High Doses of Vitamin D and Specific Metabolic Parameters in Type 2 Diabetes Patients: Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Eliglibility Criteria
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Limitations
2.5. Search Strategy and Data Extraction
3. Results
3.1. Study Selection
3.2. Effect on Parameters
3.2.1. Effect on Vitamin D Levels
3.2.2. Effect on HbA1c Levels
3.2.3. Effect on Blood Pressure
3.2.4. Effect on Parathormone
3.2.5. Effect on Serum Calcium
3.2.6. Effect on Fasting Blood Glucose
3.2.7. Effect on Body Mass Index
3.3. Risk of Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
T2DM | type 2 diabetes mellitus |
25(OH)D | calcifediol, as calcidiol or 25-hydroxycholecalciferol |
FBG | fasting blood glucose |
HbA1c | glycated hemoglobin |
PTH | parathormone |
VDR | vitamin D receptor |
RCT | randomized controlled trial |
e.g., | for example |
VD | vitamin D |
Ca2+ | calcium |
BP | blood pressure |
DBPC | double-blind, placebo-controlled |
RC | randomized controlled |
DBACC | double-blind, active comparator-controlled |
RPCT | randomized placebo-controlled trial |
PIRT | prospective interventional randomized trial |
IU | international unit |
PRISMA | preferred reporting items for systematic reviews and Meta-Analyses |
BMI | body mass index |
SBP | systolic blood pressure |
DBP | diastolic blood pressure |
UAE | United Arab Emirates |
D3 | cholecalciferol |
PTH | parathormone |
CAMP | cathelicidin antimicrobial peptide |
Th cells | T-helper cells |
Treg cells | T-regulatory cells |
IgG | immunoglobulin G |
IgM | immunoglobulin M |
IFN γ | interferon gamma |
TNF-α | tumor necrosis factor-alpha |
IL-2 | interleukin 2 |
IL-4 | interleukin 4 |
IL-5 | interleukin 5 |
IL-6 | interleukin 6 |
IL-10 | interleukin 10 |
IL-13 | interleukin 13 |
IL-17 | interleukin 17 |
IL-21 | interleukin 21 |
References
- Wolf, G. The discovery of vitamin D: The contribution of Adolf Windaus. J. Nutr. 2004, 134, 1299–1302. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, H.F. History of the discovery of vitamin D and its active metabolites. BoneKEy Rep. 2014, 3, 479. [Google Scholar] [CrossRef]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nisticò, S.P. Role of vitamins in skin health: A systematic review. Curr. Nutr. Rep. 2020, 9, 226–235. [Google Scholar] [CrossRef]
- Sung, C.C.; Liao, M.T.; Lu, K.C.; Wu, C.C. Role of vitamin D in insulin resistance. J. Biomed. Biotechnol. 2012, 2012, 634195. [Google Scholar] [CrossRef] [PubMed]
- Grammatiki, M.; Karras, S.; Kotsa, K. The role of vitamin D in the pathogenesis and treatment of diabetes mellitus: A narrative review. Hormones 2019, 18, 37–48. [Google Scholar] [CrossRef]
- Del Giudice, M.M.; Indolfi, C.; Strisciuglio, C. Vitamin D: Immunomodulatory aspects. J. Clin. Gastroenterol. 2018, 52, S86–S88. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Fakhoury, H.M.; Kvietys, P.R.; AlKattan, W.; Al Anouti, F.; Elahi, M.A.; Karras, S.N.; Grant, W.B. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105663. [Google Scholar] [CrossRef]
- Ismailova, A.; White, J.H. Vitamin D, infections and immunity. Rev. Endocr. Metab. Disord. 2022, 23, 265–277. [Google Scholar] [CrossRef]
- Sîrbe, C.; Rednic, S.; Grama, A.; Pop, T.L. An update on the effects of vitamin D on the immune system and autoimmune diseases. Int. J. Mol. Sci. 2022, 23, 9784. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D regulation of immune function. Curr. Osteoporos. Rep. 2022, 20, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys. 2012, 523, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.W.; Meyer, M.B. The vitamin D receptor: New paradigms for the regulation of gene expression by 1, 25-dihydroxyvitamin D3. Rheum. Dis. Clin. 2012, 38, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Vitamin D deficiency: Defining, prevalence, causes, and strategies of addressing. Calcif. Tissue Int. 2020, 106, 14–29. [Google Scholar] [CrossRef]
- Horton-French, K.; Dunlop, E.; Lucas, R.M.; Pereira, G.; Black, L.J. Prevalence and predictors of vitamin D deficiency in a nationally representative sample of Australian adolescents and young adults. Eur. J. Clin. Nutr. 2021, 75, 1627–1636. [Google Scholar] [CrossRef]
- Mogire, R.M.; Mutua, A.; Kimita, W.; Kamau, A.; Bejon, P.; Pettifor, J.M.; Adeyemo, A.; Williams, T.N.; Atkinson, S.H. Prevalence of vitamin D deficiency in Africa: A systematic review and meta-analysis. Lancet Glob. Health 2020, 8, e134–e142. [Google Scholar] [CrossRef]
- Jiang, Z.; Pu, R.; Li, N.; Chen, C.; Li, J.; Dai, W.; Wang, Y.; Hu, J.; Zhu, D.; Yu, Q.; et al. High prevalence of vitamin D deficiency in Asia: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 3602–3611. [Google Scholar] [CrossRef]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the prevention of disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Sai, A.J. Vitamin D insufficiency, deficiency, and bone health. J. Clin. Endocrinol. Metab. 2010, 95, 2630–2633. [Google Scholar] [CrossRef]
- Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for preventing and treating vitamin D deficiency: A 2023 update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef]
- Pludowski, P.; Takacs, I.; Boyanov, M.; Belaya, Z.; Diaconu, C.C.; Mokhort, T.; Zherdova, N.; Rasa, I.; Payer, J.; Pilz, S. Clinical practice in the prevention, diagnosis and treatment of vitamin D deficiency: A central and eastern European expert consensus statement. Nutrients 2022, 14, 1483. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, N.; Mortazavi, M.; Iraj, B.; Askari, G. Whether vitamin D3 is effective in reducing proteinuria in type 2 diabetic patients. J. Res. Med. Sci. 2013, 18, 374. [Google Scholar] [PubMed]
- Al-Sofiani, M.E.; Jammah, A.; Racz, M.; Khawaja, R.A.; Hasanato, R.; El-Fawal, H.A.; Mousa, S.A.; Mason, D.L. Effect of vitamin D supplementation on glucose control and inflammatory response in type II diabetes: A double blind, randomized clinical trial. Int. J. Endocrinol. Metab. 2015, 13, e22604. [Google Scholar] [CrossRef]
- Barale, M.; Rossetto Giaccherino, R.; Ghigo, E.; Procopio, M. Effect of 1-year oral cholecalciferol on a metabolic profile and blood pressure in poor-controlled type 2 diabetes mellitus: An open-label randomized controlled pilot study. J. Endocrinol. Investig. 2021, 44, 791–802. [Google Scholar] [CrossRef]
- Behshad, S.; Malekaneh, M.; Sarab, G.A.; Mohammadi, Y.; Farimani, A.R. Effect of vitamin D3 on serum lipid profile and HbA1c levels in type 2 diabetes mellitus: A randomized controlled study. Rom. J. Diabetes Nutr. Metab. Dis. 2022, 29, 420–429. [Google Scholar]
- Byrn, M.A.; Adams, W.; Penckofer, S.; Emanuele, M.A. Vitamin D supplementation and cognition in people with type 2 diabetes: A randomized control trial. J. Diabetes Res. 2019, 2019, 5696391. [Google Scholar] [CrossRef]
- Cojic, M.; Kocic, R.; Klisic, A.; Cvejanov-Kezunovic, L.; Kavaric, N.; Kocic, G. A novel mechanism of vitamin D anti-inflammatory/antioxidative potential in type 2 diabetic patients on metformin therapy. Arch. Med. Sci. 2020, 16, 1004–1012. [Google Scholar] [CrossRef]
- Ebrahimkhani, S.; Ghavamzadeh, S.; Mehdizadeh, A. The effects of vitamin D and curcuminoids supplementation on anthropometric measurements and blood pressure in type 2 diabetic patients with coexisting hypovitaminosis D: A double-blind, placebo-controlled randomized clinical trial. Clin. Nutr. ESPEN 2020, 37, 178–186. [Google Scholar] [CrossRef]
- El Hajj, C.; Walrand, S.; Helou, M.; Yammine, K. Effect of vitamin D supplementation on inflammatory markers in non-obese Lebanese patients with type 2 diabetes: A randomized controlled trial. Nutrients 2020, 12, 2033. [Google Scholar] [CrossRef] [PubMed]
- Elkassaby, S.; Harrison, L.C.; Mazzitelli, N.; Wentworth, J.M.; Colman, P.G.; Spelman, T.; Fourlanos, S. A randomised controlled trial of high dose vitamin D in recent-onset type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 106, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, A.; Gargari, B.P.; Noshad, H.; Sarbakhsh, P.; Mobasseri, M.; Barzegari, M.; Arzhang, P. The effects of vitamin D3 supplementation on some metabolic and inflammatory markers in diabetic nephropathy patients with marginal status of vitamin D: A randomized double blind placebo controlled clinical trial. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 278–283. [Google Scholar] [CrossRef]
- Imanparast, F.; Javaheri, J.; Kamankesh, F.; Rafiei, F.; Salehi, A.; Mollaaliakbari, Z.; Rezaei, F.; Rahimi, A.; Abbasi, E. The effects of chromium and vitamin D3 co-supplementation on insulin resistance and tumor necrosis factor-alpha in type 2 diabetes: A randomized placebo-controlled trial. Appl. Physiol. Nutr. Metab. 2020, 45, 471–477. [Google Scholar] [CrossRef]
- Jorde, R.; Figenschau, Y. Supplementation with cholecalciferol does not improve glycaemic control in diabetic subjects with normal serum 25-hydroxyvitamin D levels. Eur. J. Nutr. 2009, 48, 349–354. [Google Scholar] [CrossRef]
- Kampmann, U.; Mosekilde, L.; Juhl, C.; Moller, N.; Christensen, B.; Rejnmark, L.; Wamberg, L.; Orskov, L. Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function, and metabolic markers in patients with type 2 diabetes and vitamin D insufficiency–a double-blind, randomized, placebo-controlled trial. Metabolism 2014, 63, 1115–1124. [Google Scholar] [CrossRef]
- Khan, I.A.; Chandra, S.; Kanojia, M.L. Vitamin D as add on Therapy to Metformin and Teneligliptin in patients with type 2 Diabetes Mellitus. Res. J. Pharm. Technol. 2023, 16, 3549–3553. [Google Scholar] [CrossRef]
- Momeni, A.; Mirhosseini, M.; Kabiri, M.; Kheiri, S. Effect of vitamin D on proteinuria in type 2 diabetic patients. J. Nephropathol. 2017, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Muley, A.; Iyer, U. Impact of Vitamin D Supplementation on Anthropometric, Glycemic and Lipemic Profile in Subjects with Type 2 Diabetes: A Randomized Control Trial. Indian J. Public Health Res. Dev. 2019, 10, 91–96. [Google Scholar] [CrossRef]
- Sadiya, A.; Ahmed, S.M.; Carlsson, M.; Tesfa, Y.; George, M.; Ali, S.H.; Siddieg, H.H.; Abusnana, S. Vitamin D supplementation in obese type 2 diabetes subjects in Ajman, UAE: A randomized controlled double-blinded clinical trial. Eur. J. Clin. Nutr. 2015, 69, 707–711. [Google Scholar] [CrossRef]
- Safarpour, P.; Daneshi-Maskooni, M.; Vafa, M.; Nourbakhsh, M.; Janani, L.; Maddah, M.; Amiri, F.S.; Mohammadi, F.; Sadeghi, H. Vitamin D supplementation improves SIRT1, Irisin, and glucose indices in overweight or obese type 2 diabetic patients: A double-blind randomized placebo-controlled clinical trial. BMC Fam. Pract. 2020, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Tabesh, M.; Azadbakht, L.; Faghihimani, E.; Tabesh, M.; Esmaillzadeh, A. Effects of calcium plus vitamin D supplementation on anthropometric measurements and blood pressure in vitamin D insufficient people with type 2 diabetes: A randomized controlled clinical trial. J. Am. Coll. Nutr. 2015, 34, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Yiu, Y.F.; Yiu, K.H.; Siu, C.W.; Chan, Y.H.; Li, S.W.; Wong, L.Y.; Lee, S.W.; Tam, S.; Wong, E.W.; Lau, C.P.; et al. Randomized controlled trial of vitamin D supplement on endothelial function in patients with type 2 diabetes. Atherosclerosis 2013, 227, 140–146. [Google Scholar] [CrossRef] [PubMed]
Name of the First Author and Year of Publication | Population Characteristics (All Adults) | Type of Trial | Dose of Vitamin D (IU) | Duration of Intervention | Control Characteristics | Vitamin D Group (Number of Patients) | Control Group (Number of Patients) |
---|---|---|---|---|---|---|---|
Ahmadi 2013 [24] | Iran | DBPC | 50,000/weekly | 12 weeks | placebo | 28 | 23 |
Al-Sofiani 2015 [25] | Saudi Arabia | DBPC | 5000/daily | 12 weeks | placebo | 10 | 10 |
Barale 2020 [26] | Italy | open-label RC pilot study | 5000/daily | 12 months | no supplementation | 16 | 14 |
Behshad 2022 [27] | Iran | DBPC | 50,000/weekly | 8 weeks | placebo | 30 | 32 |
Byrn 2019 [28] | USA | DBACC | 50,000/weekly | 3 months | comparator (5000 IU) | 15 | 15 |
Cojic 2020 [29] | Montenegro | RC open-label investigation | 50,000/weekly/3 months; 14,000/weekly/3 months | 6 months | no supplementation | 70 | 70 |
Ebrahimkhani 2020 [30] | Iran | DBPC | 50,000/weekly | 3 months | placebo | 17 | 19 |
El Hajj 2020 [31] | Lebanon | DBPC | 30,000/weekly | 6 months | placebo | 45 | 43 |
Elkassaby 2014 [32] | Australia | DBPC | 6000/daily | 6 months | placebo | 26 | 24 |
Esfandiari 2019 [33] | Iran | DBPC | 50,000/weekly | 8 weeks | placebo | 25 | 25 |
Imanparast 2019 [34] | Iran | RPCT | 50,000/weekly | 4 months | placebo | 23 | 23 |
Jorde 2009 [35] | Norway | RPCT | 40,000/weekly | 6 months | placebo | 16 | 16 |
Kampmann 2014 [36] | Denmark | DBPC | 11,200/daily/2 weeks; 5600/daily/10 weeks | 12 weeks | placebo | 8 | 8 |
Khan 2023 [37] | India | PIRT | 60,000/weekly/2 months; 60,000/per month | 3 months | no supplementation | 47 | 45 |
Momeni 2016 [38] | Iran | DBPC | 50,000/weekly | 8 weeks | placebo | 30 | 30 |
Muley 2019 [39] | India | RCT | 60,000/weekly | 8 weeks | n/a | 40 | 30 |
Sadyia 2014 [40] | UAE | DBPC | 6000/daily | 3 months | placebo | 45 | 42 |
Safarpour 2020 [41] | Iran | DBPC | 50,000/weekly | 8 weeks | placebo | 42 | 43 |
Tabesh 2015 [42] | Iran | DBPC | 50,000/weekly | 8 weeks | placebo | 29 | 30 |
Yiu 2013 [43] | Hong Kong | DBPC | 5000/daily | 12 weeks | placebo | 50 | 50 |
Name of the First Author and Year of Publication | Vitamin D Levels (Vitamin D Group) After Intervention [ng/mL] | Vitamin D Levels Diff vs. Baseline (%) | HbA1c Levels (Vitamin D Group) After Intervention (%) | HbA1c Levels Diff vs. Baseline (%) | SBP (Vitamin D Group) After Intervention [mmHg] | DBP (Vitamin D Group) After Intervention [mmHg] | SBP Diff vs. Baseline (%) | DBP Diff vs. Baseline (%) | PTH [pmol/L] | PTH Diff vs. Baseline (%) | Ca2+ [mmol/L] | Ca2+ Diff vs. Baseline (%) | Fasting Blood Glucose (FBG) [mmol/L] | FBG Diff vs. Baseline (%) | BMI (Vitamin D Group) Before Intervention | BMI (Vitamin D Group) After Intervention | BMI Levels Diff vs. Baseline (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ahmadi 2013 [24] | 71.23 | 406.61 [↑] | 7.22 | 1.26 [↑] | 119.67 | n/a | 4.53 [↓] | n/a | n/a | n/a | 2.42 | 5.2[↑] | n/a | n/a | 28.38 | n/a | n/a |
Al-Sofiani 2015 [25] | 36.44 | 229 [↑] | 7.85 | 1.26 [↓] | 133 | 77 | 7.96 [↓] | 1.91 [↓] | n/a | n/a | 9.46 | 20.35 [↑] | 8.9 | 5.31 [↓] | 28.8 | 28.33 | 1.63 [↓] |
Barale 2020 [26] | 41.2 | 372.48 [↑] | 6.36 | 14.97 [↓] | 135 | 75 | 14.56 [↓] | 9.64 [↓] | 4.87 | 26.43 [↓] | 2.4 | 4.34 [↑] | 9.1 | 2.77 [↓] | 29.7 | 28.7 | 3.37 [↓] |
Behshad 2022 [27] | 40.05 | 120.78 [↑] | 7.94 | 4.22 [↓] | 134.43 | 71.43 | 0.22 [↓] | 2.55 [↓] | n/a | n/a | 2.38 | 2.68 [↑] | 8.84 | 4.17 [↓] | 25.64 | 25.6 | 0.16 [↓] |
Byrn 2019 [28] | 53 | 120.83 [↑] | 6.9 | 4.16 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | 2.42 | 1.04 [↑] | n/a | n/a | 37.32 | n/a | n/a |
Cojic 2020 [29] | 36.8 | 73.65 [↑] | 6.68 | 0.6 [↑] | 137.28 | 83.34 | 0.31 [↑] | 0.28 [↓] | n/a | n/a | 2.4 | 1.22 [↑] | 7.34 | 7.44 [↓] | 29.34 | 28.22 | 3.82 [↓] |
Ebrahimkhani 2020 [30] | 25.05 | 149.25 [↑] | n/a | n/a | 120.6 | 74 | 14.41 [↓] | 18.41 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | 30.2 | 29.9 | 0.99 [↓] |
El Hajj 2020 [31] | 34.9 | 135.81 [↑] | 6.53 | 0.91 [↓] | 140 | 86 | 0.71 [↓] | 1.91 [↑] | 3.25 | 18.13 [↓] | n/a | n/a | 10.25 | 0.05 [↓] | 22.6 | 21.2 | 6.19 [↓] |
Elkassaby 2014 [32] | 51.2 | 117 [↑] | 6.1 | 1.64 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 7 | 2.94 [↑] | 30.6 | n/a | n/a |
Esfandiari 2019 [33] | 37.63 | 73.65 [↑] | 6.26 | 1.57 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | 2.14 | 3.25 [↑] | 6.22 | 13.36 [↓] | n/a | n/a | n/a |
Imanparast 2019 [34] | 51.79 | 194.6 [↑] | 8.38 | 3.2 [↑] | 129.14 | 77.82 | 1.53 [↓] | 3.49 [↓] | 4.3 | 12.26 [↓] | 2.39 | 3.78 [↓] | 9.89 | 8.02 [↑] | 28.29 | 28.55 | 0.92 [↑] |
Jorde 2009 [35] | 47.32 | 97.16 [↑] | 7.8 | 2.5 [↓] | 136.8 | 81 | 0.94 [↑] | 2.01 [↑] | 3.6 | 7.69 [↓] | 2.32 | 1.27 [↓] | 9.6 | 2.04 [↓] | 32.8 | 32.6 | 0.61 [↓] |
Kampmann 2014 [36] | 41.96 | 238.38 [↑] | 6.84 | 0.58 [↓] | 134 | 74 | 0.97 [↑] | 1.33 [↓] | 5.9 | 4.83 [↓] | 2.276 | 2.22 [↑] | 7.81 | 1.42 [↑] | 35.3 | 35.1 | 0.57 [↓] |
Khan 2023 [37] | 30.97 | 121.05 [↑] | 7.21 | 9.76 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 7.22 | 13.53 [↓] | 23.75 | 23.85 | 0.42 [↑] |
Momeni 2016 [38] | 35.78 | 143.3 [↑] | 8.02 | 2.55 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 8.48 | 4.11 [↑] | n/a | n/a | n/a |
Muley 2019 [39] | 43.6 | 260.33 [↑] | 8.3 | 3.48 [↓] | 134.8 | 81.5 | 4.8 [↓] | 4.11 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | 27.9 | 27.8 | 0.36 [↓] |
Sadyia 2014 [40] | 30.88 | 170.87 [↑] | 8.2 | 0 | 133 | 74 | 3.9 [↑] | 5.71 [↑] | 5 | 15.25 [↓] | 2.31 | 0.00 | 9.8 | 5.37 [↑] | 37.9 | n/a | n/a |
Safarpour 2020 [41] | 38.86 | 125.4 [↑] | 6.76 | 9.98 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 9.72 | 1.76 [↑] | 30.43 | 30.34 | 0.3 [↓] |
Tabesh 2015 [42] | 34.92 | 214.02 [↑] | n/a | n/a | 115.6 | 78 | 5.24 [↓] | 3.7 [↓] | n/a | n/a | n/a | n/a | n/a | n/a | 30.5 | 30.48 | 0.07 [↓] |
Yiu 2013 [43] | 58.6 | 177.72 [↑] | 7.3 | 0.68 [↓] | 145 | 81 | 0.69 [↑] | 1.25 [↑] | 4.1 | 12.95 [↓] | n/a | n/a | 7.37 | 2.64 [↑] | 25.8 | 25.9 | 0.04[↑] |
Name of the First Author and Year of Publication | Conclusion |
---|---|
Ahmadi 2013 [24] | Vitamin D supplementation for three months did not reduce proteinuria in diabetic patients [24]. |
Al-Sofiani 2015 [25] | Vitamin D supplementation in T2DM patients with low vitamin D improved their vitamin D levels and reduced proteinuria but did not affect blood sugar control [25]. |
Barale 2020 [26] | Vitamin D supplementation improved blood sugar, HbA1c, blood pressure, and cholesterol in poorly controlled T2DM patients with vitamin D deficiency [26]. |
Behshad 2022 [27] | High-dose vitamin D supplementation raised vitamin D levels and slightly improved blood sugar control in the study [27]. |
Byrn 2019 [28] | High and low-dose vitamin D supplementation had no significant difference in cognitive function [28]. |
Cojic 2020 [29] | Vitamin D supplementation may improve blood vessel function in T2DM patients on metformin by reducing harmful inflammation and oxidative stress [29]. |
Ebrahimkhani 2020 [30] | Vitamin D supplementation and curcuminoids helped improve body composition and blood pressure in people with T2DM and vitamin D deficiency [30]. |
El Hajj 2020 [31] | Vitamin D supplementation led to a decrease in some inflammatory markers in T2DM [31]. |
Elkassaby 2014 [32] | High-dose vitamin D supplementation improves glycemia transiently, but the biological significance is questionable [32]. |
Esfandiari 2019 [33] | Vitamin D supplementation can be regarded as an effective way to prevent the progression of diabetic nephropathy by reducing levels of inflammatory markers—IL-6 and TNF-a and proteinuria [33]. |
Imanparast 2019 [34] | Vitamin D supplementation and chromium are presumably valuable for controlling and preventing the complications of diabetes by reducing the Homeostatic Model Assessment for Insulin Resistance, which decreases TNF-α [34]. |
Jorde 2009 [35] | Vitamin D supplementation did not significantly affect glucose metabolism in subjects with T2DM but without vitamin D deficiency [35]. |
Kampmann 2014 [36] | Vitamin D supplementation might increase insulin secretion in patients with established T2DM but does not improve insulin resistance, blood pressure, inflammation, or HbA1c [36]. |
Khan 2023 [37] | Vitamin D supplementation can improve the glycemic parameters of T2DM with concurrent vitamin D deficiency [37]. |
Momeni 2016 [38] | Vitamin D supplementation in T2DM patients with vitamin D deficiency or insufficiency leads to normalization of serum vitamin D levels and a decrease in proteinuria compared to the control group, but it did not improve glycemic control indices in the patients [38]. |
Muley 2019 [39] | Vitamin D supplementation improved the anthropometric and lipid parameters among the subjects, thus suggesting a beneficial role in the cardio-metabolic profile of the T2DM subjects [39]. |
Sadyia 2014 [40] | Vitamin D supplementation for obese T2DM patients who are vitamin D deficient normalized the vitamin D status. It reduced the incidence of eucalcemic parathyroid hormone elevation but showed no effect on metabolic control [40]. |
Safarpour 2020 [41] | Vitamin D supplementation may improve T2D by decreasing HbA1c and increasing SIRT1 and irisin in vitamin D-deficient T2D patients [41]. |
Tabesh 2015 [42] | Vitamin D supplementation, in combination with calcium, demonstrated beneficial effects on BMI, hip circumference, and systolic blood pressure in patients with T2DM and vitamin D insufficiency [42]. |
Yiu 2013 [43] | Vitamin D supplementation did not significantly affect vascular function or serum biomarkers of inflammation and oxidative stress in patients with type 2 DM after 12 weeks of oral supplementation [43]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Max, F.; Gažová, A.; Smaha, J.; Jankovský, M.; Tesař, T.; Jackuliak, P.; Kužma, M.; Payer, J.; Kyselovič, J. High Doses of Vitamin D and Specific Metabolic Parameters in Type 2 Diabetes Patients: Systematic Review. Nutrients 2024, 16, 3903. https://doi.org/10.3390/nu16223903
Max F, Gažová A, Smaha J, Jankovský M, Tesař T, Jackuliak P, Kužma M, Payer J, Kyselovič J. High Doses of Vitamin D and Specific Metabolic Parameters in Type 2 Diabetes Patients: Systematic Review. Nutrients. 2024; 16(22):3903. https://doi.org/10.3390/nu16223903
Chicago/Turabian StyleMax, Filip, Andrea Gažová, Juraj Smaha, Martin Jankovský, Tomáš Tesař, Peter Jackuliak, Martin Kužma, Juraj Payer, and Ján Kyselovič. 2024. "High Doses of Vitamin D and Specific Metabolic Parameters in Type 2 Diabetes Patients: Systematic Review" Nutrients 16, no. 22: 3903. https://doi.org/10.3390/nu16223903
APA StyleMax, F., Gažová, A., Smaha, J., Jankovský, M., Tesař, T., Jackuliak, P., Kužma, M., Payer, J., & Kyselovič, J. (2024). High Doses of Vitamin D and Specific Metabolic Parameters in Type 2 Diabetes Patients: Systematic Review. Nutrients, 16(22), 3903. https://doi.org/10.3390/nu16223903