Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective
Abstract
:1. Introduction
2. The Gut Microbiota
3. Potential Mechanisms of Interaction Between Gut Microbiota and T2DM
3.1. Intestinal Permeability
3.2. Modulation of Inflammation
3.3. Glucose Metabolism
3.4. Fatty Acid Oxidation, Synthesis, and Energy Expenditure
3.5. Oxidative Stress
Oxidative Marker | Indication in T2DM | Influence on Gut Microbiota | Reference |
---|---|---|---|
Advanced Glycation End-Products | Elevated levels indicate elevated oxidative stress and chronic hyperglycemia. | ↑ Gut permeability ↑ Gut microbiota dysbiosis ↑ Oxidative stress | [113] |
Glutathione | Decreased levels indicate diminished antioxidant defense. | ↓ Gut barrier integrity ↑ Gut microbiota dysbiosis | [114] |
Malondialdehyde | Elevated levels indicate oxidative damage to cell membranes. | ↑ Gut permeability ↑ Inflammation ↑ Gut microbiota dysbiosis ↑ Oxidative stress | [115] |
Myeloperoxidase | Elevated levels indicate inflammatory oxidative stress. | ↑ Inflammation ↑ Gut microbiota dysbiosis | [116] |
Nitrotyrosine | Elevated levels indicate protein damage linked to T2DM complications. | ↑ Gut epithelial cell damage ↑ Inflammation ↑ Gut microbiota dysbiosis | [117] |
Reactive Oxygen Species | Elevated levels indicate increased oxidative stress. | ↑ Gut mucosal cell damage ↑ Growth of ROS-tolerant pathogenic strains | [118] |
8-Hydroxy-2′-deoxyguanosine | Elevated levels indicate oxidative DNA damage and chronic inflammation. | ↑ Gut epithelial cell damage ↑ Gut microbiota dysbiosis | [119] |
4. Mechanisms of CM in the Treatment of Various Disorders via Regulating Gut Microbiota
4.1. Chinese Herbal Medicine
Herb | Part of Herb Used (If Applicable) | Type of Study | Test Subject | Total Sample Size | Main Therapeutic Effects | Key Changes in Microbiota Phylum | Reference |
---|---|---|---|---|---|---|---|
Ampelopsis grossedentata | Ethanol extract of leaves | In vivo study | ZDF rats | T2DM model T2DM model group (n = 6) Low-dose extract group (n = 6) Medium-dose extract group (n = 6) High-dose extract group (n = 6) Metformin group (n = 6) | Alleviate systematic inflammation Improve lipids profile Lower FBG Modulate BA production | ↑ Bifidobacterium ↑ Clostridia | [142] |
Apocynum venetum | Polysaccharide-rich extracts from leaves | In vivo study | C57BL/6 J mice | T2DM model Water extract group (n = 8) Ethanol extract group (n = 8) Saline solution group (n = 8) | Improve IR Improve lipids profile Lower FBG | ↑ Anaeroplasma ↑ Muribaculum ↑ Odoribacter ↑ Parasutterella ↓ Aerococcus ↓ Enterococcus ↓ Klebsiella | [143] |
Astragalus membranaceus | Polysaccharide | In vivo study | C57BL/6J mice | Non-T2DM model Non-T2DM control group (n = 12) T2DM model T2DM model group (n = 12) Mixed antibiotic group (n = 12) Astragalus extract group (n = 12) Astragalus extract and mixed antibiotic group (n = 12) | Alleviate systematic inflammation Improve antioxidant ability Improve IR Improve lipids profile Lower FBG | ↑ Allobaculum ↑ Lactobacillus ↓ Shigella | [127] |
Coptis chinensis | Berberine | In vivo study | ZDF rats | Non-T2DM model Impaired glucose tolerance group (n = 10) T2DM model Berberine group (n = 10) Control group (n = 5) | Alleviate systematic inflammation Improve IR Lower FBG Protects intestinal barrier | ↑ Aggregatibacter ↑ Akkermansia ↑ Bacteroides ↑ Clostridium ↑ Eubacterium ↑ Oscillospira ↑ Roseburia ↓ Prevotella | [128] |
Water extract | In vivo study | C57BL/6 mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model Diabetes mellitus group (n = 11) Extract group (n = 10) | Improve IR Improve lipids profile Lower FBG Modulate BA production | ↑ Bacteroides ↑ Clostridium | [141] | |
Corni fructus | Water extract from fruits | In vivo study | ICR mice | T2DM model T2DM control group (n = 10) Metformin group (n = 10) Alcohol extract group (n = 10) Corni fructus iridoidglycoside group (n = 10) Corni fructus saponin group (n = 10) Corni fructus tannin group (n = 10) | Alleviate systematic inflammation Improve IR Improve lipids profile Lower FBG Modulate SCFAs production | ↑ Clostridium ↑ Firmicutes ↑ Lactobacillus ↓ Bacteroidetes | [144] |
Curcuma longa | Curcumin | In vivo study | C57BLKS/J mice | T2DM model T2DM control group (n = 10) Control and curcumin group (n = 10) Dextran sodium sulfate group (n = 14) Dextran sodium sulfate and curcumin group (n = 13) | Lower FBG Improve immune regulation Improve IR | ↑ Candidatus ↑ Eubacterium | [145] |
Tetrahydrocurcumin | In vivo study | SPF mice | T2DM model Model group (n = 7) Low-dose group (n = 7) High-dose group (n = 7) | Improve IR Lower FBG | ↑ Bacteroidetes ↑ Firmicutes ↓ Actinobacteria ↓ Proteobacteria | [146] | |
Dendrobium officinale | Dendrobium officinale supplement | In vivo study | BKS.Cg-Dock7m +/+Leprdb/Nju mice | T2DM model Placebo group (n = 6) Dendrobium officinale supplement group (n = 6) | Lower FBG | ↑ Akkermansia ↑ Clostridium ↑ Flavonifractor ↑ Parabacteroides | [124] |
Polyphenol extract | In vivo study | BKS-db mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Low-dose group (n = 8) Medium-dose group (n = 8) High-dose group (n = 8) | Alleviate systematic inflammation Improve antioxidant ability Improve IR Improve lipids profile Lower FBG | ↑ Akkermansia ↑ Bacteroidetes ↓ Escherichia | [129] | |
Edgeworthia gardneri | Water extract | In vivo study | C57BL/6J mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Low-dose group (n = 8) Medium-dose group (n = 8) High-dose group (n = 8) | Alleviate systematic inflammation Improve antioxidant ability Improve IR Improve lipids profile Lower FBG Modulate SCFAs production | ↑ Bacteroidetes ↑ Clostridiales ↓ Deferribacteres ↓ Dorea ↓ Firmicutes ↓ Lachnospiraceae ↓ Proteobacteria ↓ Rikenellaceae | [147] |
Ganoderma atrum | Polysaccharide | In vivo study | SD rats | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Ganoderma atrum polysaccharide group (n = 8) | Alleviate systematic inflammation Improve antioxidant ability Improve IR Improve lipids profile Lower body weight Lower FBG Modulate SCFAs production | ↑ Blautia ↑ Bacteroides ↑ Dehalobacterium ↑ Parabacteroides ↓ Aerococcus ↓ Corynebactrium ↓ Proteus ↓ Ruminococcus | [148] |
Polysaccharide F31 | In vivo study | KM mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Low-dose group (n = 8) High-dose group (n = 8) | Alleviate systematic inflammation Improve antioxidant ability Improve IR Lower FBG | ↑ Bacteroides ↑ Bacteroidetes ↑ Lactobacillus ↑ Ruminococcaceae ↓ Firmicutes | [126] | |
Gastrodia elata | Water extract | In vivo study | C57BL/6 mice | Not reported | Alleviate systematic inflammation Improve lipids profile Lower FBG Modulate BA production | ↑ Faecalibaculum ↑ Lactobacillus ↑ Mucispirillum | [149] |
Hypericum attenuatum | Whole plant extract | In vivo study | KM mice | Non-T2DM model Non-T2DM control group (n = 10) T2DM model T2DM group (n = 10) Metformin group (n = 10) Low-dose group (n = 10) Medium-dose group (n = 10) High-dose group (n = 10) | Improve IR Improve lipids profile Lower FBG Modulate SCFAs production | ↑ Firmicutes ↓ Bacteroidetes ↓ Proteobacteria | [150] |
Inonotus obliquus | Polysaccharide | In vivo study | KM mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Low-dose group (n = 8) Medium-dose group (n = 8) High-dose group (n = 8) | Improve IR Improve lipids profile Lower FBG Protects intestinal barrier | ↑ Bacteroidetes | [151] |
Lycium barbarum | Water extract from leaves | In vivo study | SPF-grade rats | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Low-dose group (n = 8) High-dose group (n = 8) | Improve IR Improve lipids profile Lower FBG | ↓ Blautia ↓ Coprococcus ↓ Marvinbryantia ↓ Parasutterella ↓ Prevotellaceae ↓ Ruminococcus | [152] |
Maydis stigma | Polysaccharide | In vivo study | KM mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Dimethylbiguanide group (n = 8) Low-dose group (n = 8) Medium-dose group (n = 8) High-dose group (n = 8) | Lower FBG | ↑ Bacteroidetes ↑ Lactobacillus | [153] |
Momordica charantia | Polysaccharide | In vivo study | Wistar rats | Non-T2DM model Control group (n = 10) Medium-dose fermented polysaccharide group (n = 10) Unfermented polysaccharide group (n = 10) T2DM model Control group (n = 10) Low-dose fermented polysaccharide group (n = 10) Medium-dose fermented polysaccharide group (n = 10) High-dose fermented polysaccharide group (n = 10) Unfermented polysaccharide group (n = 10) | Improve antioxidant ability Improve IR Improve lipids profile Lower FBG Modulate SCFAs production | ↑ Lactococcus ↑ Prevotella | [154] |
Morus alba | Leaf powder | In vivo study | SD rats | T2DM model Vehicle control group (n = 6) Treatment group (n = 6) Positive control group (n = 6) Negative control group (n = 6) | Improve IR Improve lipids profile Lower FBG Modulate SCFAs production | ↑ Bacteroidetes ↑ Clostridia ↑ Proteobacteria | [155] |
Ethanol extract from leaves | In vivo study | SD rats | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Treatment group (n = 6) | Improve lipids profile Lower FBG | ↑ Bacteroidetes ↑ Firmicutes ↓ Actinobacteria ↓ Bifidobacterium | [156] | |
Alkaloids from the twig | In vivo study | KK-Ay mice | T2DM model T2DM group (n = 8) Low-dose group (n = 8) High-dose group (n = 8) | Alleviate systematic inflammation Improve IR Improve lipids profile Lower FBG Protects intestinal barrier | ↑ Bacteroidaceae ↑ Verrucomicrobia ↓ Desulfovibrionaceae ↓ Rikenellaceae | [130] | |
Polysaccharide | In vivo study | db/db mice | T2DM model T2DM group (n = 10) Metformin group (n = 10) Low dose group (n = 10) Medium dose group (n = 10) High dose group (n = 10) | Improve antioxidant ability Improve lipids profile Improved oral glucose tolerance Lower FBG | ↑ Allobaculum ↑ Akkermansia ↑ Bacteroidales ↑ Bacteroides ↑ Lactobacillus ↓ Enterococcus ↓ Staphylococcus | [157] | |
Panax ginseng | Ginsenoside Rb1 | In vivo study | Kkay mice | T2DM model T2DM group without antibiotic treatment (n = 10) Metformin group without antibiotic treatment (n = 10) Ginsenoside group without antibiotic treatment (n = 10) T2DM group with antibiotic treatment (n = 10) Metformin group with antibiotic treatment (n = 10) Ginsenoside group with antibiotic treatment (n = 10) | Improve IR Improve lipids profile Lower FBG Protects intestinal barrier | ↑ Parasutterella ↓ Alistipes ↓ Anaeroplasma ↓ Odoribacter ↓ Prevotellaceae_ | [158] |
Ginsenoside Rg1 | In vivo study | Wistar rats | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Low dose group (n = 8) High dose group (n = 8) | ↑ Lachnospiraceae ↑ Romboutsia ↑ Roseburia | [159] | ||
Ginsenoside Rg5 | In vivo study | Non- T2DM model Non-T2DM control group (n = 7) Non-T2DM antibiotic control group (n = 7) T2DM model T2DM vehicle treatment group (n = 7) Rg5 vehicle treatment group (n = 7) Antibiotic vehicle treatment group (n = 7) Rg5 non = vehicle treatment group (n = 7) | ↑ Bacteroidetes ↑ Proteobacteria ↓ Firmicutes ↓ Verrucomicrobia | [160] | |||
Physalis alkekengi var. francheti | Polysaccharide | In vivo study | KM mice | Non-T2DM model Non-T2DM control group (n = 10) T2DM model T2DM group (n = 10) Dimethybiguanide group (n = 10) Low dose group (n = 10) High dose group (n = 10) | Alleviate systematic inflammation Improve lipids profile Lower FBG | ↑ Bacteroides ↑ Clostridium ↑ Lactobacillus ↓ Enterobacter | [161] |
Plantago asiatica | Polysaccharide from the seeds | In vivo study | Wistar rats | Non-T2DM model Non-T2DM control group (n = 10) Non-T2DM medium dose group (n = 10) T2DM model T2DM control group (n = 10) Metformin group (n = 10) Low dose group (n = 10) Medium dose group (n-10) High dose group (n = 10) | Improve antioxidant ability Improve IR Improve lipids profile Lower FBG Modulate SCFAs production | ↑ Bacteroides ↑ Lactobacillus ↑ Prevotella ↓ Alistipes | [125] |
Sanghuangporus vaninii | Fruit body polysaccharide extract | In vivo study | ICR mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Low-dose group (n = 8) High-dose group (n = 8) | Improve IR Improve lipids profile Lower FBG Modulate SCFAs production | ↑ Alloprevotella ↑ Dubosiella ↑ Weissella ↓ Flavonifractor ↓ Lactobacillus ↓ Odoribacter | [162] |
Tribulus terrestris | Ethanol extract | In vivo study | SD rats | Not reported | Improve lipids profile Lower FBG Modulate BA production Modulate SCFAs production | ↑ Bacteroidetes ↑ Bifidobacterium ↓ Firmicutes | [163] |
Herbal Formula | Herbal Formula Composition | Type of Study | Test Subject | Total Sample Size | Main Therapeutic Effects | Key Changes in Microbiota Phylum | Reference |
---|---|---|---|---|---|---|---|
AMC | Aloe vera Coptis chinensis Momordica charantia Red yeast rice Rhizoma anemarrhenae Salvia miltiorrhiza Schisandra chinensis Zingiber officinale | Randomized controlled trial | T2DM patients | T2DM model Metformin group (n = 100) AMC treatment group (n = 100) | Improve IR Lower FBG | ↑ Blautia ↑ Coprococcus ↑ Faecalibacterium ↑ Gemmiger ↑ Megamonas ↑ Roseburia | [164] |
Bai Hu Ren Sheng decoction | Glycyrrhiza uralensis Gypsum Japonica rice Panax ginseng Rhizoma anemarrhenae | In vivo study | SD rats | Non-T2DM model Non-T2DM control group (n = 10) T2DM model T2DM group (n = 10) Metformin group (n = 10) Low dose group (n = 10) High dose group (n = 10) | Alleviate systemic inflammation Improve antioxidant ability Improve IR Improve lipid metabolism Lower FBG | ↑ Anaerostipes ↑ Blautia ↑ Lactobacillus ↓ Allobaculum ↓ Candidatus ↓ Ruminococcus ↓ Saccharimonas | [165] |
Bu Yang Huan Wu decoction | Angelicae sinensis Astragalus membranaceus Carthami flos Ligusticum striatum Paeoniae rubra Persicae semen Pheretima | In vivo study | ZDF rats and ZLC rats | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Metformin group (n = 6) Bu Yang Huan Wu decoction group (n = 6) | Improve lipid metabolism Lower FBG | ↑ Bacteroidetes ↑ Blautia. ↑ Lactobacillus ↓ Firmicutes | [166] |
Dang Gui Bu Xue decoction | Astragalus membranaceus Angelicae sinensis | In vivo study | Goto Kakizaki (GK) rats | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Dang Gui Bu Xue decoction group (n = 6) | Alleviate systemic inflammation Improve antioxidant ability Improve IR Improve lipid metabolism Lower FBG | ↑ Adlercreutzia ↑ Peptostreptococcaceae ↑ Oscillospiraceae ↓ Firmicutes | [167] |
Ge Gen Jiao Tai Wan formula | Coptis chinensis Cortex cinnamomi Pueraria lobata | In vivo study | SD rats | Non-T2DM model Non-T2DM control group (n = 10) T2DM model T2DM group (n = 10) Ge Gen Jiao Tai Wan formula group (n = 10) Fecal transplant group (n = 10) Metformin group (n = 7) Antibiotics group (n = 10) Ge Gen Jiao Tai Wan formula and antibiotics group (n = 10) | Improve IR Improve lipid metabolism Lower FBG | ↑ Firmicutes ↑ Lactobacillus | [138] |
Ge Gen Qin Lian decoction | Coptis chinensis Glycyrrhiza uralensis Pueraria lobata Scutellaria baicalensis | Randomized controlled trial | T2DM patients | T2DM model Placebo group (n = 56) Low dose group (n = 56) Moderate dose group (n = 56) High dose group (n = 56) | Alleviate systematic inflammation Lower FBG | ↑ Bifidobacterium ↑ Faecalibacterium ↑ Gemmiger ↓ Alistipes ↓ Parabacteroides ↓ Pseudobutyrivibrio | [168] |
In vivo study | Wistar rats | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Metformin group (n = 6) Ge Gen Qin Lian decoction group (n = 6) | Alleviate systematic inflammation Improve IR Improve lipid metabolism Lower FBG Protects intestinal barrier | ↑ Acetatifactor ↑ Flavonifractor ↓ Anaerofustis ↓ Butyricicoccus ↓ Butyricimonas ↓ Gammaproteobacteria | [169] | ||
Huang Lian Jie Du decoction | Coptis chinensis Gardeniae Fructus Phellodendri Cortex Scutellaria baicalensis | In vivo study | SD rats | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Huang Lian Jie Du decoction group (n = 8) | Alleviate systematic inflammation Improve antioxidant ability Improved IR Improve lipid metabolism Lower FBG | ↑ Akkermansia ↑ Blautia ↑ Parabacteroides ↓ Aerococcus ↓ Staphylococcus | [170] |
Jiang Tang Jing granules | Astragalus membranaceus Coicis semen Crataegi fructus Dioscorea oppositifolia Hirudo Polygonati rhizoma Pueraria lobata Semen brassicae | In vivo study | SD rats | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Linagliptin group (n = 6) Huang Lian Jie Du decoction group (n = 6) | Improve IR Lower FBG | ↑ Bacteroides ↓ Actinobacteria | [171] |
Jiang Tang San Huang pill | Astragalus membranaceus Cinnamomum cassia Glycyrrhiza uralensis Ophiopogon japonicus Persicae semen Rehmannia glutinosa Rheum palmatum Scrophularia ningpoensis | In vivo study | SD rats | Non-T2DM model Non-T2DM control group (n = 10) T2DM model T2DM group (n = 10) Metformin group (n = 10) Low dose group (n = 10) Medium dose group (n = 10) High dose group (n = 10) | Alleviate systemic inflammation Improve IR Improve lipid metabolism Lower FBG | ↑ Bacteroides ↑ Bifidobacterium ↑ Clostridium ↑ Lactobacillus | [172] |
Jin Qi Jiang Tang tablets | Astragalus membranaceus Coptis chinensis Lonicera japonica | In vivo study | C57BL/6J mice | Non-T2DM model Non-T2DM control group (n = 5) T2DM model T2DM group (n = 5) Low dose group (n = 5) High dose group (n = 5) | Alleviate systemic inflammation Improve IR Lower FBG Protects intestinal barrier | ↑ Akkermansia ↓ Desulfovibrio | [173] |
Liu Wei Di Huang pills | Corni fructus Cortex moutan Dioscorea oppositifolia Rehmannia glutinosa Rhizoma alismatis Poria cocos | In vivo study | Goto Kakizaki (GK) rats | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Metformin group (n = 6) Liu Wei Di Huang pills group (n = 6) | Improve IR Improve lipid metabolism Lower FBG Modulate SCFAs production | ↑ Allobaculum ↑ Firmicutes ↑ Lactobacillus ↑ Ruminococcus | [174] |
LLKL formula | Crocus sativus Edgeworthia gardneri Sibiraea angustata | In vivo study | ZDF rats | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) LLKL low-dose group (n = 8) LLKL medium-dose group (n = 8) LLKL high-dose group (n = 8) | Alleviate systemic inflammation Improve IR Improve lipid metabolism Lower FBG | ↑ Bacteroidetes ↑ Proteobacteria ↓ Firmicutes | [175] |
Pi Dan Jian Qing decoction | Astragalus membranaceus Coptis chinensis Potentilla discolor Pseudostellaria heterophylla Pueraria lobata Rhizoma atractylodis Salvia miltiorrhiza Scrophularia ningpoensis Scutellaria baicalensis | Randomized controlled trial | T2DM patients | T2DM model Control group (n = 32) Pi Dan Jian Qing decoction group (n = −35) | Alleviate systemic inflammation Improve antioxidant ability Improve IR Improve lipid metabolism Lower FBG | ↑ Akkermansia ↑ Bacteroides ↑ Blautia ↑ Desulfovibrio ↑ Lactobacillus ↓ Prevotella | [176] |
Qi Jian mixture | Astragalus membranaceus Coptis chinensis Pueraria lobata Ramulus euonymi | In vivo study | KKay mice | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Metformin group (n = 6) Qi Jian mixture low dose group (n = 6) Qi Jian mixture high dose group (n = 6) Ge Gen Qin Lian decoction group (n = 6) | Alleviate systematic inflammation Improved IR Improve lipid metabolism Lower FBG | ↑ Bacteroides | [177] |
Shen Lian decoction | Coptis chinensis Panax ginseng | In vivo study | C57BL/KsJ-db/db mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Coptis chinensis group (n = 8) Panax ginseng group (n = 8) Shen Lian decoction group (n = 8) | Improve IR Lower FBG | ↑ Bacteroidaceae ↓ Helicobacteraceae ↓ Prevotellaceae ↓ Rikenellaceae | [178] |
Shen Qi compound | Astragalus membranaceus Corni fructus Dioscorea oppositifolia Panax ginseng Rehmannia glutinosa Rheum palmatum Salvia miltiorrhiza Trichosanthes kirilowii | In vivo study | Goto Kakizaki (GK) rats | Non-T2DM model Non-T2DM control group (n = 10) T2DM model T2DM group (n = 10) Sitagliptin group (n = 10) Shen Qi compound group (n = 10) | Alleviate systemic inflammation Lower FBG Modulate SCFAs production Improve IR Improve lipid metabolism Protects intestinal barrier | ↑ Bacteroides ↑ Blautia ↑ Butyricimonas ↑ Prevotellaceae ↑ Roseburia ↓ Lactobacillus ↓ Rothia | [179] |
Shen Zhu Tiao Pi granule | Codonopsis pilosula Coptis chinensis Pericarpium Citri Reticulatae Poria cocos Pueraria lobata Rhizoma atractylodis, Rhizoma pinelliae | In vivo study | Goto-Kakizaki rats and Wistar rats | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Acarbose group (n = 6) Shen Zhu Tiao Pi granule group (n = 6) | Improve lipid metabolism Lower FBG | ↑ Lactobacillus ↓ Allobaculum ↓ Bacteroidetes ↓ Desulfovibrionaceae | [136] |
Xie Xin Tang decoction | Coptis chinensis Rhizoma Rhei Scutellaria baicalensis | In vivo study | SD rats | Non-T2DM model Non-T2DM control group (n = 6) T2DM model T2DM group (n = 6) Xie Xin Tang decoction group (n = 6) | Alleviate systematic inflammation Improve lipid metabolism Lower FBG | ↑ Alloprevotella ↑ Barnesiella ↑ Eubacterium ↑ Lachnospiraceae ↑ Papillibacter ↑ Prevotellaceae ↓ Adlercreutzia ↓ Blautia | [139] |
4.2. Acupuncture
Type of Acupuncture | Acupoints Selected | Type of Study | Test Subject | Total Sample Size | Main Therapeutic Effects | Key Changes in Microbiota Phylum | Reference |
---|---|---|---|---|---|---|---|
Electroacupuncture | Bilateral ST36 | In vivo study | BKS.Cg m+/+ Leprdbrdb/J (db/db) diabetic mice | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Electroacupuncture treatment group (n = 8) | Improve IR Improve lipid metabolism Lower FBG | ↑ Lactobacillus ↓ Bacteroides ↓ Clostridia ↓ Lachnospiraceae ↓ Ruminococcaceae | [194] |
In vivo study | C57BL/6 mice and KitW/Wv mice | Non-T2DM model Non-T2DM control group (n = 10) High fat diet group (n = 10) T2DM model T2DM group (n = 10) Electroacupuncture treatment group (n = 10) Sham electroacupuncture treatment group (n = 10) | Alleviate systematic inflammation Improve IR Lower FBG | ↓ Desulfovibrio ↓ Firmicutes ↓ Lachnoclostridium ↓ Lachnospiraceae ↓ Odoribacter ↓ Oscillibacter | [193] | ||
Bilateral BL13, BL20, BL23, LI4, LR3, ST36, and SP6 | In vivo study | SPF-grade rats | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Electroacupuncture treatment group (n = 8) | Alleviate systematic inflammation Improve IR Improve lipids profile Lower FBG Modulate SCFAs production | ↑ Blautia ↑ Lactobacillus ↓ Alistipes ↓ Helicobacter ↓ Prevotella | [195] | |
In vivo study | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Electroacupuncture treatment group (n = 8) | Improve IR Improve lipids profile Lower FBG Modulate BA production | ↑ Actinobacteria ↑ Firmicutes | [196] | |||
Bilateral ST36 and RN12 | In vivo study | SPF-grade rats | Non-T2DM model Non-T2DM control group (n = 8) T2DM model T2DM group (n = 8) Metformin group (n = 8) Electroacupuncture treatment group (n = 8) | Alleviate systematic inflammation Improve lipids profile Lower FBG | ↑ Firmicutes ↓ Bacteroides ↓ Eubacterium | [197] |
4.3. Moxibustion
4.4. Massage
4.5. Chinese Medicine-Guided Physical Exercise
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Krogh Pedersen, H.; et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Galaviz, K.I.; Narayan, K.M.V.; Lobelo, F.; Weber, M.B. Lifestyle and the Prevention of Type 2 Diabetes: A Status Report. Am. J. Lifestyle Med. 2018, 12, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Sami, W.; Ansari, T.; Butt, N.S.; Hamid, M.R.A. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. 2017, 11, 65–71. [Google Scholar]
- Hippisley-Cox, J.; Coupland, C. Diabetes treatments and risk of amputation, blindness, severe kidney failure, hyperglycaemia, and hypoglycaemia: Open cohort study in primary care. BMJ 2016, 352, i1450. [Google Scholar] [CrossRef]
- Bergman, M.; Buysschaert, M.; Schwarz, P.E.; Albright, A.; Narayan, K.V.; Yach, D. Diabetes prevention: Global health policy and perspectives from the ground. Diabetes Manag. 2012, 2, 309–321. [Google Scholar] [CrossRef]
- Landgraf, R.; Aberle, J.; Birkenfeld, A.; Gallwitz, B.; Kellerer, M.; Klein, H.; Müller-Wieland, D.; Nauck, M.; Reuter, H.-M.; Siegel, E. Therapy of Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2019, 127, S73–S92. [Google Scholar] [CrossRef]
- Rubin, R.R.; Peyrot, M.; Kruger, D.F.; Travis, L.B. Barriers to insulin injection therapy: Patient and health care provider perspectives. Diabetes Educ. 2009, 35, 1014–1022. [Google Scholar] [CrossRef]
- Russell-Jones, D.; Pouwer, F.; Khunti, K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes. Metab. 2018, 20, 488–496. [Google Scholar] [CrossRef]
- Aldasouqi, S.A.; Duick, D.S. Safety issues on metformin use. Diabetes Care 2003, 26, 3356–3357. [Google Scholar] [CrossRef]
- Andrade, C. Use of Metformin for Cardiometabolic Risks in Psychiatric Practice: Need-to-Know Safety Issues. J. Clin. Psychiatry 2016, 77, e1491–e1494. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2012, 35, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Jones, H.; Stephens, J.W. Personalized Type 2 Diabetes Management: An Update on Recent Advances and Recommendations. Diabetes Metab. Syndr. Obes. 2022, 15, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sun, B.; Yu, D.; Zhu, C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front. Cell. Infect. Microbiol. 2022, 12, 834485. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Cheng, Y.; Zhu, M.; Xiao, Z.; Ruan, G.; Wei, Y. Gut microbiota: A new target for T2DM prevention and treatment. Front. Endocrinol. 2022, 13, 958218. [Google Scholar] [CrossRef]
- Krishnan, S.; Alden, N.; Lee, K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr. Opin. Biotechnol. 2015, 36, 137–145. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Tian, J.-X.; Lian, F.-M.; Li, M.; Liu, W.-K.; Zhen, Z.; Liao, J.-Q.; Tong, X.-L. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomed. Pharmacother. 2021, 133, 110857. [Google Scholar] [CrossRef]
- Zhang, B.; Yue, R.; Chen, Y.; Yang, M.; Huang, X.; Shui, J.; Peng, Y.; Chin, J. Gut Microbiota, a Potential New Target for Chinese Herbal Medicines in Treating Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2019, 2019, 2634898. [Google Scholar] [CrossRef]
- Zhang, F.; He, F.; Li, L.; Guo, L.; Zhang, B.; Yu, S.; Zhao, W. Bioavailability based on the gut microbiota: A new perspective. Microbiol. Mol. Biol. Rev. 2020, 84, e00072-19. [Google Scholar] [CrossRef]
- Jones, M.; Dilley, J.; Drossman, D.; Crowell, M. Brain–gut connections in functional GI disorders: Anatomic and physiologic relationships. Neurogastroenterol. Motil. 2006, 18, 91–103. [Google Scholar] [CrossRef]
- Wang, M.; Liu, W.; Ge, J.; Liu, S. The immunomodulatory mechanisms for acupuncture practice. Front. Immunol. 2023, 14, 1147718. [Google Scholar] [CrossRef] [PubMed]
- Nie, Q.; Chen, H.; Hu, J.; Fan, S.; Nie, S. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 848–863. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Li, J.; Xiong, R.-G.; Wu, S.-X.; Xu, X.-Y.; Tang, G.-Y.; Huang, S.-Y.; Zhou, D.-D.; Li, H.-B.; Feng, Y.; et al. Effects and mechanisms of anti-diabetic dietary natural products: An updated review. Food Funct. 2024, 15, 1758–1778. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ding, Q.; Wei, Y.; Gou, X.; Tian, J.; Li, M.; Tong, X. Effect of traditional Chinese medicine on gut microbiota in adults with type 2 diabetes: A systematic review and meta-analysis. Phytomedicine 2021, 88, 153455. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Ao, H.; Peng, C.; Yan, D. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol. Res. 2019, 142, 176–191. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef]
- Iannone, L.F.; Preda, A.; Blottière, H.M.; Clarke, G.; Albani, D.; Belcastro, V.; Carotenuto, M.; Cattaneo, A.; Citraro, R.; Ferraris, C. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019, 19, 1037–1050. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Kallus, S.J.; Brandt, L.J. The intestinal microbiota and obesity. J. Clin. Gastroenterol. 2012, 46, 16–24. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Turpin, W.; Espin-Garcia, O.; Xu, W.; Silverberg, M.S.; Kevans, D.; Smith, M.I.; Guttman, D.S.; Griffiths, A.; Panaccione, R.; Otley, A. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 2016, 48, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.E.; Slusher, N.A.; Cabana, M.D.; Lynch, S.V. Role of the gut microbiota in defining human health. Expert Rev. Anti-Infect. Ther. 2010, 8, 435–454. [Google Scholar] [CrossRef] [PubMed]
- Sanz, Y.; Santacruz, A.; Gauffin, P. Gut microbiota in obesity and metabolic disorders. Proc. Nutr. Soc. 2010, 69, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Woting, A.; Blaut, M. The intestinal microbiota in metabolic disease. Nutrients 2016, 8, 202. [Google Scholar] [CrossRef]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. eBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef]
- Umirah, F.; Neoh, C.F.; Ramasamy, K.; Lim, S.M. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Res. Clin. Pract. 2021, 173, 108689. [Google Scholar] [CrossRef]
- Amoroso, C.; Perillo, F.; Strati, F.; Fantini, M.; Caprioli, F.; Facciotti, F. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells 2020, 9, 1234. [Google Scholar] [CrossRef]
- Delzenne, N.M.; Cani, P.D. Gut microbiota and the pathogenesis of insulin resistance. Curr. Diabetes Rep. 2011, 11, 154–159. [Google Scholar] [CrossRef]
- Amabebe, E.; Robert, F.O.; Agbalalah, T.; Orubu, E.S. Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism. Br. J. Nutr. 2020, 123, 1127–1137. [Google Scholar] [CrossRef]
- Lippert, K.; Kedenko, L.; Antonielli, L.; Kedenko, I.; Gemeier, C.; Leitner, M.; Kautzky-Willer, A.; Paulweber, B.; Hackl, E. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef. Microbes 2017, 8, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Usuda, H.; Okamoto, T.; Wada, K. Leaky gut: Effect of dietary fiber and fats on microbiome and intestinal barrier. Int. J. Mol. Sci. 2021, 22, 7613. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.; Viana, S.D.; Nunes, S.; Reis, F. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2019, 1865, 1876–1897. [Google Scholar] [CrossRef]
- Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 2018, 138, 2486–2498. [Google Scholar] [CrossRef]
- Allam-Ndoul, B.; Castonguay-Paradis, S.; Veilleux, A. Gut microbiota and intestinal trans-epithelial permeability. Int. J. Mol. Sci. 2020, 21, 6402. [Google Scholar] [CrossRef]
- Chelakkot, C.; Choi, Y.; Kim, D.-K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.-S.; Jee, Y.-K.; Gho, Y.S. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 2018, 50, e450. [Google Scholar] [CrossRef]
- Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2017, 23, 107–113. [Google Scholar] [CrossRef]
- Kinoshita, M.; Suzuki, Y.; Saito, Y. Butyrate reduces colonic paracellular permeability by enhancing PPARγ activation. Biochem. Biophys. Res. Commun. 2002, 293, 827–831. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef]
- Wieser, V.; Moschen, A.R.; Tilg, H. Inflammation, cytokines and insulin resistance: A clinical perspective. Arch. Immunol. Ther. Exp. 2013, 61, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Chaiwut, R.; Kasinrerk, W. Very low concentration of lipopolysaccharide can induce the production of various cytokines and chemokines in human primary monocytes. BMC Res. Notes 2022, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 2017, 152, 851–866.e24. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.B.; Yassour, M.; Sauk, J.; Garner, A.; Jiang, X.; Arthur, T.; Lagoudas, G.K.; Vatanen, T.; Fornelos, N.; Wilson, R.; et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017, 9, 103. [Google Scholar] [CrossRef]
- Dagdeviren, S.; Jung, D.Y.; Friedline, R.H.; Noh, H.L.; Kim, J.H.; Patel, P.R.; Tsitsilianos, N.; Inashima, K.; Tran, D.A.; Hu, X. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J. 2017, 31, 701–710. [Google Scholar] [CrossRef]
- Hoffmann, T.W.; Pham, H.-P.; Bridonneau, C.; Aubry, C.; Lamas, B.; Martin-Gallausiaux, C.; Moroldo, M.; Rainteau, D.; Lapaque, N.; Six, A. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J. 2016, 10, 460–477. [Google Scholar] [CrossRef]
- Shen, Z.; Zhu, C.; Quan, Y.; Yang, J.; Yuan, W.; Yang, Z.; Wu, S.; Luo, W.; Tan, B.; Wang, X. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J. Gastroenterol. Hepatol. 2018, 33, 1751–1760. [Google Scholar] [CrossRef]
- Wang, X.; Ota, N.; Manzanillo, P.; Kates, L.; Zavala-Solorio, J.; Eidenschenk, C.; Zhang, J.; Lesch, J.; Lee, W.P.; Ross, J. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 2014, 514, 237–241. [Google Scholar] [CrossRef]
- Tian, P.; Li, B.; He, C.; Song, W.; Hou, A.; Tian, S.; Meng, X.; Li, K.; Shan, Y. Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Funct. 2016, 7, 3789–3797. [Google Scholar] [CrossRef]
- Liu, W.-C.; Yang, M.-C.; Wu, Y.-Y.; Chen, P.-H.; Hsu, C.-M.; Chen, L.-W. Lactobacillus plantarum reverse diabetes-induced Fmo3 and ICAM expression in mice through enteric dysbiosis-related c-Jun NH2-terminal kinase pathways. PLoS ONE 2018, 13, e0196511. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Ching, Y.-H.; Chiu, C.-C.; Liu, J.-Y.; Hung, S.-W.; Huang, W.-C.; Huang, Y.-T.; Chuang, H.-L. TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS ONE 2017, 12, e0180025. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.-Y.; Xu, D.-H.; Xie, C.; Plummer, S.; Tang, J.; Yang, X.F.; Ji, X.H. Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner. Cytokine 2017, 92, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Song, K.; Shen, Z.; Quan, Y.; Tan, B.; Luo, W.; Wu, S.; Tang, K.; Yang, Z.; Wang, X. Roseburia intestinalis inhibits interleukin-17 excretion and promotes regulatory T cells differentiation in colitis. Mol. Med. Rep. 2018, 17, 7567–7574. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, T.; Nagata, Y.; Kado, S.; Uchida, K.; Kato, I.; Hashimoto, S.; Yokokura, T. Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 1997, 105, 643–649. [Google Scholar] [CrossRef]
- Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2013, 63, 1275–1283. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef]
- Vincenzi, A.; Goettert, M.I.; de Souza, C.F.V. An evaluation of the effects of probiotics on tumoral necrosis factor (TNF-α) signaling and gene expression. Cytokine Growth Factor Rev. 2021, 57, 27–38. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Z.; Dong, S. Changes in intestinal flora, TNF-α, L-17, and IL-6 levels in patients with gestational diabetes mellitus. Eur. J. Inflamm. 2018, 16, 2058739218793550. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, Q.; Liu, M.; Zhang, X.; He, F.; Wang, G. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog. Dis. 2018, 76, fty028. [Google Scholar] [CrossRef]
- Zeng, Z.; Guo, X.; Zhang, J.; Yuan, Q.; Chen, S. Lactobacillus paracasei modulates the gut microbiota and improves inflammation in type 2 diabetic rats. Food Funct. 2021, 12, 6809–6820. [Google Scholar] [CrossRef]
- da Silva Rosa, S.C.; Nayak, N.; Caymo, A.M.; Gordon, J.W. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol. Rep. 2020, 8, e14607. [Google Scholar] [CrossRef] [PubMed]
- Balaji, R.; Duraisamy, R.; Kumar, M. Complications of diabetes mellitus: A review. Drug Invent. Today 2019, 12, 98–103. [Google Scholar]
- Han, H.-S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.-H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Huh, C.S.; Choi, I.D.; Jeong, J.W.; Ku, H.K.; Ra, J.H.; Kim, T.Y.; Kim, G.B.; Sim, J.H.; Ahn, Y.T. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. J. Appl. Microbiol. 2014, 117, 834–845. [Google Scholar] [CrossRef]
- Miao, J.; Ling, A.V.; Manthena, P.V.; Gearing, M.E.; Graham, M.J.; Crooke, R.M.; Croce, K.J.; Esquejo, R.M.; Clish, C.B.; Morbid Obesity Study Group; et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 2015, 6, 6498. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Zhao, J.; Zhang, H.; Chen, W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct. 2017, 8, 3155–3164. [Google Scholar] [CrossRef]
- Li, X.; Wang, E.; Yin, B.; Fang, D.; Chen, P.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef. Microbes 2017, 8, 421–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X.; Guo, J.; He, Q.; Li, H.; Song, Y.; Zhang, H. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx. Sci. Rep. 2014, 4, 5654. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, R.; Malhotra, S.; Pothuraju, R.; Shandilya, U. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef. Microbes 2017, 8, 243–255. [Google Scholar] [CrossRef]
- Kang, J.-H.; Yun, S.-I.; Park, M.-H.; Park, J.-H.; Jeong, S.-Y.; Park, H.-O. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS ONE 2013, 8, e54617. [Google Scholar] [CrossRef]
- Dang, F.; Jiang, Y.; Pan, R.; Zhou, Y.; Wu, S.; Wang, R.; Zhuang, K.; Zhang, W.; Li, T.; Man, C. Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct. 2018, 9, 3630–3639. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Cani, P.D. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 2014, 15, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Covasa, M.; Stephens, R.W.; Toderean, R.; Cobuz, C. Intestinal sensing by gut microbiota: Targeting gut peptides. Front. Endocrinol. 2019, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, C.B.; Gabe, M.B.N.; Svendsen, B.; Dragsted, L.O.; Rosenkilde, M.M.; Holst, J.J. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 315, G53–G65. [Google Scholar] [CrossRef]
- Trauner, M.; Claudel, T.; Fickert, P.; Moustafa, T.; Wagner, M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig. Dis. 2010, 28, 220–224. [Google Scholar] [CrossRef]
- Allin, K.H.; Nielsen, T.; Pedersen, O. Gut microbiota in patients with type 2 diabetes mellitus. Endocrinology 2015, 172, R167–R177. [Google Scholar]
- Hou, G.; Peng, W.; Wei, L.; Li, R.; Yuan, Y.; Huang, X.; Yin, Y. Lactobacillus delbrueckii interfere with bile acid enterohepatic circulation to regulate cholesterol metabolism of growing–finishing pigs via its bile salt hydrolase activity. Front. Nutr. 2020, 7, 617676. [Google Scholar] [CrossRef]
- Lefebvre, P.; Cariou, B.; Lien, F.; Kuipers, F.; Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 2009, 89, 147–191. [Google Scholar] [CrossRef]
- Kuhre, R.E.; Albrechtsen, N.J.W.; Larsen, O.; Jepsen, S.L.; Balk-Møller, E.; Andersen, D.B.; Deacon, C.F.; Schoonjans, K.; Reimann, F.; Gribble, F.M. Bile acids are important direct and indirect regulators of the secretion of appetite-and metabolism-regulating hormones from the gut and pancreas. Mol. Metab. 2018, 11, 84–95. [Google Scholar] [CrossRef]
- Hylemon, P.B.; Zhou, H.; Pandak, W.M.; Ren, S.; Gil, G.; Dent, P. Bile acids as regulatory molecules. J. Lipid Res. 2009, 50, 1509–1520. [Google Scholar] [CrossRef]
- Yamagata, K.; Daitoku, H.; Shimamoto, Y.; Matsuzaki, H.; Hirota, K.; Ishida, J.; Fukamizu, A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J. Biol. Chem. 2004, 279, 23158–23165. [Google Scholar] [CrossRef] [PubMed]
- Prawitt, J.; Abdelkarim, M.; Stroeve, J.H.M.; Popescu, I.; Duez, H.; Velagapudi, V.R.; Dumont, J.; Bouchaert, E.; van Dijk, T.H.; Lucas, A.; et al. Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes 2011, 60, 1861–1871. [Google Scholar] [CrossRef]
- Boden, G. Fatty acid—Induced inflammation and insulin resistance in skeletal muscle and liver. Curr. Diabetes Rep. 2006, 6, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Wen, L.-P.; Ge, B.-C.; Li, Y.-X.; Li, F.-P.; Zhou, B.-J. Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World J. Diabetes 2021, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Houmard, J.A. Intramuscular lipid oxidation and obesity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 294, R1111–R1116. [Google Scholar] [CrossRef]
- Wu, W.; Kaicen, W.; Bian, X.; Yang, L.; Ding, S.; Li, Y.; Li, S.; Zhuge, A.; Li, L. Akkermansia muciniphila alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. Microb. Biotechnol. 2023, 16, 1924–1939. [Google Scholar] [CrossRef]
- Chen, K.; Nakasone, Y.; Yi, S.; Ibrahim, H.R.; Sakao, K.; Hossain, M.A.; Hou, D.-X. Natural garlic organosulfur compounds prevent metabolic disorder of lipid and glucose by increasing gut commensal Bacteroides acidifaciens. J. Agric. Food Chem. 2022, 70, 5829–5837. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Yang, G.; Zhang, Q.; Meng, L.; Xin, Y.; Jiang, X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol. Res. 2021, 165, 105420. [Google Scholar] [CrossRef]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef]
- Yang, J.; Lee, Y.; Kim, Y.; Lee, S.; Ryu, S.; Fukuda, S.; Hase, K.; Yang, C.; Lim, H.; Kim, M. Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol. 2017, 10, 104–116. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Yin, B.; Fang, D.; Jiang, T.; Fang, S.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W. Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice. J. Appl. Microbiol. 2016, 121, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.-J. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Bigagli, E.; Lodovici, M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxidative Med. Cell. Longev. 2019, 2019, 5953685. [Google Scholar] [CrossRef]
- Schwartz, S.S.; Epstein, S.; Corkey, B.E.; Grant, S.F.; Gavin, J.R., III; Aguilar, R.B.; Herman, M.E. A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol. Metab. 2017, 28, 645–655. [Google Scholar] [CrossRef]
- Riaz Rajoka, M.S.; Thirumdas, R.; Mehwish, H.M.; Umair, M.; Khurshid, M.; Hayat, H.F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F.J.; Barba, F.J. Role of food antioxidants in modulating gut microbial communities: Novel understandings in intestinal oxidative stress damage and their impact on host health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef]
- Deledda, A.; Annunziata, G.; Tenore, G.C.; Palmas, V.; Manzin, A.; Velluzzi, F. Diet-derived antioxidants and their role in inflammation, obesity and gut microbiota modulation. Antioxidants 2021, 10, 708. [Google Scholar] [CrossRef]
- Gai, Z.; Liao, W.; Huang, Y.; Dong, Y.; Feng, H.; Han, M. Effects of Bifidobacterium BL21 and Lacticaseibacillus LRa05 on gut microbiota in type 2 diabetes mellitus mice. AMB Express 2023, 13, 97. [Google Scholar] [CrossRef]
- Teng, Y.; Wang, Y.; Tian, Y.; Chen, Y.-Y.; Guan, W.-Y.; Piao, C.-H.; Wang, Y.-H. Lactobacillus plantarum LP104 ameliorates hyperlipidemia induced by AMPK pathways in C57BL/6N mice fed high-fat diet. J. Funct. Foods 2020, 64, 103665. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, H.; Gao, F.; Qian, Z.; Mao, W.; Yin, Y.; Tan, J.; Chen, D. Antidiabetic effects of selenium-enriched Bifidobacterium longum DD98 in type 2 diabetes model of mice. Food Funct. 2020, 11, 6528–6541. [Google Scholar] [CrossRef]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Durack, J.; Lynch, S.V. The gut microbiome: Relationships with disease and opportunities for therapy. J. Exp. Med. 2019, 216, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Aschner, M.; Skalny, A.V.; Gritsenko, V.A.; Kartashova, O.L.; Santamaria, A.; Rocha, J.B.; Spandidos, D.A.; Zaitseva, I.P.; Tsatsakis, A.; Tinkov, A.A. Role of gut microbiota in the modulation of the health effects of advanced glycation end-products. Int. J. Mol. Med. 2023, 51, 44. [Google Scholar] [CrossRef] [PubMed]
- Gaike, A.H.; Kalamkar, S.D.; Gajjar, V.; Divate, U.; Karandikar-Iyer, S.; Goel, P.; Shouche, Y.S.; Ghaskadbi, S.S. Effect of long-term oral glutathione supplementation on gut microbiome of type 2 diabetic individuals. FEMS Microbiol. Lett. 2023, 370, fnad116. [Google Scholar] [CrossRef] [PubMed]
- Bazyar, H.; Maghsoumi-Norouzabad, L.; Yarahmadi, M.; Gholinezhad, H.; Moradi, L.; Salehi, P.; Haghighi-Zadeh, M.H.; Zare Javid, A. The impacts of synbiotic supplementation on periodontal indices and biomarkers of oxidative stress in type 2 diabetes mellitus patients with chronic periodontitis under non-surgical periodontal therapy. A double-blind, placebo-controlled trial. Diabetes Metab. Syndr. Obes. 2020, 13, 19–29. [Google Scholar] [CrossRef]
- El-Baz, A.M.; Shata, A.; Hassan, H.M.; El-Sokkary, M.M.; Khodir, A.E. The therapeutic role of lactobacillus and montelukast in combination with metformin in diabetes mellitus complications through modulation of gut microbiota and suppression of oxidative stress. Int. Immunopharmacol. 2021, 96, 107757. [Google Scholar] [CrossRef]
- Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxidative Med. Cell. Longev. 2019, 2019, 8267234. [Google Scholar] [CrossRef]
- Abot, A.; Fried, S.; Cani, P.D.; Knauf, C. Reactive oxygen species/reactive nitrogen species as messengers in the gut: Impact on physiology and metabolic disorders. Antioxid. Redox Signal. 2022, 37, 394–415. [Google Scholar] [CrossRef]
- Goriuc, A.; Cojocaru, K.-A.; Luchian, I.; Ursu, R.-G.; Butnaru, O.; Foia, L. Using 8-Hydroxy-2′-Deoxiguanosine (8-OHdG) as a Reliable Biomarker for Assessing Periodontal Disease Associated with Diabetes. Int. J. Mol. Sci. 2024, 25, 1425. [Google Scholar] [CrossRef]
- Covington, M.B. Traditional Chinese medicine in the treatment of diabetes. Diabetes Spectr. 2001, 14, 154–159. [Google Scholar] [CrossRef]
- Lu, W.I.; Lu, D.P. Impact of chinese herbal medicine on american society and health care system: Perspective and concern. Evid. Based Complement. Altern. Med. 2014, 2014, 251891. [Google Scholar] [CrossRef] [PubMed]
- Courtois, J. Oligosaccharides from land plants and algae: Production and applications in therapeutics and biotechnology. Curr. Opin. Microbiol. 2009, 12, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Chlubnová, I.; Sylla, B.; Nugier-Chauvin, C.; Daniellou, R.; Legentil, L.; Kralová, B.; Ferrières, V. Natural glycans and glycoconjugates as immunomodulating agents. Nat. Prod. Rep. 2011, 28, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, X.-Y.; Shen, L. Modulation effects of Dendrobium officinale on gut microbiota of type 2 diabetes model mice. FEMS Microbiol. Lett. 2021, 368, fnab020. [Google Scholar] [CrossRef]
- Nie, Q.; Hu, J.; Gao, H.; Fan, L.; Chen, H.; Nie, S. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocoll. 2019, 86, 34–42. [Google Scholar] [CrossRef]
- Shao, W.; Xiao, C.; Yong, T.; Zhang, Y.; Hu, H.; Xie, T.; Liu, R.; Huang, L.; Li, X.; Xie, Y.; et al. A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice. Int. J. Biol. Macromol. 2022, 197, 23–38. [Google Scholar] [CrossRef]
- Chen, X.; Chen, C.; Fu, X. Hypoglycemic effect of the polysaccharides from Astragalus membranaceus on type 2 diabetic mice based on the “gut microbiota–mucosal barrier”. Food Funct. 2022, 13, 10121–10133. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zheng, M.; Yang, Y.; Ren, H.; Kong, Y.; Wang, S.; Wang, J.; Jiang, Y.; Yang, J.; et al. Berberine Slows the Progression of Prediabetes to Diabetes in Zucker Diabetic Fatty Rats by Enhancing Intestinal Secretion of Glucagon-Like Peptide-2 and Improving the Gut Microbiota. Front. Endocrinol. 2021, 12, 609134. [Google Scholar] [CrossRef]
- Li, X.-W.; Chen, H.-P.; He, Y.-Y.; Chen, W.-L.; Chen, J.-W.; Gao, L.; Hu, H.-Y.; Wang, J. Effects of Rich-Polyphenols Extract of Dendrobium loddigesii on Anti-Diabetic, Anti-Inflammatory, Anti-Oxidant, and Gut Microbiota Modulation in db/db Mice. Molecules 2018, 23, 3245. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.; Cao, H.; Ji, W.; Li, C.; Huan, Y.; Lei, L.; Fu, Y.; Gao, X.; Liu, Y. Ramulus Mori (Sangzhi) alkaloids (SZ-A) ameliorate glucose metabolism accompanied by the modulation of gut microbiota and ileal inflammatory damage in type 2 diabetic KKAy mice. Front. Pharmacol. 2021, 12, 642400. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Lee, K.-F.; Sze, C.-W.; Tong, Y.; Tang, S.C.-W.; Ng, T.-B.; Zhang, Y.-B. Intestinal absorption and bioavailability of traditional Chinese medicines: A review of recent experimental progress and implication for quality control. J. Pharm. Pharmacol. 2013, 65, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; De Filippis, A.; Xiao, H.; Quiles, J.L.; Xiao, J. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
- Wu, Y.; Wan, J.; Choe, U.; Pham, Q.; Schoene, N.W.; He, Q.; Li, B.; Yu, L.; Wang, T.T. Interactions between food and gut microbiota: Impact on human health. Annu. Rev. Food Sci. Technol. 2019, 10, 389–408. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Zhai, X.; Duan, Z.; Xu, K.; Liu, G. Systematic review and meta-analysis of Coptis chinensis Franch.-containing traditional Chinese medicine as an adjunct therapy to metformin in the treatment of type 2 diabetes mellitus. Front. Pharmacol. 2022, 13, 956313. [Google Scholar] [CrossRef]
- Xu, M. Effects of Banxia Xiexin Decoction on intestinal flora and inflammatory factors of diabetic gastroparesis rats. Chin. Tradit. Herb. Drugs 2018, 24, 3056–3061. [Google Scholar]
- Zhao, J.; Li, Y.; Sun, M.; Xin, L.; Wang, T.; Wei, L.; Yu, C.; Liu, M.; Ni, Y.; Lu, R.; et al. The Chinese Herbal Formula Shenzhu Tiaopi Granule Results in Metabolic Improvement in Type 2 Diabetic Rats by Modulating the Gut Microbiota. Evid. Based Complement. Altern. Med. 2019, 2019, 6976394. [Google Scholar] [CrossRef]
- Zhang, C.-H. Effect of Gegen Qinlian Decoction on LPS, TNF-α, IL-6, and intestinal flora in diabetic KK-Ay mice. Chin. Tradit. Herb. Drugs 2017, 48, 1611–1616. [Google Scholar]
- Chen, H.; Yao, Y.; Wang, W.; Wang, D. Ge-Gen-Jiao-Tai-Wan Affects Type 2 Diabetic Rats by Regulating Gut Microbiota and Primary Bile Acids. Evid. Based Complement. Altern. Med. 2021, 2021, 5585952. [Google Scholar] [CrossRef]
- Wei, X.; Tao, J.; Xiao, S.; Jiang, S.; Shang, E.; Zhu, Z.; Qian, D.; Duan, J. Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Sci. Rep. 2018, 8, 3685. [Google Scholar] [CrossRef]
- Liu, L.; Yu, Y.-L.; Yang, J.-S.; Li, Y.; Liu, Y.-W.; Liang, Y.; Liu, X.-D.; Xie, L.; Wang, G.-J. Berberine suppresses intestinal disaccharidases with beneficial metabolic effects in diabetic states, evidences from in vivo and in vitro study. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010, 381, 371–381. [Google Scholar] [CrossRef]
- Li, D.; Feng, G.; Li, Y.; Pan, H.; Luo, P.; Liu, B.; Ding, T.; Wang, X.; Xu, H.; Zhao, Y. Benefits of Huang Lian mediated by gut microbiota on HFD/STZ-induced type 2 diabetes mellitus in mice. Front. Endocrinol. 2023, 14, 1120221. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-L.; Li, M.; Ding, L.; Peng, C.; Wu, Y.; Liu, W.; Zhao, D.; Qin, L.-L.; Guo, X.-Y.; Wu, L.-L. Ampelopsis grossedentata improves type 2 diabetes mellitus through modulating the gut microbiota and bile acid metabolism. J. Funct. Foods 2023, 107, 105622. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, J.; Zheng, Y.; Xu, Z.; Li, Y.; Zhou, S.; Zhang, C. Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomed. Pharmacother. 2020, 127, 110182. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; An, S.; Chen, X.; Bi, H.; Zhang, Q.; Wang, T.; Han, B.; Zhang, H.; Kang, J. Corni Fructus as a natural resource can treat type 2 diabetes by regulating gut microbiota. Am. J. Chin. Med. 2020, 48, 1385–1407. [Google Scholar] [CrossRef]
- Xiao, Q.P.; Zhong, Y.B.; Kang, Z.P.; Huang, J.Q.; Fang, W.Y.; Wei, S.Y.; Long, J.; Li, S.S.; Zhao, H.M.; Liu, D.Y. Curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis. Phytother. Res. 2022, 36, 1708–1723. [Google Scholar] [CrossRef]
- Yuan, T.; Yin, Z.; Yan, Z.; Hao, Q.; Zeng, J.; Li, L.; Zhao, J. Tetrahydrocurcumin ameliorates diabetes profiles of db/db mice by altering the composition of gut microbiota and up-regulating the expression of GLP-1 in the pancreas. Fitoterapia 2020, 146, 104665. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, H.; Zhao, H.; Geng, Y.; Ren, Y.; Guo, L.; Shi, J.; Xu, Z. Edgeworthia gardneri (Wall.) Meisn. water extract improves diabetes and modulates gut microbiota. J. Ethnopharmacol. 2019, 239, 111854. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, D.; Liu, W.; Song, Y.; Zou, B.; Li, L.; Li, P.; Cai, Y.; Liu, D.; Liao, Q.; et al. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int. J. Biol. Macromol. 2020, 155, 890–902. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.-X.; Yan, C.; Liu, Y.; Liu, H.; Li, D.; Zhu, J.; Luo, Z.-B.; Han, S.-Z.; Jin, Z.-Y. Gastrodia elata Blume extract improves high-fat diet-induced type 2 diabetes by regulating gut microbiota and bile acid profile. Front. Microbiol. 2022, 13, 1091712. [Google Scholar] [CrossRef]
- Jin, D.-X.; He, J.-F.; Luo, X.-G.; Zhang, T.-C. Hypoglycemic effect of Hypericum attenuatum Choisy extracts on type 2 diabetes by regulating glucolipid metabolism and modulating gut microbiota. J. Funct. Foods 2019, 52, 479–491. [Google Scholar] [CrossRef]
- Su, L.; Xin, C.; Yang, J.; Dong, L.; Mei, H.; Dai, X.; Wang, Q. A polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus. Int. J. Biol. Macromol. 2022, 214, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-Q.; Guo, S.; Lu, Y.-Y.; Hua, Y.; Zhang, F.; Yan, H.; Shang, E.-X.; Wang, H.-Q.; Zhang, W.-H.; Duan, J.-A. Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition. Biomed. Pharmacother. 2020, 121, 109559. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yin, Y.; Cao, X.; Li, X. Effects of Maydis stigma polysaccharide on the intestinal microflora in type-2 diabetes. Pharm. Biol. 2016, 54, 3086–3092. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wen, J.-J.; Hu, J.-L.; Nie, Q.-X.; Chen, H.-H.; Xiong, T.; Nie, S.-P.; Xie, M.-Y. Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohydr. Polym. 2018, 201, 624–633. [Google Scholar] [CrossRef]
- Sheng, Y.; Zheng, S.; Ma, T.; Zhang, C.; Ou, X.; He, X.; Xu, W.; Huang, K. Mulberry leaf alleviates streptozotocin-induced diabetic rats by attenuating NEFA signaling and modulating intestinal microflora. Sci. Rep. 2017, 7, 12041. [Google Scholar] [CrossRef]
- Liu, Z.-Z.; Liu, Q.-H.; Liu, Z.; Tang, J.-W.; Chua, E.-G.; Li, F.; Xiong, X.-S.; Wang, M.-M.; Wen, P.-B.; Shi, X.-Y. Ethanol extract of mulberry leaves partially restores the composition of intestinal microbiota and strengthens liver glycogen fragility in type 2 diabetic rats. BMC Complement. Med. Ther. 2021, 21, 172. [Google Scholar] [CrossRef]
- Chen, C.; You, L.-J.; Huang, Q.; Fu, X.; Zhang, B.; Liu, R.-H.; Li, C. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice. Food Funct. 2018, 9, 3732–3742. [Google Scholar] [CrossRef]
- Zhou, R.; He, D.; Zhang, H.; Xie, J.; Zhang, S.; Tian, X.; Zeng, H.; Qin, Y.; Huang, L. Ginsenoside Rb1 protects against diabetes-associated metabolic disorders in Kkay mice by reshaping gut microbiota and fecal metabolic profiles. J. Ethnopharmacol. 2023, 303, 115997. [Google Scholar] [CrossRef]
- Peng, M.; Wang, L.; Su, H.; Zhang, L.; Yang, Y.; Sun, L.; Wu, Y.; Ran, L.; Liu, S.; Yin, M. Ginsenoside Rg1 improved diabetes through regulating the intestinal microbiota in high-fat diet and streptozotocin-induced type 2 diabetes rats. J. Food Biochem. 2022, 46, e14321. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, H.; Zhu, C.; Deng, J.; Fan, D. Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic db/db Mice. J. Agric. Food Chem. 2020, 68, 5107–5117. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Z.; Yin, Y.; Li, X. Effects of polysaccharide from Physalis alkekengi var. francheti on liver injury and intestinal microflora in type-2 diabetic mice. Pharm. Biol. 2017, 55, 2020–2025. [Google Scholar] [PubMed]
- Huang, Z.-R.; Huang, Q.-Z.; Chen, K.-W.; Huang, Z.-F.; Liu, Y.; Jia, R.-B.; Liu, B. Sanghuangporus vaninii fruit body polysaccharide alleviates hyperglycemia and hyperlipidemia via modulating intestinal microflora in type 2 diabetic mice. Front. Nutr. 2022, 9, 1013466. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Shi, M.; Guo, G.; Xing, J.; Liu, Z.; Song, F.; Liu, S. In-depth investigation of the therapeutic effect of Tribulus terrestris L. on type 2 diabetes based on intestinal microbiota and feces metabolomics. J. Ethnopharmacol. 2024, 325, 117815. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Xu, J.; Lian, F.; Yu, X.; Zhao, Y.; Xu, L.; Zhang, M.; Zhao, X.; Shen, J.; Wu, S. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula: A multicenter, randomized, open label clinical trial. MBio 2018, 9, e02392-17. [Google Scholar] [CrossRef]
- Yao, B.; Pan, B.; Tian, T.; Su, X.; Zhang, S.; Li, H.; Li, W.; Wang, Y.; Lv, S.; Zhang, Z. Baihu renshen decoction ameliorates type 2 diabetes mellitus in rats through affecting gut microbiota enhancing gut permeability and inhibiting TLR4/NF-κB-mediated inflammatory response. Front. Cell. Infect. Microbiol. 2022, 12, 1051962. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Q.; Liu, J.; Huang, A.; Xia, X. Buyang Huanwu decoction affects gut microbiota and lipid metabolism in a ZDF rat model of co-morbid type 2 diabetes mellitus and obesity: An integrated metabolomics analysis. Front. Chem. 2022, 10, 1036380. [Google Scholar] [CrossRef]
- Wang, W.-K.; Fan, L.; Ge, F.; Li, Z.; Zhu, J.; Yin, K.; Xia, J.; Xue, M. Effects of Danggui Buxue decoction on host gut microbiota and metabolism in GK rats with type 2 diabetes. Front. Microbiol. 2022, 13, 1029409. [Google Scholar] [CrossRef]
- Xu, J.; Lian, F.; Zhao, L.; Zhao, Y.; Chen, X.; Zhang, X.; Guo, Y.; Zhang, C.; Zhou, Q.; Xue, Z.; et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 2015, 9, 552–562. [Google Scholar] [CrossRef]
- Tian, J.; Bai, B.; Gao, Z.; Yang, Y.; Wu, H.; Wang, X.; Wang, J.; Li, M.; Tong, X. Alleviation effects of GQD, a traditional Chinese medicine formula, on diabetes rats linked to modulation of the gut microbiome. Front. Cell. Infect. Microbiol. 2021, 11, 740236. [Google Scholar] [CrossRef]
- Chen, M.; Liao, Z.; Lu, B.; Wang, M.; Lin, L.; Zhang, S.; Li, Y.; Liu, D.; Liao, Q.; Xie, Z. Huang-Lian-Jie-Du-Decoction Ameliorates Hyperglycemia and Insulin Resistant in Association with Gut Microbiota Modulation. Front. Microbiol. 2018, 9, 2380. [Google Scholar] [CrossRef]
- Sun, Y.; Qu, W.; Liao, J.; Chen, L.; Cao, Y.; Li, H. Jiangtangjing ameliorates type 2 diabetes through effects on the gut microbiota and cAMP/PKA pathway. Tradit. Med. Res. 2022, 7, 7. [Google Scholar] [CrossRef]
- Tawulie, D.; Jin, L.; Shang, X.; Li, Y.; Sun, L.; Xie, H.; Zhao, J.; Liao, J.; Zhu, Z.; Cui, H. Jiang-Tang-San-Huang pill alleviates type 2 diabetes mellitus through modulating the gut microbiota and bile acids metabolism. Phytomedicine 2023, 113, 154733. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yao, G.; Sheng, Y.; Yang, L.; Wang, Z.; Yang, Z.; Zhuang, P.; Zhang, Y. JinQi Jiangtang Tablet Regulates Gut Microbiota and Improve Insulin Sensitivity in Type 2 Diabetes Mice. J. Diabetes Res. 2019, 2019, 1872134. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.-Y.; Chen, L.; Wang, Y.; He, D.; Zhao, D.; Zhang, S.-H.; Yu, R.; Huang, J.-H. The potential mechanism of Liu–Wei–Di–Huang Pills in treatment of type 2 diabetic mellitus: From gut microbiota to short-chain fatty acids metabolism. Acta Diabetol. 2022, 59, 1295–1308. [Google Scholar] [CrossRef]
- Li, M.; Ding, L.; Hu, Y.L.; Qin, L.L.; Wu, Y.; Liu, W.; Wu, L.L.; Liu, T.H. Herbal formula LLKL ameliorates hyperglycaemia, modulates the gut microbiota and regulates the gut-liver axis in Zucker diabetic fatty rats. J. Cell. Mol. Med. 2021, 25, 367–382. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, J.; Chen, Y.; Wen, W. Efficacy of Pidan Jianqing decoction in treatment of type 2 diabetes with spleen deficiency and damp-heat syndrome. TMR Pharmacol. Res. 2021, 1, 19–24. [Google Scholar] [CrossRef]
- Gao, K.; Yang, R.; Zhang, J.; Wang, Z.; Jia, C.; Zhang, F.; Li, S.; Wang, J.; Murtaza, G.; Xie, H.; et al. Effects of Qijian mixture on type 2 diabetes assessed by metabonomics, gut microbiota and network pharmacology. Pharmacol. Res. 2018, 130, 93–109. [Google Scholar] [CrossRef]
- Sun, R.-X.; Huang, W.-J.; Xiao, Y.; Wang, D.-D.; Mu, G.-H.; Nan, H.; Ni, B.-R.; Huang, X.-Q.; Wang, H.-C.; Liu, Y.-F.; et al. Shenlian (SL) Decoction, a Traditional Chinese Medicine Compound, May Ameliorate Blood Glucose via Mediating the Gut Microbiota in db/db Mice. J. Diabetes Res. 2022, 2022, 7802107. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Xie, C.; Hu, Z.; Zhang, Y.; Peng, S.; He, Y.; Kang, J.; Gao, H.; Yuan, H.; et al. Shenqi compound ameliorates type-2 diabetes mellitus by modulating the gut microbiota and metabolites. J. Chromatogr. B 2022, 1194, 123189. [Google Scholar] [CrossRef]
- Chon, T.Y.; Lee, M.C. Acupuncture. Mayo Clin. Proc. 2013, 88, 1141–1146. [Google Scholar] [CrossRef]
- Han, J.-S. Acupuncture. In Treatment of Chronic Pain by Integrative Approaches: The American Academy of Pain Medicine Textbook on Patient Management; Springer: New York, NY, USA, 2014; pp. 123–136. [Google Scholar]
- Ulett, G.A.; Han, S.; Han, J.-S. Electroacupuncture: Mechanisms and clinical application. Biol. Psychiatry 1998, 44, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.O.; Reichmanis, M.; Marino, A.; Spadaro, J.A. Electrophysiological correlates of acupuncture points and meridians. Psychoenergetic Syst. 1976, 1, 105–112. [Google Scholar]
- Zhu, D.; Society, C. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin. J. Endocrinol. Metab. 2021, 37, 311–398. [Google Scholar] [CrossRef]
- Motataianu, A.; Barcutean, L.; Bajko, Z.; Stoian, A.; Maier, S.; Voidazan, S.; Balasa, R. Autonomic and somatic nerve functions in type 2 diabetes mellitus patients: Electrophysiological aspects. Diagnostics 2021, 11, 2005. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. The vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Front. Immunol. 2017, 8, 1452. [Google Scholar] [CrossRef]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef]
- De Couck, M.; Mravec, B.; Gidron, Y. You may need the vagus nerve to understand pathophysiology and to treat diseases. Clin. Sci. 2012, 122, 323–328. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Su, Y.; Qi, L.; Yang, W.; Fu, M.; Jing, X.; Wang, Y.; Ma, Q. A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis. Nature 2021, 598, 641–645. [Google Scholar] [CrossRef]
- Higashimura, Y.; Shimoju, R.; Maruyama, H.; Kurosawa, M. Electro-acupuncture improves responsiveness to insulin via excitation of somatic afferent fibers in diabetic rats. Auton. Neurosci. 2009, 150, 100–103. [Google Scholar] [CrossRef]
- Lin, R.T.; Tzeng, C.Y.; Lee, Y.C.; Ho, W.J.; Cheng, J.T.; Lin, J.G.; Chang, S.L. Acute effect of electroacupuncture at the Zusanli acupoints on decreasing insulin resistance as shown by lowering plasma free fatty acid levels in steroid-background male rats. BMC Complement. Altern. Med. 2009, 9, 26. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Liu, S.; Hou, X. Electroacupuncture regulates apoptosis/proliferation of intramuscular interstitial cells of cajal and restores colonic motility in diabetic constipation rats. Evid. Based Complement. Altern. Med. 2013, 2013, 584179. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Wang, L.; Song, S.; Tian, L.; Liu, Q.; Mei, M.; Li, W.; Liu, S. Electroacupuncture reduces blood glucose by regulating intestinal flora in type 2 diabetic mice. J. Diabetes 2022, 14, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhou, S.; Li, J.; Chen, K.; Xue, X.; Yi, W. Effects of electroacupuncture on intestinal microflora and plasma metabolites in an insulin-resistant mouse model of type 2 diabetes mellitus. Acupunct. Med. 2023, 42, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, X.; Wang, H.; Huang, H.; Li, M.; Yao, L.; Ma, S.; Zhong, Z.; Yang, H.; Wang, H. “Adjusting internal organs and dredging channel” electroacupuncture ameliorates insulin resistance in Type 2 diabetes mellitus by regulating the intestinal flora and inhibiting inflammation. Diabetes Metab. Syndr. Obes. 2021, 14, 2595–2607. [Google Scholar] [CrossRef]
- Pan, T.; Li, X.; Guo, X.; Wang, H.; Zhou, X.; Shang, R.; Xie, D.; Qian, X.; Dai, M.; Fan, E. Electroacupuncture Improves Insulin Resistance in Type 2 Diabetes Mice by Regulating Intestinal Flora and Bile Acid. Diabetes Metab. Syndr. Obes. 2023, 16, 4025–4042. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Chen, C.; Pan, T.; Li, M.; Yao, L.; Li, X.; Lu, Q.; Wang, H.; Wang, Z. Electroacupuncture at Lower He-Sea and Front-Mu Acupoints Ameliorates Insulin Resistance in Type 2 Diabetes Mellitus by Regulating the Intestinal Flora and Gut Barrier. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2265–2276. [Google Scholar] [CrossRef]
- Deng, H.; Shen, X. The mechanism of moxibustion: Ancient theory and modern research. Evid. Based Complement. Altern. Med. 2013, 2013, 379291. [Google Scholar] [CrossRef]
- Anibogwu, R.; Jesus, K.D.; Pradhan, S.; Pashikanti, S.; Mateen, S.; Sharma, K. Extraction, Isolation and Characterization of Bioactive Compounds from Artemisia and Their Biological Significance: A Review. Molecules 2021, 26, 6995. [Google Scholar] [CrossRef]
- Qi, Q.; Liu, Y.N.; Jin, X.M.; Zhang, L.S.; Wang, C.; Bao, C.H.; Liu, H.R.; Wu, H.G.; Wang, X.M. Moxibustion treatment modulates the gut microbiota and immune function in a dextran sulphate sodium-induced colitis rat model. World J. Gastroenterol. 2018, 24, 3130–3144. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, X.; Chen, J.; Shen, R.; Cui, H.; Wu, H. Acupuncture and moxibustion therapy for cognitive impairment: The microbiome–gut–brain axis and its role. Front. Neurosci. 2024, 17, 1275860. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Q.; Wang, Y.; Wu, H.; Jin, X.; Yao, H.; Jin, D.; Liu, Y.; Wang, C. Gut microbiota was modulated by moxibustion stimulation in rats with irritable bowel syndrome. Chin. Med. 2018, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Li, B.R.; Shao, S.Y.; Yuan, L.; Jia, R.; Sun, J.; Ji, Q.; Sui, H.; Zhou, L.H.; Zhang, Y.; Liu, H.; et al. Effects of mild moxibustion on intestinal microbiome and NLRP3 inflammasome in rats with 5-fluorouracil-induced intestinal mucositis. J. Integr. Med. 2021, 19, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, H.; Zhou, H.; Lei, Y.; Yang, L.; Guo, J.; Wang, Y.; Zhou, Y. A systematic review with meta-analysis: Traditional Chinese tuina therapy for insomnia. Front. Neurosci. 2022, 16, 1096003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Y.; Cao, L.; Zhang, R.; Ren, R.; Zhang, Q. Tuina for children with upper respiratory tract infections: A protocol for a systematic review. Medicine 2019, 98, e16443. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Yu, T.; Jiao, Y.; Zhang, Y.; Liu, D.; Xu, Y.; Guan, Q.; Lu, M. A Review on the Mechanism of Tuina Promoting the Recovery of Peripheral Nerve Injury. Evid. Based Complement. Altern. Med. 2021, 2021, 6652099. [Google Scholar] [CrossRef]
- Xie, Y.; Huan, M.-T.; Sang, J.-J.; Luo, S.-S.; Kong, X.-T.; Xie, Z.-Y.; Zheng, S.-H.; Wei, Q.-B.; Wu, Y.-C. Clinical Effect of Abdominal Massage Therapy on Blood Glucose and Intestinal Microbiota in Patients with Type 2 Diabetes. Oxidative Med. Cell. Longev. 2022, 2022, 2286598. [Google Scholar] [CrossRef]
- Chen, H.; Tan, P.-S.; Li, C.-P.; Chen, B.-Z.; Xu, Y.-Q.; He, Y.-Q.; Ke, X. Acupoint Massage Therapy Alters the Composition of Gut Microbiome in Functional Constipation Patients. Evid. Based Complement. Altern. Med. 2021, 2021, 1416236. [Google Scholar] [CrossRef]
- de Sá Ferreira, A. Evidence-based practice of Chinese medicine in physical rehabilitation science. Chin. J. Integr. Med. 2013, 19, 723–729. [Google Scholar] [CrossRef]
- Shi, H.; Wang, S.; Zhang, Y.; Liu, P.; Dong, C.; Wang, D.; Si, G.; Wang, W.; Li, Y. The Effects of Tai Chi Exercise for Patients with Type 2 Diabetes Mellitus: An Overview of Systematic Reviews and Meta-Analyses. J. Diabetes Res. 2022, 2022, 6587221. [Google Scholar] [CrossRef]
- Yu, D.D.; You, L.Z.; Huang, W.Q.; Cao, H.; Wang, F.J.; Tang, X.Q.; Fang, Z.H.; Shen, G.M.; Guan, Y.X. Effects of traditional Chinese exercises on blood glucose and hemoglobin A1c levels in patients with prediabetes: A systematic review and meta-analysis. J. Integr. Med. 2020, 18, 292–302. [Google Scholar] [CrossRef]
- Song, G.; Chen, C.; Zhang, J.; Chang, L.; Zhu, D.; Wang, X. Association of traditional Chinese exercises with glycemic responses in people with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. J. Sport Health Sci. 2018, 7, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Wang, C.; Dong, X.; Yi, X. The Effects of Qigong on Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2018, 2018, 8182938. [Google Scholar] [CrossRef]
- Cook, M.D.; Allen, J.M.; Pence, B.D.; Wallig, M.A.; Gaskins, H.R.; White, B.A.; Woods, J.A. Exercise and gut immune function: Evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunol. Cell Biol. 2016, 94, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Sallam, I.E.; Abdelwareth, A.; Attia, H.; Aziz, R.K.; Homsi, M.N.; von Bergen, M.; Farag, M.A. Effect of gut microbiota biotransformation on dietary tannins and human health implications. Microorganisms 2021, 9, 965. [Google Scholar] [CrossRef]
- Shukla, S.K.; Cook, D.; Meyer, J.; Vernon, S.D.; Le, T.; Clevidence, D.; Robertson, C.E.; Schrodi, S.J.; Yale, S.; Frank, D.N. Changes in Gut and Plasma Microbiome following Exercise Challenge in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS ONE 2015, 10, e0145453. [Google Scholar] [CrossRef]
- Leonel, A.J.; Alvarez-Leite, J.I. Butyrate: Implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 474–479. [Google Scholar] [CrossRef]
- Queipo-Ortuño, M.I.; Seoane, L.M.; Murri, M.; Pardo, M.; Gomez-Zumaquero, J.M.; Cardona, F.; Casanueva, F.; Tinahones, F.J. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS ONE 2013, 8, e65465. [Google Scholar] [CrossRef]
- Evans, C.C.; LePard, K.J.; Kwak, J.W.; Stancukas, M.C.; Laskowski, S.; Dougherty, J.; Moulton, L.; Glawe, A.; Wang, Y.; Leone, V.; et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE 2014, 9, e92193. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Valder, S.; Brinkmann, C. Exercise for the Diabetic Gut—Potential Health Effects and Underlying Mechanisms. Nutrients 2022, 14, 813. [Google Scholar] [CrossRef]
- Yao, T.; Wang, H.; Lin, K.; Wang, R.; Guo, S.; Chen, P.; Wu, H.; Liu, T.; Wang, R. Exercise-induced microbial changes in preventing type 2 diabetes. Sci. China Life Sci. 2023, 67, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Craciun, C.I.; Neag, M.A.; Catinean, A.; Mitre, A.O.; Rusu, A.; Bala, C.; Roman, G.; Buzoianu, A.D.; Muntean, D.M.; Craciun, A.E. The Relationships between Gut Microbiota and Diabetes Mellitus, and Treatments for Diabetes Mellitus. Biomedicines 2022, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Hu, Y.; Long, P.; Li, P.; Chen, P.; Wang, X. The effect of tai chi intervention on NLRP3 and its related antiviral inflammatory factors in the serum of patients with pre-diabetes. Front. Immunol. 2022, 13, 1026509. [Google Scholar] [CrossRef] [PubMed]
- An, T.; He, Z.-C.; Zhang, X.-Q.; Li, J.; Chen, A.-L.; Tan, F.; Chen, H.-D.; Lv, B.-H.; Lian, J.; Gao, S.-H.; et al. Baduanjin exerts anti-diabetic and anti-depression effects by regulating the expression of mRNA, lncRNA, and circRNA. Chin. Med. 2019, 14, 3. [Google Scholar] [CrossRef]
- Levitan, O.; Ma, L.; Giovannelli, D.; Burleson, D.B.; McCaffrey, P.; Vala, A.; Johnson, D.A. The gut microbiome–Does stool represent right? Heliyon 2023, 9, e13602. [Google Scholar] [CrossRef]
- Kim, D.; Jung, J.-Y.; Oh, H.-S.; Jee, S.-R.; Park, S.J.; Lee, S.-H.; Yoon, J.-S.; Yu, S.J.; Yoon, I.-C.; Lee, H.S. Comparison of sampling methods in assessing the microbiome from patients with ulcerative colitis. BMC Gastroenterol. 2021, 21, 396. [Google Scholar] [CrossRef]
- Mohr, A.E.; Jäger, R.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Townsend, J.R.; West, N.P.; Black, K.; Gleeson, M.; Pyne, D.B.; et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 2020, 17, 24. [Google Scholar] [CrossRef]
- Hamady, M.; Knight, R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. 2009, 19, 1141–1152. [Google Scholar] [CrossRef]
- Morgun, A.; Dzutsev, A.; Dong, X.; Greer, R.L.; Sexton, D.J.; Ravel, J.; Schuster, M.; Hsiao, W.; Matzinger, P.; Shulzhenko, N. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 2015, 64, 1732–1743. [Google Scholar] [CrossRef]
- Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vich Vila, A.; Võsa, U.; Mujagic, Z.; Masclee, A.A.M.; Jonkers, D.; Oosting, M.; et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 2019, 51, 600–605. [Google Scholar] [CrossRef]
- Park, J.C.; Im, S.-H. Of men in mice: The development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp. Mol. Med. 2020, 52, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhao, X.; Yao, R.; Xiao, P. Food-medicine can promote cross-culture communication between East and West. Chin. Herb. Med. 2023, 15, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.Y.J.; Bun, H.H.; Zhao, Y.; Zhong, L.L.D. TCM “medicine and food homology” in the management of post-COVID disorders. Front. Immunol. 2023, 14, 1234307. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Hao, R.; Pan, S.; Wang, Y. Functional Foods Based on Traditional Chinese Medicine. In Nutrition, Well-Being and Health; IntechOpen: London, UK, 2012. [Google Scholar]
- Ng, C.Y.J.; Lai, N.P.Y.; Ng, W.M.; Siah, K.T.H.; Gan, R.-Y.; Zhong, L.L.D. Chemical structures, extraction and analysis technologies, and bioactivities of edible fungal polysaccharides from Poria cocos: An updated review. Int. J. Biol. Macromol. 2024, 261, 129555. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, C.Y.J.; Zhong, L.; Ng, H.S.; Goh, K.S.; Zhao, Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024, 16, 3935. https://doi.org/10.3390/nu16223935
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients. 2024; 16(22):3935. https://doi.org/10.3390/nu16223935
Chicago/Turabian StyleNg, Chester Yan Jie, Linda Zhong, Han Seong Ng, Kia Seng Goh, and Yan Zhao. 2024. "Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective" Nutrients 16, no. 22: 3935. https://doi.org/10.3390/nu16223935
APA StyleNg, C. Y. J., Zhong, L., Ng, H. S., Goh, K. S., & Zhao, Y. (2024). Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients, 16(22), 3935. https://doi.org/10.3390/nu16223935