | ||
Q2 (11.61–16.00 mg/day) | 0.85 (0.52, 1.39) | 0.71 (0.40, 1.24) | ||||
Q3 (16.00–19.87 mg/day) | 0.86 (0.52, 1.41) | 0.80 (0.46, 1.40) | ||||
Q4 (≥19.87 mg/day) | 1.04 (0.61, 1.74) | 0.98 (0.53, 1.85) | ||||
rs864745 | ||||||
Non-C allele carriers | Reference | 0.068 | Reference | 0.131 | ||
C allele carriers | 0.49 (0.23, 1.04) | 0.52 (0.26, 0.98) |
Β 2 | p Value | |
---|---|---|
Ferritin | −0.0004 | 0.005 |
rs864745 | −0.017 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Liu, H.; Luo, B.; Wu, C.; Guo, C.; Wang, Z.; Zang, J.; Wu, F.; Zhu, Z. The Association Between Dietary Iron, the SNP of the JAZF1 rs864745, and Glucose Metabolism in a Chinese Population. Nutrients 2024, 16, 3831. https://doi.org/10.3390/nu16223831
Hu Z, Liu H, Luo B, Wu C, Guo C, Wang Z, Zang J, Wu F, Zhu Z. The Association Between Dietary Iron, the SNP of the JAZF1 rs864745, and Glucose Metabolism in a Chinese Population. Nutrients. 2024; 16(22):3831. https://doi.org/10.3390/nu16223831
Chicago/Turabian StyleHu, Zihan, Hongwei Liu, Baozhang Luo, Chunfeng Wu, Changyi Guo, Zhengyuan Wang, Jiajie Zang, Fan Wu, and Zhenni Zhu. 2024. "The Association Between Dietary Iron, the SNP of the JAZF1 rs864745, and Glucose Metabolism in a Chinese Population" Nutrients 16, no. 22: 3831. https://doi.org/10.3390/nu16223831
APA StyleHu, Z., Liu, H., Luo, B., Wu, C., Guo, C., Wang, Z., Zang, J., Wu, F., & Zhu, Z. (2024). The Association Between Dietary Iron, the SNP of the JAZF1 rs864745, and Glucose Metabolism in a Chinese Population. Nutrients, 16(22), 3831. https://doi.org/10.3390/nu16223831