Sodium-Glucose Cotransporter 2 Inhibitors Improve Body Composition by Increasing the Skeletal Muscle Mass/Fat Mass Ratio in Patients with Type 2 Diabetes: A 52-Week Prospective Real-Life Study
Highlights
- In a real-world context, SGLT2i therapy is associated with ‘healthy’ weight loss predominantly attributable to fat mass (FM) and visceral adipose tissue (VAT) rather than fat-free mass (FFM), with no reduction in muscle strength.
- SGLT2is have shown beneficial effects on both metabolic dysfunction-associated steatotic liver disease (MASLD) and glucometabolic parameters.
- The main results demonstrate the safety of SGLT2is even in patients with a normal BMI and/or sarcopenia or sarcopenic obesity, as well as a beneficial effect of SGLT2is on body composition and hepatic steatosis.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Institution, and Ethics
2.2. Screening for Eligibility of Study Participants
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Study Protocol
2.6. Study Outcomes
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Population
3.2. Changes in Anthropometric, Serologic, and Ultrasonographic Parameters over the Study Period
3.3. Changes in Body Composition over the Study Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakri, G.; Bull, S.; et al. CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Nangaku, M.; Kraus, B.J.; Zinman, B.; Mattheus, M.; Hantel, S.; Schumacher, M.; Ohneberg, K.; Schmoor, C.; Inzucchi, S.E. How do SGLT2 inhibitors protect the kidney? A mediation analysis of the EMPA-REG OUTCOME trial. Nephrol. Dial. Transplant. 2024, 39, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.J.; Eriksson, J.W. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs 2019, 79, 219–230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, D.K.; Strong, J. The Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Beyond the Glycemic Benefit. Diabetes Ther. 2019, 10, 1771–1792. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. Euglycemic Ketoacidosis as a Complication of SGLT2 Inhibitor Therapy. Clin. J. Am. Soc. Nephrol. 2021, 16, 1284–1291. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pishdad, R.; Auwaerter, P.G.; Kalyani, R.R. Diabetes, SGLT-2 Inhibitors, and Urinary Tract Infection: A Review. Curr. Diab Rep. 2024, 24, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Lisco, G.; Disoteo, O.E.; De Tullio, A.; De Geronimo, V.; Giagulli, V.A.; Monzani, F.; Jirillo, E.; Cozzi, R.; Guastamacchia, E.; De Pergola, G.; et al. Sarcopenia and Diabetes: A Detrimental Liaison of Advancing Age. Nutrients 2023, 16, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Afsar, B.; Afsar, R.E. Sodium-glucose co-transporter 2 inhibitors and Sarcopenia: A controversy that must be solved. Clin. Nutr. 2023, 42, 2338–2352. [Google Scholar] [CrossRef] [PubMed]
- Schork, A.; Saynisch, J.; Vosseler, A.; Jaghutriz, B.A.; Heyne, N.; Peter, A.; Häring, H.U.; Stefan, N.; Fritsche, A.; Artunc, F. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: A prospective study using bioimpedance spectroscopy. Cardiovasc. Diabetol. 2019, 18, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sugiyama, S.; Jinnouchi, H.; Kurinami, N.; Hieshima, K.; Yoshida, A.; Jinnouchi, K.; Nishimura, H.; Suzuki, T.; Miyamoto, F.; Kajiwara, K.; et al. Dapagliflozin Reduces Fat Mass without Affecting Muscle Mass in Type 2 Diabetes. J. Atheroscler. Thromb. 2018, 25, 467–476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Inoue, H.; Morino, K.; Ugi, S.; Tanaka-Mizuno, S.; Fuse, K.; Miyazawa, I.; Kondo, K.; Sato, D.; Ohashi, N.; Ida, S.; et al. SUMS-ADDIT-1 Research group. Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces bodyweight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: A randomized clinical trial. J. Diabetes Investig. 2019, 10, 1012–1021. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nambu, H.; Takada, S.; Fukushima, A.; Matsumoto, J.; Kakutani, N.; Maekawa, S.; Shirakawa, R.; Nakano, I.; Furihata, T.; Katayama, T.; et al. Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure. Eur. J. Pharmacol. 2020, 866, 172810. [Google Scholar] [CrossRef] [PubMed]
- Yamakage, H.; Tanaka, M.; Inoue, T.; Odori, S.; Kusakabe, T.; Satoh-Asahara, N. Effects of dapagliflozin on the serum levels of fibroblast growth factor 21 and myokines and muscle mass in Japanese patients with type 2 diabetes: A randomized, controlled trial. J. Diabetes Investig. 2020, 11, 653–661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferraioli, G.; Soares Monteiro, L.B. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 2019, 25, 6053–6062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Binet, Q.; Loumaye, A.; Preumont, V.; Thissen, J.P.; Hermans, M.P.; Lanthier, N. Non-invasive screening, staging and management of metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus patients: What do we know so far? Acta Gastroenterol. Belg. 2022, 85, 346–357. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, C.; Cariello, M.; Graziano, G.; Battaglia, S.; Suppressa, P.; Piazzolla, G.; Sabbà, C.; Moschetta, A. AST to Platelet Ratio Index (APRI) Is an Easy-to-Use Predictor Score for Cardiovascular Risk in Metabolic Subjects. Sci. Rep. 2021, 11, 14834. [Google Scholar] [CrossRef]
- Volpe, S.; Lisco, G.; Racaniello, D.; Fanelli, M.; Colaianni, V.; Vozza, A.; Triggiani, V.; Sabbà, C.; Tortorella, C.; De Pergola, G.; et al. Once-Weekly Semaglutide Induces an Early Improvement in Body Composition in Patients with Type 2 Diabetes: A 26-Week Prospective Real-Life Study. Nutrients 2022, 14, 2414. [Google Scholar] [CrossRef]
- Volpe, S.; Lisco, G.; Fanelli, M.; Racaniello, D.; Colaianni, V.; Triggiani, D.; Donghia, R.; Crudele, L.; Rinaldi, R.; Sabbà, C.; et al. Once-Weekly Subcutaneous Semaglutide Improves Fatty Liver Disease in Patients with Type 2 Diabetes: A 52-Week Prospective Real-Life Study. Nutrients. 2022, 14, 4673. [Google Scholar] [CrossRef] [PubMed]
- Volpe, S.; Lisco, G.; Fanelli, M.; Racaniello, D.; Colaianni, V.; Lavarra, V.; Triggiani, D.; Crudele, L.; Triggiani, V.; Sabbà, C.; et al. Oral semaglutide improves body composition and preserves lean mass in patients with type 2 diabetes: A 26-week prospective real-life study. Front. Endocrinol. 2023, 14, 1240263. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Jensen, B.; Braun, W.; Pourhassan, M.; Gallagher, D.; Müller, M.J. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur. J. Clin. Nutr. 2017, 71, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31, https://doi.org/10.1093/ageing/afy169. Erratum in Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Yuan, K.-H. Practical Statistical Power Analysis Using Webpower and R; ISDSA Press: Granger, IN, USA, 2018; Available online: https://webpower.psychstat.org (accessed on 3 September 2024). [CrossRef]
- Preis, S.R.; Massaro, J.M.; Robins, S.J.; Hoffmann, U.; Vasan, R.S.; Irlbeck, T.; Meigs, J.B.; Sutherland, P.; Sr D’Agostino, R.B.; O’Donnell, C.J.; et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity 2010, 18, 2191–2198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, K.I.; Yang, S.J.; Kim, T.N.; Yoo, H.J.; Kang, H.J.; Song, W.; Baik, S.H.; Choi, D.S.; Choi, K.M. The association between the ratio of visceral fat to thigh muscle area and metabolic syndrome: The Korean Sarcopenic Obesity Study (KSOS). Clin. Endocrinol. 2010, 73, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Takahashi, F.; Okamura, T.; Hamaguchi, M.; Fukui, M. Diet, exercise, and pharmacotherapy for sarcopenia in people with diabetes. Metabolism 2023, 144, 155585. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E. Sodium-Glucose Co-transporters and Their Inhibition: Clinical Physiology. Cell Metab. 2017, 26, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T. Sarcopenia, frailty circle and treatment with sodium-glucose cotransporter 2 inhibitors. J. Diabetes Investig. 2019, 10, 193–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yabe, D.; Nishikino, R.; Kaneko, M.; Iwasaki, M.; Seino, Y. Short-term impacts of sodium/glucose co-transporter 2 inhibitors in Japanese clinical practice: Considerations for their appropriate use to avoid serious adverse events. Expert. Opin. Drug Saf. 2015, 14, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Koike, Y.; Shirabe, S.I.; Maeda, H.; Yoshimoto, A.; Arai, K.; Kumakura, A.; Hirao, K.; Terauchi, Y. Effect of canagliflozin on the overall clinical state including insulin resistance in Japanese patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 149, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Cefalu, W.T.; Leiter, L.A.; Yoon, K.H.; Arias, P.; Niskanen, L.; Xie, J.; Balis, D.A.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013, 382, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Sumida, Y.; Tanaka, S.; Mori, K.; Taketani, H.; Ishiba, H.; Hara, T.; Okajima, A.; Umemura, A.; Nishikawa, T.; et al. Effect of sodium glucose cotransporter 2 inhibitor on liver function tests in Japanese patients with non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol. Res. 2017, 47, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.H.; Liu, S.C.; Lee, C.C.; Sun, F.J.; Liu, J.J. Effect of empagliflozin versus linagliptin on body composition in Asian patients with type 2 diabetes treated with premixed insulin. Sci. Rep. 2022, 12, 17065. [Google Scholar] [CrossRef]
- Ida, S.; Kaneko, R.; Imataka, K.; Okubo, K.; Shirakura, Y.; Azuma, K.; Fujiwara, R.; Murata, K. Effects of Antidiabetic Drugs on Muscle Mass in Type 2 Diabetes Mellitus. Curr. Diabetes Rev. 2021, 17, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qi, Z.; Wang, Y.; Song, D.; Zhu, D. Effect of sodium-glucose transporter 2 inhibitors on sarcopenia in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1203666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.; Hu, T.; Shen, Y.; Wang, Y.; Bao, Y.; Ma, X. Association of skeletal muscle mass and its change with diabetes occurrence: A population-based cohort study. Diabetol. Metab. Syndr. 2023, 15, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horibe, K.; Morino, K.; Miyazawa, I.; Tanaka-Mizuno, S.; Kondo, K.; Sato, D.; Ohashi, N.; Ida, S.; Yanagimachi, T.; Yoshimura, M.; et al. Metabolic changes induced by dapagliflozin, an SGLT2 inhibitor, in Japanese patients with type 2 diabetes treated by oral anti-diabetic agents: A randomized, clinical trial. Diabetes Res. Clin. Pract. 2022, 186, 109781. [Google Scholar] [CrossRef] [PubMed]
- Bouchi, R.; Sonoda, N.; Itoh, J.; Ono, Y.; Fukuda, T.; Takeuchi, T.; Kishimoto, J.; Yamada, T.; Ogawa, Y. Effects of intensive exercise combined with dapagliflozin on body composition in patients with type 2 diabetes: A randomized controlled trial. Endocr. J. 2021, 68, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Yabe, D.; Shiki, K.; Homma, G.; Meinicke, T.; Ogura, Y.; Seino, Y.; EMPA-ELDERLY Investigators. Efficacy and safety of the sodium-glucose co-transporter-2 inhibitor empagliflozin in elderly Japanese adults (≥65 years) with type 2 diabetes: A randomized, double-blind, placebo-controlled, 52-week clinical trial (EMPA-ELDERLY). Diabetes Obes. Metab. 2023, 25, 3538–3548. [Google Scholar] [CrossRef] [PubMed]
- List, J.F.; Woo, V.; Morales, E.; Tang, W.; Fiedorek, F.T. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 2009, 32, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Seman, L.J.; Jelaska, A.; Hantel, S.; Pinnetti, S.; Hach, T.; Woerle, H.J. Efficacy and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, as add-on to metformin in type 2 diabetes with mild hyperglycaemia. Diabetes Obes. Metab. 2013, 15, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.; Polidori, D.; Heise, T.; Natarajan, J.; Farrell, K.; Wang, S.S.; Sica, D.; Rothenberg, P.; Plum-Mörschel, L. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2014, 16, 1087–1095. [Google Scholar] [CrossRef]
- Inzucchi, S.E.; Zinman, B.; Fitchett, D.; Wanner, C.; Ferrannini, E.; Schumacher, M.; Schmoor, C.; Ohneberg, K.; Johansen, O.E.; George, J.T.; et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 2018, 41, 356–363. [Google Scholar] [CrossRef]
- Koshino, A.; Schechter, M.; Chertow, G.M.; Vart, P.; Jongs, N.; Toto, R.D.; Rossing, P.; Correa-Rotter, R.; McMurray, J.J.V.; Górriz, J.L.; et al. Dapagliflozin and Anemia in Patients with Chronic Kidney Disease. NEJM Evid. 2023, 2, EVIDoa2300049. [Google Scholar] [CrossRef]
- Said, F.; Arnott, C.; Voors, A.A.; Heerspink, H.J.L.; TerMaaten, J.M. Prediction of new-onset heart failure in patients with type 2 diabetes derived from ALTITUDE and CANVAS. Diabetes Obes. Metab. 2024, 26, 2741–2751. [Google Scholar] [CrossRef]
- Tang, J.; Ye, L.; Yan, Q.; Zhang, X.; Wang, L. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Water and Sodium Metabolism. Front. Pharmacol. 2022, 13, 800490. [Google Scholar] [CrossRef]
- Ansary, T.M.; Nakano, D.; Nishiyama, A. Diuretic Effects of Sodium Glucose Cotransporter 2 Inhibitors and Their Influence on the Renin-Angiotensin System. Int. J. Mol. Sci. 2019, 20, 629. [Google Scholar] [CrossRef]
- Gullaksen, S.; Vernstrøm, L.; Sørensen, S.S.; Ringgaard, S.; Laustsen, C.; Funck, K.L.; Poulsen, P.L.; Laugesen, E. Separate and combined effects of semaglutide and empagliflozin on kidney oxygenation and perfusion in people with type 2 diabetes: A randomised trial. Diabetologia 2023, 66, 813–825, https://doi.org/10.1007/s00125-023-05876-w. Erratum in Diabetologia 2024, 67, 1451. [Google Scholar] [CrossRef] [PubMed]
- Fuchs Andersen, C.; Omar, M.; Glenthøj, A.; El Fassi, D.; Møller, H.J.; Lindholm Kurtzhals, J.A.; Styrishave, B.; Kistorp, C.; Tuxen, C.; Poulsen, M.K.; et al. Effects of empagliflozin on erythropoiesis in heart failure: Data from the Empire HF trial. Eur. J. Heart Fail. 2023, 25, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Abuaysheh, S.; Hejna, J.; Green, K.; Batra, M.; Makdissi, A.; Chaudhuri, A.; Dandona, P. Dapagliflozin Suppresses Hepcidin And Increases Erythropoiesis. J. Clin. Endocrinol. Metab. 2020, 105, dgaa057. [Google Scholar] [CrossRef] [PubMed]
- Docherty, K.F.; Welsh, P.; Verma, S.; De Boer, R.A.; O’Meara, E.; Bengtsson, O.; Køber, L.; Kosiborod, M.N.; Hammarstedt, A.; Langkilde, A.M.; et al. Iron Deficiency in Heart Failure and Effect of Dapagliflozin: Findings From DAPA-HF. Circulation 2022, 146, 980–994. [Google Scholar] [CrossRef]
- Cho, Y.K.; Kim, Y.J.; Jung, C.H. Effect of Sodium-Glucose Cotransporter 2 Inhibitors on Weight Reduction in Overweight and Obese Populations without Diabetes: A Systematic Review and a Meta-Analysis. J. Obes. Metab. Syndr. 2021, 30, 336–344. [Google Scholar] [CrossRef]
- Piazzolla, G.; Vozza, A.; Volpe, S.; Bergamasco, A.; Triggiani, V.; Lisco, G.; Falconieri, M.; Tortorella, C.; Solfrizzi, V.; Sabbà, C. Effectiveness and clinical benefits of new anti-diabetic drugs: A real life experience. Open. Med. 2022, 17, 1203–1215. [Google Scholar] [CrossRef]
- Obata, A.; Kubota, N.; Kubota, T.; Iwamoto, M.; Sato, H.; Sakurai, Y.; Takamoto, I.; Katsuyama, H.; Suzuki, Y.; Fukazawa, M.; et al. Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice. Endocrinology 2016, 157, 1029–1042. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, H.; Katagiri, S.; Sasaki, K.; Ohsugi, Y.; Watanabe, K.; Rasadul, I.M.D.; Mine, K.; Nagafuchi, S.; Iwata, T.; et al. Combined effect of canagliflozin and exercise training on high-fat diet-fed mice. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E492–E503. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Nagata, N.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Chen, G.; Mayoux, E.; Kaneko, S.; Ota, T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. eBioMedicine 2017, 20, 137–149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, L.; Ota, T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte 2018, 7, 121–128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nichenko, A.S.; Southern, W.M.; Atuan, M.; Luan, J.; Peissig, K.B.; Foltz, S.J.; Beedle, A.M.; Warren, G.L.; Call, J.A. Mitochondrial maintenance via autophagy contributes to functional skeletal muscle regeneration and remodeling. Am. J. Physiol. Cell Physiol. 2016, 311, C190–C200. [Google Scholar] [CrossRef] [PubMed]
- Afsar, B.; Hornum, M.; Afsar, R.E.; Ertuglu, L.A.; Ortiz, A.; Covic, A.; van Raalte, D.H.; Cherney, D.Z.I.; Kanbay, M. Mitochondrion-driven nephroprotective mechanisms of novel glucose lowering medications. Mitochondrion 2021, 58, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Radlinger, B.; Ress, C.; Folie, S.; Salzmann, K.; Lechuga, A.; Weiss, B.; Salvenmoser, W.; Graber, M.; Hirsch, J.; Holfeld, J.; et al. Empagliflozin protects mice against diet-induced obesity, insulin resistance and hepatic steatosis. Diabetologia 2023, 66, 754–767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, L.; An, Y.; Liu, H.; Jiang, J.; Liu, W.; Zhou, Y.; Shi, M.; Dai, W.; Lv, Y.; Zhao, Y.; et al. Global epidemiology of type 2 diabetes in patients with NAFLD or MAFLD: A systematic review and meta-analysis. BMC Med. 2024, 22, 101. [Google Scholar] [CrossRef]
- Procyk, G.; Jaworski, J.; Gąsecka, A.; Filipiak, K.J.; Borovac, J.A. Metabolic dysfunction-associated steatotic liver disease—A new indication for sodium-glucose Co-transporter-2 inhibitors. Adv. Med. Sci. 2024, 69, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Bellanti, F.; Lo Buglio, A.; Dobrakowski, M.; Kasperczyk, A.; Kasperczyk, S.; Aich, P.; Singh, S.P.; Serviddio, G.; Vendemiale, G. Impact of sodium glucose cotransporter-2 inhibitors on liver steatosis/fibrosis/inflammation and redox balance in non-alcoholic fatty liver disease. World J. Gastroenterol. 2022, 28, 3243–3257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, P.; Tan, Y.; Hao, Z.; Xu, W.; Zhou, X.; Yu, J. Effects of SGLT2 inhibitors on hepatic fibrosis and steatosis: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1144838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, Z.; Yuan, Y.; Zheng, C.; Liu, S.; Weng, H. Effects of sodium-glucose co-transporter 2 inhibitors on liver fibrosis in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: An updated meta-analysis of randomized controlled trials. J. Diabetes Complicat. 2023, 37, 108558. [Google Scholar] [CrossRef] [PubMed]
- Mino, M.; Kakazu, E.; Sano, A.; Katsuyama, H.; Hakoshima, M.; Yanai, H.; Aoki, Y.; Imamura, M.; Yamazoe, T.; Mori, T.; et al. Effects of sodium glucose cotransporter 2 inhibitors and pioglitazone on FIB-4 index in metabolic-associated fatty liver disease. Hepatol. Res. 2023, 53, 618–628. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, X.; Kam, L.; Chien, N.; Lai, R.; Cheung, K.S.; Yuen, M.F.; Cheung, R.; Seto, W.K.; Nguyen, M.H. Synergistic association of sodium-glucose cotransporter-2 inhibitor and metformin on liver and non-liver complications in patients with type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease. Gut 2024. [Google Scholar] [CrossRef]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Iida, S.; Katsuyama, H. Metabolic-Dysfunction-Associated Steatotic Liver Disease-Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. Int. J. Mol. Sci. 2023, 24, 15473. [Google Scholar] [CrossRef] [PubMed]
- daShen, Y.; Cheng, L.; Xu, M.; Wang, W.; Wan, Z.; Xiong, H.; Guo, W.; Cai, M.; Xu, F. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism 2023, 146, 155657. [Google Scholar] [CrossRef] [PubMed]
Parameters | Time | ||
---|---|---|---|
T0 | T6 | T12 | |
Body mass index (kg/m2) | 27.5 ± 0.5 | 26.4 ± 0.5 # | 26.3 ± 0.5 # |
Waist circumference (cm) | 101.6 ± 1.3 | 99.9 ± 1.3 # | 99.1 ± 1.4 # |
Fasting glycemia (mg/dL) | 141.9 ± 6.8 | 120.4 ± 3.8 # | 117.3 ± 2.7 # |
Glycated hemoglobin (mmol/mol) | 57.5 ± 2.4 | 49.7 ± 1.3 # | 48.6 ± 1.1 # |
Fasting serum C-peptide (ng/mL) | 3.0 ± 0.2 | 2.7 ± 0.2 * | 2.7 ± 0.2 # |
Fasting serum insulin (mUI/L) | 12.6 ± 1.2 | 8.4 ± 0.8 # | 9.3 ± 0.8 * |
HOMA-IR index | 4.6 ± 0.6 | 2.4 ± 0.2 # | 2.6 ± 0.3 # |
Uric acid (mg/dL) | 5.2 ± 0.2 | 4.2 ± 0.2 # | 4 ± 0.2 # |
Total cholesterol (mg/dL) | 148.5 ± 4.3 | 135.2 ± 3.3 # | 130.2 ± 3.1 # |
LDL cholesterol (mg/dL) | 76 ± 3.5 | 64.5 ± 2.7 # | 57.9 ± 2 #, & |
HDL cholesterol (mg/dL) | 51 ± 2.0 | 52.3 ± 2.1 | 52.8 ± 1.9 |
Triglycerides (mg/dL) | 120.1 ± 7.6 | 105 ± 5.6 * | 105.5 ± 5.6 * |
Hemoglobin (g/dL) | 13.8 ± 0.2 | 14.7 ± 0.2 # | 14.6 ± 0.2 # |
Hematocrit (%) | 41.8 ± 0.5 | 44.3 ± 0.5 # | 45.2 ± 0.7 # |
Serum creatinine (mg/dL) | 0.92 ± 0.03 | 0.94 ± 0.03 | 0.89 ± 0.03 |
Glomerular filtration rate (mL/min/1.73 m2) | 79.8 ± 2.2 | 79.5 ± 2.3 | 81.3 ± 2.3 |
AST (IU/L) | 23.7 ± 1.2 | 20.8 ± 0.9 * | 21.7 ± 0.9 |
ALT (IU/L) | 30.1 ± 1.8 | 26.4 ± 1.7 | 25 ± 1.7 # |
GGT(IU/L) | 39.5 ± 4.9 | 28.1 ± 2.2 | 28.2 ± 4 # |
Pancreatic isoamylase (IU/L) | 42.4 ± 4.3 | 44.7 ± 4.4 | 50.7 ± 5.0 |
Lipase (IU/L) | 230.3 ± 18.2 | 222.4 ± 19.2 | 215.3 ± 18.5 |
FLI | 54.5 ± 3.3 | 46.3 ± 3.3 # | 43.6 ± 3.5 #, & |
APRI | 0.29 ± 0.01 | 0.26 ± 0.01 | 0.27 ± 0.02 |
FIB-4 | 1.38 ± 0.05 | 1.36 ± 0.07 | 1.45 ± 0.08 |
Hand grip strength (kg) | 31.2 ± 1 | 30.8 ± 1.1 | 30.9 ± 1 |
Parameters | Time | ||
---|---|---|---|
T0 | T6 | T12 | |
Visceral Adipose Tissue (VAT; L) | 3.5 ± 0.2 | 3.2 ± 0.2 # | 3.1 ± 0.2 # |
Fat Mass (FM; kg) | 24.8 ± 1.1 | 21.7 ± 1.2 # | 21.8 ± 1.2 # |
Fat Mass Index (FMI; kg/m2) | 9 ± 0.4 | 7.9 ± 0.4 # | 7.9 ± 0.4 # |
Fat Mass (FM; %) | 32 ± 1 | 29.3 ± 1.2 # | 29.5 ± 1.1 # |
Fat-Free Mass (FFM; kg) | 51.5 ± 1.1 | 51.3 ± 1.2 | 51 ± 1.2 |
Fat-Free Mass Index (FFMI; kg/m2) | 18.3 ± 0.3 | 19 ± 0.7 | 18.7 ± 0.7 |
Fat-Free Mass (FFM; %) | 67.3 ± 1.1 | 70.3 ± 1.4 * | 70 ± 1.3 * |
Skeletal Muscle Mass (SMM; kg) | 23.2 ± 0.6 | 22.9 ± 0.7 | 22.5 ± 0.7 * |
Skeletal Muscle Mass Index (SMI; kg/m2) | 8.8 ± 0.4 | 8.6 ± 0.4 | 8.5 ± 0.4 * |
SMM/VAT (kg/L) | 8.3 ± 0.7 | 9 ± 0.7 | 8.8 ± 0.6 |
SMM/FM (kg) | 1.0 ± 0.1 | 1.28 ± 0.09 # | 1.18 ± 0.07 # |
Total Body Water (TBW; L) | 38.2 ± 0.8 | 38.1 ± 0.8 | 37.9 ± 0.9 |
Extracellular Body Water (ECW; L) | 17.4 ± 0.3 | 17.4 ± 0.3 | 17.3 ± 0.4 |
ECW/TBW (%) | 45.7 ± 0.3 | 45.9 ± 0.3 | 45.9 ± 0.3 |
Phase Angle (◦) | 5.2 ± 0.1 | 5 ± 0.1 | 4.9 ± 0.1 * |
Muscle Quality Index (MQI) (kg/kg) | 1.3 ± 0.04 | 1.34 ± 0.04 | 1.37 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpe, S.; Vozza, A.; Lisco, G.; Fanelli, M.; Racaniello, D.; Bergamasco, A.; Triggiani, D.; Pierangeli, G.; De Pergola, G.; Tortorella, C.; et al. Sodium-Glucose Cotransporter 2 Inhibitors Improve Body Composition by Increasing the Skeletal Muscle Mass/Fat Mass Ratio in Patients with Type 2 Diabetes: A 52-Week Prospective Real-Life Study. Nutrients 2024, 16, 3841. https://doi.org/10.3390/nu16223841
Volpe S, Vozza A, Lisco G, Fanelli M, Racaniello D, Bergamasco A, Triggiani D, Pierangeli G, De Pergola G, Tortorella C, et al. Sodium-Glucose Cotransporter 2 Inhibitors Improve Body Composition by Increasing the Skeletal Muscle Mass/Fat Mass Ratio in Patients with Type 2 Diabetes: A 52-Week Prospective Real-Life Study. Nutrients. 2024; 16(22):3841. https://doi.org/10.3390/nu16223841
Chicago/Turabian StyleVolpe, Sara, Alfredo Vozza, Giuseppe Lisco, Margherita Fanelli, Davide Racaniello, Alessandro Bergamasco, Domenico Triggiani, Giulia Pierangeli, Giovanni De Pergola, Cosimo Tortorella, and et al. 2024. "Sodium-Glucose Cotransporter 2 Inhibitors Improve Body Composition by Increasing the Skeletal Muscle Mass/Fat Mass Ratio in Patients with Type 2 Diabetes: A 52-Week Prospective Real-Life Study" Nutrients 16, no. 22: 3841. https://doi.org/10.3390/nu16223841
APA StyleVolpe, S., Vozza, A., Lisco, G., Fanelli, M., Racaniello, D., Bergamasco, A., Triggiani, D., Pierangeli, G., De Pergola, G., Tortorella, C., Moschetta, A., & Piazzolla, G. (2024). Sodium-Glucose Cotransporter 2 Inhibitors Improve Body Composition by Increasing the Skeletal Muscle Mass/Fat Mass Ratio in Patients with Type 2 Diabetes: A 52-Week Prospective Real-Life Study. Nutrients, 16(22), 3841. https://doi.org/10.3390/nu16223841