Relationship Between Serum Levels of Oxidized Lipoproteins, Circulating Levels of Myeloperoxidase and Paraoxonase 1, and Diet in Young Subjects with Insulin Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Biochemical Parameters
2.3. Insulin Serum Levels and IR Classification Criteria
2.4. Ox-HDL, Ox-LDL, MPO, and PON 1 Levels
2.5. Nutritional Status Assessment
2.6. Physical Activity
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. Mexico Diabetes Report. 2021. Available online: https://diabetesatlas.org/data/en/country/128/mx.html (accessed on 21 May 2023).
- Onyango, A.N. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. Oxidative Med. Cell. Longev. 2018, 9, 4321714. [Google Scholar] [CrossRef]
- Freeman, A.M.; Acevedo, L.A.; Pennings, N. Insulin Resistance. In Statpearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507839/ (accessed on 26 May 2023).
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef]
- Packard, C.J.; Boren, J.; Taskinen, M.R. Causes and Consequences of Hypertriglyceridemia. Front. Endocrinol. 2020, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Brites, F.; Martin, M.; Guillas, I.; Kontush, A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin. 2017, 8, 66–77. [Google Scholar] [CrossRef]
- Davies, M.J.; Hawkins, C.L. The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid. Redox Signal. 2020, 32, 957–981. [Google Scholar] [CrossRef]
- Chaikijurajai, T.; Tang, W.H.W. Myeloperoxidase: A potential therapeutic target for coronary artery disease. Expert Opin. Ther. Targets 2020, 24, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Frangie, C.; Daher, J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed. Rep. 2022, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Delporte, C.; Van Antwerpen, P.; Vanhamme, L.; Roumeguère, T.; Zouaoui, B.K. Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediat. Inflamm. 2013, 2013, 971579. [Google Scholar] [CrossRef]
- Gómez-García, A.; Rivera-Rodríguez, M.; Gómez-Alonso, C.; Rodríguez-Ochoa, D.Y.; Alvarez-Aguilar, C. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab. J. 2015, 39, 59–65. [Google Scholar] [CrossRef]
- Shunmoogam, N.; Naidoo, P.; Chilton, R. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc. Health Risk Manag. 2018, 18, 137–143. [Google Scholar] [CrossRef]
- Gateva, A.; Assyov, Y.; Tsakova, A.; Kamenov, Z. Serum paraoxonase-1 levels are significantly decreased in the presence of insulin resistance. Exp. Clin. Endocrinol. Diabetes 2016, 124, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhou, L.; Tian, R.; Lu, N. Myeloperoxidase targets apolipoprotein A-I for site-specific tyrosine chlorination in atherosclerotic lesions and generates dysfunctional high-density lipoprotein. Chem. Res. Toxicol. 2021, 34, 1672–1680. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, G.; May-Zhang, L.S.; Yermalitsky, V.; Dikalov, S.; Voynov, M.A.; Amarnath, V.; Kon, V.; Linton, M.F.; Vickers, K.C.; Davies, S.S. Myeloperoxidase-induced modification of HDL by isolevuglandins inhibits paraoxonase-1 activity. J. Biol. Chem. 2021, 297, 101019. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liu, H.; Li, C. Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021, 10, 1854. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, W.; Guo, S. Regulation of macronutrients in insulin resistance and glucose homeostasis during Type 2 Diabetes Mellitus. Nutrients 2023, 15, 4671. [Google Scholar] [CrossRef]
- Aleksandrova, K.; Koelman, L.; Rodrigues, C.E. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol. 2021, 42, 101869. [Google Scholar] [CrossRef]
- Linna, M.S.; Ahotupa, M.; Kukkonen-Harjula, K.; Fogelholm, M.; Vasankari, T.J. Co-existence of insulin resistance and high concentrations of circulating oxidized LDL lipids. Ann. Med. 2015, 47, 394–398. [Google Scholar] [CrossRef]
- Bonvecchio, A.A.; Fernández-Gaxiola, A.C.; Plazas, B.M.; Kaufer-Horwitz, M.; Pérez, L.A.B.; Rivera, D.J.A. Dietary and Physical Activity Guidelines in the Context of Overweight and Obesity in the Mexican Population; National Academy of Medicine: Washington, DC, USA, 2015; pp. 54–55. [Google Scholar]
- Standard NOM-051-SCFI/SSA1-2010; General Labeling Specifications for Prepackaged Foods and Non-Alcoholic Beverages-Commercial and Health Information. Mexican Official Secretary of Commerce and Industrial Development/Secretary of Health: Mexico City, Mexico, 2010.
- Morales de León, J.C.; Bourges-Rodríguez, H.; Camacho-Parra, M.E. Composition Tables of Foods and Food Products (Condensed Version 2015); National Institute of Medical Sciences and Nutrition Salvador Zubiran: Mexico City, Mexico, 2016; pp. 650–651.
- FAO (Ed.) Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a WHO-FAO Expert Consultation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2003; ISBN 978-92-4-120916-8. [Google Scholar]
- IPAQ-Group. International Physical Activity Questionnaire. Downloadable Questionnaires. 2002. Available online: https://youthrex.com/wp-content/uploads/2019/10/IPAQ-TM.pdf (accessed on 1 September 2022).
- Çığrı, E.; İnan, F.Ç. The relationship between anthropometric measurements and vitamin D levels and insulin resistance in obese children and adolescents. Children 2022, 9, 1837. [Google Scholar] [CrossRef]
- Hanamura, I.; Nonaka, F.; Kawasaki, H.; Miya, M.; Sera, N.; Nakano, S.; Kawate, H. Analysis of factors associated with insulin resistance in young women: A cross-sectional study. Clin. Nutr. Open Sci. 2023, 51, 52–61. [Google Scholar] [CrossRef]
- Bjornstad, P.; Eckel, R.H. Pathogenesis of lipid disorders in insulin resistance: A brief review. Curr. Diabetes Rep. 2018, 18, 127. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef] [PubMed]
- Ghazizadeh, H.; Saberi-Karimian, M.; Aghasizadeh, M.; Sahebi, R.; Ghazavi, H.; Khedmatgozar, H.; Timar, A.; Rohban, M.; Javandoost, A.; Ghayour-Mobarhan, M. Pro-oxidant–antioxidant balance (PAB) as a prognostic index in assessing the cardiovascular risk factors: A narrative review. Obes. Med. 2020, 19, 2451–8476. [Google Scholar] [CrossRef]
- Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017, 40, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Valiyaveettil, M.; Kar, N.; Ashraf, M.Z.; Byzova, T.V.; Febbraio, M.; Podrez, E.A. Oxidized high-density lipoprotein inhibits platelet activation and aggregation via scavenger receptor BI. Blood 2008, 111, 1962–1971. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, D.; Xu, X.; He, H.; Zhu, Y.; Lei, T.; Ou, H. Oxidized high-density lipoprotein promotes CD36 palmitoylation and increases lipid uptake in macrophages. J. Biol. Chem. 2022, 298, 102000. [Google Scholar] [CrossRef]
- Marin, M.T.; Dasari, P.S.; Tryggestad, J.B.; Aston, C.E.; Teague, A.M.; Short, K.R. Oxidized HDL and LDL in adolescents with type 2 diabetes compared to normal weight and obese peers. J. Diabetes Complicat. 2015, 29, 679–685. [Google Scholar] [CrossRef]
- Hwang, J.; Rouhanizadeh, M.; Hamilton, R.T.; Lin, T.C.; Eiserich, J.P.; Hodis, H.N.; Hsiai, T.K. 17beta-Estradiol reverses shear-stress-mediated low density lipoprotein modifications. Free. Radic. Biol. Med. 2006, 41, 568–578. [Google Scholar] [CrossRef]
- Hamden, K.; Carreau, S.; Ellouz, F.; Masmoudi, H.; El, F.A. Protective effect of 17beta-estradiol on oxidative stress and liver dysfunction in aged male rats. J. Physiol. Biochem. 2007, 63, 195–201. [Google Scholar] [CrossRef]
- Memudu, A.E.; Dongo, G.A. A study to demonstrate the potential of Anabolic Androgen Steroid to activate oxidative tissue damage, nephrotoxicity and decline endogenous antioxidant system in renal tissue of Adult Wistar Rats. Toxicol. Rep. 2023, 8, 320–326. [Google Scholar] [CrossRef]
- Suba, Z. Interplay between insulin resistance and estrogen deficiency as co- activators in carcinogenesis. Pathol. Oncol. Res. 2012, 18, 123–133. [Google Scholar] [CrossRef]
- Babakr, A.; Mukhtar, M.; Althubiti, M.; Al-Amodi, H.; Almaimani, R.; Nour, M.M.; Elzubeir, A.M.; Nasif, W. Investigation of hyperlipidemia associated with increased levels of oxidized low-density lipoproteins and 8-hydroxy-2′-deoxyguanosine. Diabetes Metab. Syndr. Obes. 2023, 14, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Cohn, G.; Valdes, G.; Capuzzi, D.M. Pathophysiology and treatment of the dyslipidemia of insulin resistance. Curr. Cardiol. Rep. 2001, 3, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Ito, F.; Ito, T. High-Density Lipoprotein (HDL) triglyceride and oxidized HDL: New lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease. Antioxidants 2020, 9, 362. [Google Scholar] [CrossRef] [PubMed]
- Harisa, G.I.; Attia, S.M.; Zoheir, K.M.; Alanazi, F.K. Chitosan treatment abrogates hypercholesterolemia-induced erythrocyte’s arginase activation. Saudi Pharm. J. 2017, 25, 120–127. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Nikiforov, N.G.; Markin, A.M.; Kashirskikh, D.A.; Myasoedova, V.A.; Gerasimova, E.V.; Orekhov, A.N. Overview of OxLDL and its impact on cardiovascular health: Focus on atherosclerosis. Front. Pharmacol. 2021, 11, 613780. [Google Scholar] [CrossRef]
- Taylor, J.K.; Esco, M.R.; Qian, L.; Dugan, K.; Jones, K. A single session of aerobic exercise influences paraoxonase 1 activity and concentration. RETOS Nuevas Tend. En Educ. Física Deporte Y Recreación 2015, 27, 222–225. [Google Scholar]
- James, R.W.; Leviev, I.; Righetti, A. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation 2000, 101, 2252–2257. [Google Scholar] [CrossRef]
- Sluijs, I.; Beulens, J.W.; Van der A, D.L.; Spijkerman, A.M.; Grobbee, D.E.; Van der Schouw, Y.T. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 2010, 33, 43–48. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Liu, S.; Liu, Y.; Ma, Y.; Liu, Y.; Xue, M.; Li, Q.; Zhang, X.; Zhang, S.; et al. Effect of B vitamins supplementation on cardio-metabolic factors in patients with stable coronary artery disease: A randomized double-blind trial. Asia Pac. J. Clin. Nutr. 2020, 29, 245–252. [Google Scholar]
- Sun, L.; Yuan, J.L.; Chen, Q.C.; Xiao, W.K.; Ma, G.P.; Liang, J.H.; Chen, X.K.; Wang, S.; Zhou, X.X.; Wu, H.; et al. Red meat consumption and risk for dyslipidaemia and inflammation: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 996467. [Google Scholar] [CrossRef]
- Välimäki, I.A.; Vuorimaa, T.; Ahotupa, M.; Kekkonen, R.; Korpela, R.; Vasankari, T. Decreased training volume and increased carbohydrate intake increases oxidized LDL levels. Int. J. Sports Med. 2012, 33, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.A.; Berneis, K. Regulation of low-density lipoprotein subfractions by carbohydrates. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Popa, D.S.; Bigman, G.; Rusu, M.E. The role of vitamin K in humans: Implication in aging and age-associated diseases. Antioxidants 2021, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Lou-Bonafonte, J.M.; Gabás-Rivera, C.; Navarro, M.A.; Osada, J. PON1 and Mediterranean Diet. Nutrients 2015, 7, 4068–4092. [Google Scholar] [CrossRef]
- Leong, X.F. Lipid oxidation products on inflammation-mediated hypertension and atherosclerosis: A mini review. Front. Nutr. 2021, 8, 717740. [Google Scholar] [CrossRef]
Characteristics | Total (n = 136) | Control Group (n = 69) | IR Group (n = 67) | p-Value |
---|---|---|---|---|
Sex n (%) | ||||
Women | 80 (58.8) | 47 (68.1) | 33 (49.2) | 0.025 a |
Men | 56 (41.2) | 22 (31.9) | 34 (50.7) | |
Age (years) | 20.5 (19–22) | 20 (19–21) | 21 (19–22) | 0.089 b |
Physical activity | ||||
Sedentary | 86 (63.3) | 50 (72.5) | 36 (53.7) | |
Moderate activity | 32 (23.5) | 13 (18.8) | 19 (28.4) | 0.068 a |
Intense activity | 18 (13.2) | 6 (8.7) | 12 (17.9) | |
Smoking status | ||||
No | 114 (83.8) | 61 (88.4) | 53 (79.1) | 0.141 a |
Yes | 22 (16.2) | 8 (11.6) | 14 (20.9) | |
Weight (kg) | 59.9 (52.7–78) | 55.8 (49.6–60) | 76.7 (59.8–92.6) | <0.001 b |
Height (cm) | 162.2 ± 9 | 160.6 ± 8.4 | 163.8 ± 9.3 | 0.038 c |
BMI (kg/m2) | 23.8 (20.9–30) | 21.6 (19.7–23.7) | 29.6 (24–33.1) | <0.001 b |
Waist circumference (cm) | 82 (74.3–95.6) | 76 (72–81.5) | 95.3 (83–106) | <0.001 b |
Hip circumference (cm) | 98 (91.5–108.9) | 93 (90–99) | 108 (98–113) | <0.001 b |
Fat mass (kg) | 16.1 (11.9–25) | 12.8 (10.2–16.1) | 24.6 (16.5–31) | <0.001 b |
Fat percentage | 27.1 ± 7.7 | 23.4 ± 6.6 | 30.9 ± 6.9 | <0.001 c |
Waist-to-hip ratio | 0.85 (0.8–0.9) | 0.8 (0.8–0.9) | 0.9 (0.8–0.9) | <0.001 b |
SBP (mmHg) | 110.9 ± 13 | 107.3 ± 10.7 | 114.6 ± 14.2 | <0.001 c |
DBP (mmHg) | 68.4 ± 9.8 | 66.8 ± 8.9 | 70.1 ± 10.5 | 0.057 c |
Glucose (mg/dL) | 84 (77–90.5) | 78 (72–84) | 89 (84–95) | <0.001 b |
Triglycerides (mg/dL) | 91 (66–151) | 69 (56–89) | 148 (96–194) | <0.001 b |
Total cholesterol (mg/dL) | 151.5 (131–180) | 138 (128–164) | 171 (142–202) | <0.001 b |
HDL-C (mg/dL) | 39 (36–49) | 44 (38–55) | 38 (33–43) | <0.001 b |
LDL-C (mg/dL) | 95.5 (78–118) | 87 (71–98) | 113 (85–142) | <0.001 b |
LDL-C/HDL-C ratio | 2.3 (1.7–3.1) | 1.8 (1.5–2.5) | 2.9 (2–3.4) | <0.001 b |
Insulin (µU/mL) | 16 (9–25.8) | 9.3 (5.5–11.9) | 26.1 (19.5–32.3) | <0.001 b |
Control Group | IR Group | |||||||
---|---|---|---|---|---|---|---|---|
Ox-LDL | Ox-HDL | Ox-LDL | Ox-HDL | |||||
β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | |
Triglycerides (mg/dL) | 0.02 (−0.01, 0.04) | 0.153 | 0.49 (−1.03, 2.01) | 0.524 | −0.02 (−0.03, −0.01) | <0.001 | −0.84 (−1.64, −0.04) | 0.040 |
Total cholesterol (mg/dL) | 0.05 (0.02, 0.08) | <0.001 | 2.06 (0.42, 3.71) | 0.015 | −0.02 (−0.03, −0.01) | 0.003 | −1.04 (−2.01, −0.06) | 0.038 |
HDL-C (mg/dL) | −0.13 (−0.21, −0.06) | 0.001 | −1.12 (−6.30, 4.06) | 0.667 | −0.01 (−0.07, 0.06) | 0.859 | −7.66 (−13.39, −1.93) | 0.010 |
LDL-C (mg/dL) | 0.06 (0.02, 0.09) | 0.002 | 1.60 (−0.70, 3.89) | 0.169 | −0.01 (−0.02, 0.01) | 0.300 | −0.55 (−1.60, 0.50) | 0.299 |
MPO (ng/mL) | 0.07 (−0.8, 0.22) | 0.341 | −2.16 (−11.13, 6.81) | 0.632 | 0.02 (−0.24, 0.29) | 0.844 | −3.45 (−35.95, 29.06) | 0.804 |
PON1 (ng/mL) | −0.01 (−0.03, 0.002) | 0.089 | 0.33 (−0.67, 1.33) | 0.518 | 0.01 (−0.03, 0.05) | 0.565 | 2.01 (−2.51, 6.52) | 0.318 |
Nutrient | DRI (U/day) | Total (n = 136) | Control Group (n = 69) | IR Group (n = 67) | p-Value |
---|---|---|---|---|---|
Energy (cal) | 1500–2000 | 2677 (2138–3950) | 2693.5 (2304–4101.5) | 2665 (1878–3887) | 0.477 |
Carbohydrates (%) | 55–63 | 56 (52–60) | 55.5 (53–61) | 56 (49–60) | 0.430 |
Proteins (%) | ≤15 | 13 (11–15) | 12 (11–14) | 14 (12–15) | 0.017 |
Lipids (%) | ≤30 | 31 (27–35) | 31 (27.5–34.5) | 31 (27–36) | 0.840 |
Cholesterol (mg) | <250 | 229.5 (171–297) | 221.5 (181.5–284.5) | 234 (168–326) | 0.555 |
SFAs (g) | <22 | 21.5 (14–31) | 20 (14.5–32) | 22 (13–30) | 0.949 |
MUFAs (g) | <34 | 25.5 (16–36) | 26.5 (19.5–36.5) | 25 (15–36) | 0.770 |
PUFAs (g) | >22 | 10.5 (6–21) | 12 (6–25.5) | 8.5 (5–16) | 0.116 |
Fiber (g) | ≥30 | 30.5 (23–49) | 33 (24–48.5) | 28.5 (19–52) | 0.216 |
Sugars (g) | 26–50 | 63.5 (44–101) | 65.5 (43.5–104.5) | 61.5 (45–101) | 0.979 |
Nutrients | HDL-C | p-Value | Ox-LDL | p-Value | PON1 | p-Value |
---|---|---|---|---|---|---|
Energy (Cal) | 0.299 a | 0.621 a | 0.008 a | |||
Low (<1500 cal) | 36.5 (31–42) | 2 (0.3–4.3) | 289.9 (271–300.3) | |||
Adequate (1500–2000 cal) | 40.5 (35.5–53) | 4.26 (0.4–6) | 268.5 (261.8–279.6) | |||
High (>2000 cal) | 39 (35–48) | 0.5 (0.3–5) | 264.9 (255–273.5) | |||
Macronutrients | ||||||
Carbohydrates (%) | 0.586 a | 0.026 a | 0.644 a | |||
Low (<55%) | 38 (35–48) | 0.6 (0.3–4.6) | 266.7 (261.8–275) | |||
Adequate (55–63%) | 39 (35–45) | 0.7 (0.3–6.2) | 268.9 (257.5–279.6) | |||
High (>63%) | 39(37–60) | 0.2 (0.1–0.4) | 249.2(165.9–287.8) | |||
Proteins (%) | 0.212 b | 0.662 b | 0.369 b | |||
Adequate (≤15%) | 39 (36–48) | 0.5 (0.3–5.5) | 268.1 (257.6–274.7) | |||
High (>15%) | 37 (34–43) | 0.7 (0.3–5.1) | 268.5 (261.8–293.2) | |||
Lipids (%) | 0.936 b | 0.256 b | 0.359 b | |||
Adequate (≤30%) | 39 (36–44) | 0.5 (0.3–4.5) | 265.2 (253.6–273.9) | |||
High (>30%) | 38 (35–48) | 2.9 (0.3–5.4) | 270.2 (261.8–275.5) | |||
Vitamins | ||||||
Vitamin A (mcg) | 0.303 b | 0.014 b | 0.489 b | |||
Low (M: <730; W: <570 mcg) | 38 (35–46) | 0.5 (0.2–4.5) | 268.5 (257.4–275.1) | |||
Adequate (M: ≥730; W: ≥570 mcg) | 42 (34–55) | 3.7 (0.5–6.2) | 267.7 (260.5–281.1) | |||
Vitamin B1 (mg) | 0.020 a | 0.326 a | 0.298 a | |||
Low (<1 mg) | 36 (33–38) | 3.5 (0.4–5.9) | 271 (268.5–289.9) | |||
Adequate (1 mg) | 38 (34–48) | 0.5 (0.2–4.5) | 268.1 (258.5–275.1) | |||
High (>1 mg) | 41 (37–52) | 0.7 (0.4–6.1) | 264.4 (254.3–275.2) | |||
Vitamin B2 (mg) | 0.040 a | 0.264 a | 0.869 a | |||
Low (<1 mg) | 32 (30.5–34) | 0.5 (0.4–3.2) | 264.1 (257.3–271) | |||
Adequate (1 mg) | 38 (36–47) | 0.4 (0.2–4.6) | 268.5 (257.8–279.9) | |||
High (>1 mg) | 39 (35–48) | 1.3 (0.4–5.7) | 267.7 (260.5–275.4) | |||
Vitamin K (mcg) | 0.919 b | 0.007 b | 0.403 b | |||
Low (M: <100; W: <75 mcg) | 39 (35–48) | 3.2 (0.3–5.7) | 268.5 (258.6–279.9) | |||
Adequate (M: ≥100; W: ≥75 mcg) | 38 (37–46.5) | 0.3 (0.2–0.5) | 264.4 (261.4–271.7) | |||
Minerals | ||||||
Calcium (mg) | 0.798 b | 0.691 b | 0.343 b | |||
Low (<1000 mg) | 38 (35–48) | 0.5 (0.3–4.6) | 268.5 (261.8–281.1) | |||
Adequate (≥1000 mg) | 39 (35–45) | 0.6 (0.3–5.7) | 265.9 (254.3–274.9) | |||
Phosphorus (mg) | 0.187 b | 0.070 b | 0.003 b | |||
Low (<700 mg) | 37 (33–46) | 4.3 (0.5–6.3) | 279.9 (270.5–300.3) | |||
Adequate (≥700 mg) | 39 (35–49) | 0.5 (0.3–4.9) | 265.1 (257.4–273.7) | |||
Iron (mg) | 0.685 b | 0.888 b | 0.281 b | |||
Low (M: <15; W: <21 mg) | 38 (35.5–46.5) | 1.8 (0.3–5.2) | 270.2 (258.5–284.5) | |||
Adequate (M: ≥15; W: ≥21 mg) | 39 (35–48) | 0.5 (0.3–5.5) | 264.9 (258.6–273.5) | |||
Magnesium (mg) | 0.133 b | 0.138 b | 0.398 b | |||
Low (M: <320; W: <250 mg) | 37 (34.5–46) | 3.5 (0.4–5.8) | 270.4 (259.3–279.9) | |||
Adequate (M: ≥320; W: ≥250 mg) | 39 (36–52) | 0.5 (0.2–4.7) | 265.2 (258.6–273.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchán-Figueroa, Y.; Tepec-Casarrubias, B.; de la Cruz-Mosso, U.; Astudillo-López, C.C.; Matia-García, I.; Salgado-Goytia, L.; Espinoza-Rojo, M.; Castro-Alarcón, N.; Flores-Alfaro, E.; Parra-Rojas, I. Relationship Between Serum Levels of Oxidized Lipoproteins, Circulating Levels of Myeloperoxidase and Paraoxonase 1, and Diet in Young Subjects with Insulin Resistance. Nutrients 2024, 16, 3930. https://doi.org/10.3390/nu16223930
Marchán-Figueroa Y, Tepec-Casarrubias B, de la Cruz-Mosso U, Astudillo-López CC, Matia-García I, Salgado-Goytia L, Espinoza-Rojo M, Castro-Alarcón N, Flores-Alfaro E, Parra-Rojas I. Relationship Between Serum Levels of Oxidized Lipoproteins, Circulating Levels of Myeloperoxidase and Paraoxonase 1, and Diet in Young Subjects with Insulin Resistance. Nutrients. 2024; 16(22):3930. https://doi.org/10.3390/nu16223930
Chicago/Turabian StyleMarchán-Figueroa, Yaquelin, Brenda Tepec-Casarrubias, Ulises de la Cruz-Mosso, Constanza Cecilia Astudillo-López, Inés Matia-García, Lorenzo Salgado-Goytia, Mónica Espinoza-Rojo, Natividad Castro-Alarcón, Eugenia Flores-Alfaro, and Isela Parra-Rojas. 2024. "Relationship Between Serum Levels of Oxidized Lipoproteins, Circulating Levels of Myeloperoxidase and Paraoxonase 1, and Diet in Young Subjects with Insulin Resistance" Nutrients 16, no. 22: 3930. https://doi.org/10.3390/nu16223930
APA StyleMarchán-Figueroa, Y., Tepec-Casarrubias, B., de la Cruz-Mosso, U., Astudillo-López, C. C., Matia-García, I., Salgado-Goytia, L., Espinoza-Rojo, M., Castro-Alarcón, N., Flores-Alfaro, E., & Parra-Rojas, I. (2024). Relationship Between Serum Levels of Oxidized Lipoproteins, Circulating Levels of Myeloperoxidase and Paraoxonase 1, and Diet in Young Subjects with Insulin Resistance. Nutrients, 16(22), 3930. https://doi.org/10.3390/nu16223930