Anti-Inflammatory Effects of Cordyceps Cs-HK1 Fungus Exopolysaccharide on Lipopolysaccharide-Stimulated Macrophages via the TLR4/MyD88/NF-κB Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cs-HK1 Mycelial Fermentation and EPS-LM Isolation
2.2. Analysis of EPS-LM Composition and Properties
2.2.1. Analysis of the Chemical Composition
2.2.2. Analysis of the Molecular Weight
2.2.3. FT-IR Analysis
2.3. Assessment of EPS-LM Bioactivities
2.3.1. RAW 264.7 Macrophage Cell Culture
2.3.2. Reagents and Antibodies
2.3.3. Cell Viability Assay
2.3.4. NO Assay
2.3.5. Intracellular ROS Assay (DCFH-DA Probe)
2.3.6. Western Blotting Analysis
2.3.7. Immunofluorescence and Confocal Microscopy Measurement
2.3.8. Co-Immunoprecipitation (Co-IP) Assay
2.4. Statistical Data Analysis
3. Results
3.1. EPS-LM Composition and Effect on RAW 264.7 Cell Viability
3.2. EPS-LM Reduces ROS and Inhibits Oxidative Stress Induced by LPS
3.3. EPS-LM Effects on LPS-Induced Morphological Changes and NO Production
3.4. EPS-LM Inhibits the TLR4/MyD88/NF-κB Pathway to Mitigate Inflammation
3.5. Effects of EPS-LM on the Interaction Between TLR4 and MyD88
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.X.; Wang, S.A.; Nie, S.P.; Marcone, M. Properties of Cordyceps sinensis: A review. J. Funct. Foods 2013, 5, 550–569. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.H.; Wu, J.Y. Effects of ammonium feeding on the production of bioactive metabolites (cordycepin and exopolysaccharides) in mycelial culture of a Cordyceps sinensis fungus. J. Appl. Microbiol. 2007, 103, 1942–1949. [Google Scholar] [CrossRef]
- Li, L.Q.; Song, A.X.; Yin, J.Y.; Siu, K.C.; Wong, W.T.; Wu, J.Y. Anti-inflammation activity of exopolysaccharides produced by a medicinal fungus Cordyceps sinensis Cs-HK1 in cell and animal models. Int. J. Biol. Macromol. 2020, 149, 1042–1050. [Google Scholar] [CrossRef]
- Li, L.Q.; Song, A.X.; Wong, W.T.; Wu, J.Y. Isolation and Assessment of a Highly-Active Anti-Inflammatory Exopolysaccharide from Mycelial Fermentation of a Medicinal Fungus Cs-HK1. Int. J. Mol. Sci. 2021, 22, 2450. [Google Scholar] [CrossRef]
- Guo, C.; Guo, D.; Fang, L.; Sang, T.; Wu, J.; Guo, C.; Wang, Y.; Wang, Y.; Chen, C.; Chen, J.; et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydr. Polym. 2021, 267, 118231. [Google Scholar] [CrossRef]
- Zou, Y.F.; Li, C.Y.; Fu, Y.P.; JiZe, X.P.; Zhao, Y.Z.; Peng, X.; Wang, J.Y.; Yin, Z.Q.; Li, Y.P.; Song, X.; et al. Angelica sinensis aboveground part polysaccharide and its metabolite 5-MT ameliorate colitis via modulating gut microbiota and TLR4/MyD88/NF-kappaB pathway. Int. J. Biol. Macromol. 2023, 242, 124689. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Li, W.W.; Zhang, P.; Zhang, G.W.; Lin, H.W.; Hu, X. Mechanisms of food-derived bioactive compounds inhibiting TLR4 activation and regulating TLR4-mediated inflammation: A comprehensive review and future directions. Food Biosci. 2024, 61, 104587. [Google Scholar] [CrossRef]
- Xu, G.; Yu, Z.P.; Zhao, W.Z. Immunomodulation effects of isochlorogenic acid a from apple on RAW264.7 cells via modulation of TLR2 and TLR4 target proteins. Food Biosci. 2024, 58, 103773. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Sun, W.; Zhu, P.; Ou, G.; Zhang, S.; Li, Y.; Hu, J.; Qu, X.; Zhong, Y.; Yu, W.; et al. Refined polysaccharide from Dendrobium devonianum resists H1N1 influenza viral infection in mice by activating immunity through the TLR4/MyD88/NF-kappaB pathway. Front. Immunol. 2022, 13, 999945. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.H.; Zhao, S.; Ho, K.P.; Wu, J.Y. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 2009, 114, 1251–1256. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Huang, L.X.; Dong, X.L.; Wu, J.Y. Evaluation of Three-Phase Partitioning for Efficient and Simultaneous Isolation of Immunomodulatory Polysaccharides and Proteins from Lentinula edodes Mushroom. Food Bioprocess Technol. 2024, 17, 2277–2291. [Google Scholar] [CrossRef]
- Li, J.H.; Gu, F.T.; Yang, Y.; Zhao, Z.C.; Huang, L.X.; Zhu, Y.Y.; Chen, S.; Wu, J.Y. Simulated human digestion and fermentation of a high-molecular weight polysaccharide from Lentinula edodes mushroom and protective effects on intestinal barrier. Carbohydr. Polym. 2024, 343, 122478. [Google Scholar] [CrossRef]
- Barltrop, J.A.; Owen, T.C.; Cory, A.H.; Cory, J.G. 5-(3-Carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)te trazolium, inner salt (mts) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (mtt) reducing to purple water-soluble formazans as cell-viability indicators. Bioorganic Med. Chem. Lett. 1991, 1, 611–614. [Google Scholar] [CrossRef]
- Kleinbongard, P.; Rassaf, T.; Dejam, A.; Kerber, S.; Kelm, M. Griess method for nitrite measurement of aqueous and protein-containing samples. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2002; Volume 359, pp. 158–168. [Google Scholar]
- Alia, M.; Ramos, S.; Mateos, R.; Bravo, L.; Goya, L. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J. Biochem. Mol. Toxicol. 2005, 19, 119–128. [Google Scholar] [CrossRef]
- Burckhardt, C.J.; Minna, J.D.; Danuser, G. Co-immunoprecipitation and semi-quantitative immunoblotting for the analysis of protein-protein interactions. Star Protoc. 2021, 2, 100644. [Google Scholar] [CrossRef]
- Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499–511. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.Y.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Larin, M. Mechanisms of disease-Nuclear factor-kappa b-A pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 1997, 336, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. NF-κB in immunobiology. Cell Res. 2011, 21, 223–244. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Mao, C.W.; Liu, R.W.; Zeng, X.A.; Lin, S.Y. Pulsed electric field (PEF) activates immune activity in RAW 264.7 macrophages by altering pine nut peptide-TLR4 binding sites. Food Biosci. 2024, 58, 103779. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.C.; Luo, M.H.; Yang, S.H.; Wang, Y.Z.; Xu, S.; Xu, Q.R. Musa basjoo Sieb polysaccharide improves inflammation in RAW264.7 cells and zebrafish colitis. Food Biosci. 2024, 61, 104471. [Google Scholar] [CrossRef]
- Shin, H.Y.; Kim, Y.S.; Ha, E.J.; Koo, J.P.; Jeong, W.B.; Joung, M.Y.; Shin, K.S.; Yu, K.W. Anti-inflammatory action and associated intracellular signaling of Centella asiatica extract on lipopolysaccharide-stimulated RAW 264.7 macrophage. Food Biosci. 2024, 61, 104614. [Google Scholar] [CrossRef]
- Abbas, Z.; Tong, Y.C.; Zhang, J.; Wang, J.Y.; Guo, H.N.; Cheng, Q.; Marhaba; Zhou, Y.C.; Ahmad, B.; Wei, X.B.; et al. Enhancing the antioxidant and anti-inflammatory potentials of mulberry-derived postbiotics through submerged fermentation with B. subtilis H4 and B. amyloliquefaciens LFB112. Food Biosci. 2024, 60, 104252. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. Mechanism of action of anti-inflammatory drugs. In Recent Advances in Prostaglandin, Thromboxane, and Leukotriene Research; Sinzinger, H., Samuelsson, B., Vane, J.R., Paoletti, R., Ramwell, P., Wong, P.Y.K., Eds.; Springer: Boston, MA, USA, 1997; Volume 433, pp. 131–138. [Google Scholar]
- Barnes, P.J. How corticosteroids control inflammation: Quintiles prize lecture 2005. Br. J. Pharmacol. 2006, 148, 245–254. [Google Scholar] [CrossRef]
- Zafarullah, M.; Li, W.Q.; Sylvester, J.; Ahmad, M. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 2003, 60, 6–20. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Davies, K.J.A. Is vitamin E an antioxidant, a regulator of signal transduction and gene expression, or a ‘junk’ food? Free. Radic. Biol. Med. 2007, 43, 2–3. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed]
- Willment, J.A.; Brown, G.D. C-type lectin receptors in antifungal immunity. Trends Microbiol 2008, 16, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Gordon, S. Fungal β-glucans and mammalian immunity. Immunity 2003, 19, 311–315. [Google Scholar] [CrossRef] [PubMed]
Sugar (wt%) | Protein (wt%) | Molecular Weight (Da) | ||
---|---|---|---|---|
18.71 + 2.27 | 30.00 + 0.05 | 6.58 × 105 (±3.32%) | ||
Monosaccharide composition (molar ratio) | ||||
Mannose | Glucose | Galactose | Rhamnose | Glucosamine |
2.191 | 1.286 | 1 | 0.325 | 0.246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.-Y.; Dong, Y.-H.; Gu, F.-T.; Zhao, Z.-C.; Huang, L.-X.; Cheng, W.-Y.; Wu, J.-Y. Anti-Inflammatory Effects of Cordyceps Cs-HK1 Fungus Exopolysaccharide on Lipopolysaccharide-Stimulated Macrophages via the TLR4/MyD88/NF-κB Pathway. Nutrients 2024, 16, 3885. https://doi.org/10.3390/nu16223885
Zhu Y-Y, Dong Y-H, Gu F-T, Zhao Z-C, Huang L-X, Cheng W-Y, Wu J-Y. Anti-Inflammatory Effects of Cordyceps Cs-HK1 Fungus Exopolysaccharide on Lipopolysaccharide-Stimulated Macrophages via the TLR4/MyD88/NF-κB Pathway. Nutrients. 2024; 16(22):3885. https://doi.org/10.3390/nu16223885
Chicago/Turabian StyleZhu, Yan-Yu, Yu-Han Dong, Fang-Ting Gu, Zi-Chen Zhao, Lin-Xi Huang, Wai-Yin Cheng, and Jian-Yong Wu. 2024. "Anti-Inflammatory Effects of Cordyceps Cs-HK1 Fungus Exopolysaccharide on Lipopolysaccharide-Stimulated Macrophages via the TLR4/MyD88/NF-κB Pathway" Nutrients 16, no. 22: 3885. https://doi.org/10.3390/nu16223885
APA StyleZhu, Y. -Y., Dong, Y. -H., Gu, F. -T., Zhao, Z. -C., Huang, L. -X., Cheng, W. -Y., & Wu, J. -Y. (2024). Anti-Inflammatory Effects of Cordyceps Cs-HK1 Fungus Exopolysaccharide on Lipopolysaccharide-Stimulated Macrophages via the TLR4/MyD88/NF-κB Pathway. Nutrients, 16(22), 3885. https://doi.org/10.3390/nu16223885