Next Article in Journal
Vitamin D Is Associated with Lipid Metabolism: A Sex- and Age-Dependent Analysis of a Large Outpatient Cohort
Previous Article in Journal
Dietary Zinc Restriction and Chronic Restraint Stress Affect Mice Physiology, Immune Organ Morphology, and Liver Function
Previous Article in Special Issue
Subacute Effects of Moderate-Intensity Aerobic Exercise in the Fasted State on Cell Metabolism and Signaling in Sedentary Rats
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective

by
Chester Yan Jie Ng
1,*,
Linda Zhong
1,
Han Seong Ng
2,3,
Kia Seng Goh
3,4 and
Yan Zhao
1,3,*
1
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
2
Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
3
Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
4
Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
*
Authors to whom correspondence should be addressed.
Nutrients 2024, 16(22), 3935; https://doi.org/10.3390/nu16223935
Submission received: 17 October 2024 / Revised: 11 November 2024 / Accepted: 14 November 2024 / Published: 18 November 2024

Abstract

:
Background: Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.

Graphical Abstract

1. Introduction

Type 2 Diabetes Mellitus (T2DM) is a metabolic condition that causes hyperglycemia due to insulin resistance and inadequate insulin production [1]. According to the International Diabetes Federation, around 463 million individuals were diagnosed with diabetes in 2019, and this number is predicted to reach 700 million by 2045, with T2DM accounting for more than 90% of these cases [2]. Changes in food and activity habits, such as consuming more calories and participating in less physical exercise, are leading to a rapid rise in the prevalence of T2DM and growing demands on healthcare resources [3,4]. T2DM has also been identified as a main cause of major health complications such as cardiovascular disease, stroke, and limb amputation [5]. Given its growing prevalence, proper worldwide planning is essential to mitigate the potential health implications of T2DM [6].
Currently, common treatment measures include the use of insulin therapy or pharmacological drugs. Some examples of pharmacotherapy measures include metformin and sulfonylureas [7]. Non-pharmacological options, such as lifestyle interventions, also exist for T2DM patients [3]. However, there are still certain downsides to the standard treatment procedures implemented today. For instance, some drawbacks of insulin therapy include the large number of injections, a lower quality of life, needle bruises, and scarring [8,9]. Similarly, metformin consumption could lead to gastrointestinal adverse effects [10,11,12]. Therefore, individual variability is a crucial component that influences patients’ responses to therapies and, hence, there is an increasing need to source for new forms of T2DM therapy [13].
Recent research has shown that one alternative target of treatment is the gut microbiota [14,15]. In healthy individuals, the gut microbiota mediates physiological processes, thus, maintaining an equilibrium between the body and environment [16]. However, the onset of T2DM may cause gut microbiota dysbiosis, which disrupts one’s internal environment, thus, increasing the chances of opportunistic pathogen proliferation [17]. In recent years, more research groups have begun investigating the impacts of Chinese Medicine (CM) on gut microbiota modulation. Among the treatment modalities of CM, Chinese Herbal Medicine (CHM) has been the most extensively researched in recent years for its gut microbiota regulating effects [18,19]. Furthermore, another CM treatment modality, acupuncture, has been proposed to regulate intestinal inflammation and neurotransmitter secretion. The vagus nerve (VN) is responsible for transmitting changes in gut microbiota and immune activation signals to the brain to establish a neuroregulation pathway [20,21]. Collectively, CM has potential to be utilized in treatment for T2DM.
To the best of our knowledge, past reviews have focused primarily on the anti-diabetic effects of CHM and dietary compounds [18,22,23,24,25]. Hence, our present review aims to complement past findings and provide an overview of the gut microbiota before summarizing its role in T2DM pathogenesis. In addition, we also intend to provide an updated review of CHM and evaluate other different CM treatment modalities for T2DM that modulate gut microbiota. Lastly, we will also present perspectives for future research and development.

2. The Gut Microbiota

The gut microbiota includes bacteria, viruses, archaebacteria, and fungus [26]. Amongst the components of the digestive tract, the intestine contains the largest volume of gut microbiota in the human body, with an estimated quantity of 10 trillion colonized bacteria [27]. Its composition and proportion does not remain permanent and may change during one’s lifetime depending on one’s race, age, and diet [28]. Despite gut microbiota composition varying from person to person, cohort studies have shown that the most common gut microbiota still consists primarily of Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria [29].
In a physiologically healthy state, the gut microbiota is maintained at a dynamic balance where these bacteria have symbiotic and mutualistic relationship with our bodies [30,31]. The gut microbiota’s primary roles include food digestion, vitamin formation, immune regulation, pathogen growth inhibition, and toxin removal [32,33]. However, a disbalance in the internal gut environment could lead to the onset of metabolic dysfunctions such as T2DM [34,35]. In a previous review conducted by Gurung et al., it was found that Akkermansia, Bacteroides, Bifidobacterium, Faecalibacterium, and Roseburia were negatively associated with T2DM, while Blautia, Fusobacterium, and Ruminococcus were positively associated with T2DM [36]. Amongst them, Bacteroides and Bifidobacterium were also found to be the most common beneficial genera reported in studies of T2DM. Changes to microbial diversity such as an increased Firmicutes/Bacteroidetes ratio also affects insulin resistance and energy metabolism in T2DM pathogenesis [37].

3. Potential Mechanisms of Interaction Between Gut Microbiota and T2DM

In T2DM, gut microbiota plays an important role in modulating inflammation, interacting with dietary constituents, regulating gut permeability, glucose and lipid metabolism, insulin sensitivity, and maintaining homeostasis [38,39,40,41]. In the sections below, we summarized the potential mechanisms of gut microbiota modulation on the pathogenesis of T2DM. A summary of the potential interactions between the gut microbiota and T2DM is shown in Figure 1 below.

3.1. Intestinal Permeability

Increased intestinal permeability is a pathological feature of T2DM, which results in more gut microbial products entering the blood, leading to metabolic endotoxemia [42]. This increase in intestinal permeability, known as “leaky gut”, causes systemic inflammation, which can aggravate insulin resistance and lead to diabetic complications such as neuropathy and retinopathy [43,44]. Tight junction proteins (TJP) are a class of proteins crucial to improving intestinal permeability and studies have shown that administration of live Bacteroides vulgatus and Bacteroides dorei could improve regulation of tight junction genes, lipopolysaccharide (LPS) production, and endotoxemia in in vivo mice models [45,46]. It was also found in in vivo studies that Akkermansia muciniphila-derived extracellular vesicles (AmEVs) levels were higher in healthy controls as compared to T2DM models and administration of AmEVs improved tight junction function and intestinal barrier integrity in an AMP-activated protein kinase (AMPK)-dependent manner [47]. In addition, administration of live or pasteurized Amuc_1100, the outer membrane protein of Akkermansia muciniphila, also modulates the expression of occludin and TJP1, thus, improving gut integrity [48]. Amuc_1100 also inhibits cannabinoid receptor type 1 (CB1) and toll-like receptor 2 (TLR2), thus, lowering gut permeability and systemic LPS levels. Lastly, butyrate produced by Faecalibacterium and Roseburia could also reduce gut permeability via the serotonin transporter and Peroxisome proliferator-activated receptor gamma (PPAR-γ) pathways [49]. Collectively, modulation of gut microbiota species could enhance tight junction integrity and reduce intestinal permeability through various mechanisms, including the upregulation of tight junction proteins and the production of butyrate, which could be useful in the management of T2DM.

3.2. Modulation of Inflammation

The pathogenesis of T2DM is also closely linked to inflammation [50]. Chronic low-grade inflammation is a significant feature of T2DM patients, with elevated inflammatory markers disrupting insulin signaling and leading to insulin resistance [51]. In vitro and in vivo studies also showed that increased levels of gut microbiota, such as Fusobacterium and Ruminococcus, can upregulate certain inflammatory cytokines, resulting in endotoxemia and inflammation [52,53,54]. Additionally, in vivo administration of Akkermansia muciniphila was showed to activate interleukin (IL) IL-10 in muscle, which improves glucose metabolism and has protective effects against age-related insulin resistance [48,55]. In vitro culturing with R. intestinalis also boosted the production of IL-22, which could restore insulin sensitivity, promote Treg cell differentiation, induce transforming growth factor beta (TGF-β), and suppress intestinal inflammation [56,57,58]. Certain species of Lactobacillus can also decrease the expression of IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and c-reactive protein (CRP) [59,60,61,62]. Lactobacillus casei inhibits interferon gamma (IFN-γ) production whereas Roseburia intestinalis inhibits both IFN-γ and IL-17 production [56,63,64]. Furthermore, Roseburia and Faecalibacterium produce butyrate, which inhibits the nuclear factor kappa β (nF-kβ) pathway [49,65,66]. Similarly, in vivo and observational studies have found that Akkermansia, Bacteroides, and Lactobacillus suppressed tumor necrosis factor alpha (TNF-α) expression while Bacteroides thetaiotaomicron reduced the levels of T helper cells (Th) Th1, Th2, and Th17 in mono-associated mice [56,67,68,69,70].

3.3. Glucose Metabolism

Impaired glucose metabolism is also another key characteristic in T2DM patients. Muscle, liver, and adipose cells become less responsive to insulin, leading to elevated blood glucose levels, while the liver continues to produce excessive glucose, further exacerbating hyperglycemia [71]. Persistent hyperglycemia damages blood vessels and nerves, increasing the risk of cardiovascular and renal complications [72]. Gut microbiota levels also affects the liver, which regulates glucose homeostasis and glucose metabolism [73]. For example, in vivo administration of the probiotic Bifidobacterium lactis HY8101 decreases the expression of gluconeogenesis-related genes, thus, improving the translocation of glucose transporter-4 (GLUT4) and glucose uptake [74]. Akkermansia muciniphila and Lactobacillus plantarum also suppressed expression of hepatic flavin monooxygenase 3 (Fmo3), thus, preventing the onset of hyperglycaemia and hyperlipidaemia in insulin resistant rats [48,60,75]. Lactobacillus species are also found to play a crucial role in controlling glucose metabolism. For example, in vivo administration of the probiotic Lactobacillus casei CCFM419 has been shown to ameliorate insulin resistance by upregulating phosphatidylinositol-3-kinase (PI3K), insulin receptor substrate 2 (IRS2), AMPK, AKT serine/threonine kinase 2 (Akt2) and glycogen synthesis in the liver [76,77]. Lactobacillus casei also reduced hyperglycaemia via bile acid (BA)—chloride exchange, which involves the upregulation of Chloride Channels 1 to 7 (ClC1-7), Glycine Receptor Alpha 1 (GlyRa1), Solute Carrier Family 26 Member 3 (SLC26A3), Solute Carrier Family 26 Member 6 (SLC26A6), Gamma-Aminobutyric Acid Type A Receptor Alpha 1 (GABAAa1), Bestrophin 3 (BEST3), and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) [78]. It also decreased insulin-degrading enzyme (IDE) in Caco-2 cells and insulin-like growth factor binding proteins-3 (IGFBP-3) in white adipose tissue [76,77]. Similarly, administration of the proibiotic Lactobacillus rhamnosus NCDC17 increased adiponectin levels in the epididymal fat while the probiotic Lactobacillus gasseri BNR17 boosted GLUT-4 expression in muscle, which improved insulin sensitivity [79,80]. Furthermore, some species of Akkermansia muciniphila and Lactobacillii inhibited alpha-glucosidase in vivo, which prevented the breakdown of complex carbohydrates and lowers postprandial hyperglycaemia [81]. Lastly, butyrate has been shown to act as a ligand for G protein-coupled receptors (GPCR) GPCR41 and GPCR43, thus, releasing gut hormones from entero-endocrine L-cells [82,83,84].
In addition, the gut microbiota plays an important role in BA metabolism. BA are involved in glucose metabolism as signaling molecules and cellular receptor ligands [85]. Bifidobacterium and Lactobacillus were discovered to release bile salt hydrolases to deconjugate BA, thereby enabling other gut microbiota to convert them into secondary bile acids like deoxycholic acid [86,87,88]. Secondary BAs then activate the takeda G-protein-coupled receptor 5 (TGR5) and stimulate the synthesis of glucagon-like peptide-1 (GLP-1) [89]. BA can activate the nuclear farnesoid X receptor (FXR) and membrane-bound GPCR, which decreases production of fructose-1,6-biphosphatase-1, gluconeogenic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase [90,91]. Studies on mice models also showed that knockdown of FXR lowers body weight gain and adipose tissue mass, improving glucose clearance, insulin sensitivity, and overall glucose homeostasis [92].

3.4. Fatty Acid Oxidation, Synthesis, and Energy Expenditure

In T2DM patients, fatty acid oxidation is frequently decreased while fatty acid synthesis increases, resulting in fat buildup in organs such as the liver and muscle, which leads to insulin resistance [93]. Furthermore, energy expenditure is often lower, promoting further weight gain and developing insulin resistance, both of which increase the risk of cardiovascular and metabolic complications [72]. Some gut microbiota have been shown to increase fatty acid oxidation, energy expenditure and reduce fatty acid synthesis [94,95]. In vivo administration of Akkermansia muciniphila and Bacteroides acidifaciens increased fatty acid oxidation in the adipose tissue [96,97,98]. Akkermansia muciniphila has also been found to increase the levels of 2-oleoyl glycerol (2-OG), 2-palmitoylglycerol (2-PG), and 2 acylglycerol (2-AG) while Bacteroides acidifaciens improved fatty acid oxidation in adipose tissue via the TGR5-PPAR-α pathway [99,100]. Administration of Akkermansia muciniphila and Lactobacillus casei have also been found to reduce serum levels of malonidialdehyde in diabetic rodents [69,101]. Butyrate, propionate, and acetate, have also been shown to decrease PPAR-γ expression, thus, increasing fatty acid oxidation [102]. In addition, butyrate also promoted thermogenesis and mitochondrial functions in muscle by inhibiting histone deacetylation in muscle [103]. Collectively, gut microbiota species can alleviate T2DM via the modulation of energy expenditure, fatty acid oxidation, and synthesis.

3.5. Oxidative Stress

Oxidative stress is another significant characteristic in T2DM patients. This stress is induced by an imbalance between the formation of reactive oxygen species (ROS) and antioxidant defense mechanisms, resulting in damage to insulin-sensitive organs such as the liver and pancreas, and eventually exacerbating insulin resistance, inflammation, and β-cell malfunction [104,105]. Some common oxidative markers used for T2DM diagnosis are shown in Table 1 below. Apart from antioxidant therapies such as dietary antioxidants and vitamin supplementation, modulation of gut microbiota could also be a possible intervention in reducing oxidative stress [106,107]. Recent studies have shown that Lactobacillus and Bifidobacterium species are key targets in reducing oxidative stress in T2DM patients. For instance, in vivo studies have shown that probiotic treatment with Lactobacillus paracasei can reduce hyperglycemia, preserve pancreatic β-cell and liver function, reduce oxidative stress, and improve dyslipidemia and inflammation [70]. Treatment with the probiotic Lactobacillus rhamnosus NCDC17 has also been shown to improve oral glucose tolerance test, biochemical parameters, oxidative stress, and inflammation in T2DM rat models [79]. Furthermore, administration of the probiotic Bifidobacterium BL21 and Lacticaseibacillus LRa05 significantly reduced blood glucose levels and oxidative stress in T2DM mouse models, therefore, lowering liver, cecal, and colon damage [108]. In vivo administration of the probiotics Lactobacillus plantarum LP104 and Bifidobacterium longum DD98 have also been shown to improve the production of short-chain fatty acids (SCFAs) that strengthen the gut lining, reduce lipid peroxidation and LPS translocation, thereby decreasing pro-inflammatory and oxidative responses [109,110]. In addition, other gut microbiota species like Akkermansia muciniphila could also improve gut barrier integrity and reduce inflammation [111,112]. Collectively, gut microbiota species can alleviate T2DM via the reduction in oxidative stress.
Table 1. Common oxidative markers and their relationship with gut microbiota.
Table 1. Common oxidative markers and their relationship with gut microbiota.
Oxidative MarkerIndication in T2DMInfluence on Gut MicrobiotaReference
Advanced Glycation End-ProductsElevated levels indicate elevated oxidative stress and chronic hyperglycemia.↑ Gut permeability
↑ Gut microbiota dysbiosis
↑ Oxidative stress
[113]
GlutathioneDecreased levels indicate diminished antioxidant defense.↓ Gut barrier integrity
↑ Gut microbiota dysbiosis
[114]
MalondialdehydeElevated levels indicate oxidative damage to cell membranes.↑ Gut permeability
↑ Inflammation
↑ Gut microbiota dysbiosis
↑ Oxidative stress
[115]
MyeloperoxidaseElevated levels indicate inflammatory oxidative stress.↑ Inflammation
↑ Gut microbiota dysbiosis
[116]
NitrotyrosineElevated levels indicate protein damage linked to T2DM complications.↑ Gut epithelial cell damage
↑ Inflammation
↑ Gut microbiota dysbiosis
[117]
Reactive Oxygen SpeciesElevated levels indicate increased oxidative stress.↑ Gut mucosal cell damage
↑ Growth of ROS-tolerant pathogenic strains
[118]
8-Hydroxy-2′-deoxyguanosineElevated levels indicate oxidative DNA damage and chronic inflammation.↑ Gut epithelial cell damage
↑ Gut microbiota dysbiosis
[119]
Legend: ↑ Increased; ↓ Decreased.

4. Mechanisms of CM in the Treatment of Various Disorders via Regulating Gut Microbiota

In CM practice, the main modes of treatment modalities can be classified into internal and external therapies. Most research examining the impact of gut microbiota modification on T2DM focuses on internal therapy, primarily including the consumption of CHM. The application of external therapies like acupuncture, moxibustion, food therapy, mind–body activities like Qigong and Tai Chi, and massage techniques like Tuina have also been the subject of other investigations [120]. In the sections below, we will review the existing evidence of these treatment modalities on alleviating T2DM. A summary diagram consolidating the mechanisms of various CM therapies on the modulation of gut microbiota to improve T2DM is shown in Figure 2 below.

4.1. Chinese Herbal Medicine

CHM is a key treatment modality of CM. In clinical practice, CHM is prescribed either as single herbs, or as a pre-mixed herbal concoctions [121]. A summary of studies investigating the treatment effects on T2DM via the modulation of gut microbiota by CHM are provided in Table 2 and Table 3 below.
CHMs contain a wide variety of carbohydrate and non-carbohydrate bioactive compounds. The main forms of carbohydrates found in CHM herbs include polysaccharides and oligosaccharides [122,123]. Many commonly used CHM herbs, such as Dendrobium officinale and Astragalus membranaceus, contain polysaccharides [124,125,126,127]. On the other hand, non-carbohydrate components of CHM herbs also play an important bioactive role. Some examples are polyphenols from Dendrobium officinale, alkaloids from Morus alba, and the alkaloid Berberine from Coptis chinensis [128,129,130]. However, the bioavailability of these components tend to decrease due to high hydrogen-bonding capacity, high molecular flexibility, and poor lipophilicity [131]. Hence, the gut microbiota plays a significant role by assisting with biotransformation of non-carbohydrate components and boosting intestinal absorption [132,133].
Among the CHMs being investigated, one prominently used CHM herb is Coptis chinensis. Coptis chinensis, is recognized as one of the most effective CHM herbs for T2DM [134]. It is utilized in many popular CHM formulas such as Ban Xia Xie Xin decoction, Xie Xin Tang decoction, Ge Gen Jiao Tai Wan granules, Ge Gen Qin Lian decoction, Huang Lian Jie Du decoction, and Shen Zhu Tiao Pi granules [135,136,137,138,139]. Coptis chinensis possesses multiple anti-diabetic activities. For instance, the alkaloid Berberine has been demonstrated to limit sugar digestion and absorption in the digestive tract by inhibiting disaccharide activity in a protein kinase A-dependent route and lowering sucrase-isomaltase complex mRNA expression [140]. Coptis chinensis has also been shown to activate the hepatic insulin-mediated signaling system and increase the compositions of Bacteroides and Clostridium, and improve BA metabolism, which could alleviate T2DM [141]. In addition, Berberine has also been demonstrated to alter gut microbiota structure by increasing goblet cell count and villi length, reversing reduced expressions of mucin, occludin, and zonula occludens-1 (ZO-1), and upregulating toll-like receptor 4 (TLR-4), NF-κB, and TNF-α [128].
Table 2. Alleviating T2DM Via the modulation of gut microbiota by single CHM herbs.
Table 2. Alleviating T2DM Via the modulation of gut microbiota by single CHM herbs.
Herb Part of Herb Used (If Applicable)Type of StudyTest SubjectTotal Sample SizeMain Therapeutic EffectsKey Changes in Microbiota PhylumReference
Ampelopsis grossedentataEthanol extract of leavesIn vivo studyZDF ratsT2DM model
T2DM model group (n = 6)
Low-dose extract group (n = 6)
Medium-dose extract group (n = 6)
High-dose extract group (n = 6)
Metformin group (n = 6)
Alleviate systematic inflammation
Improve lipids profile
Lower FBG
Modulate BA production
↑ Bifidobacterium
↑ Clostridia
[142]
Apocynum venetumPolysaccharide-rich extracts from leavesIn vivo studyC57BL/6 J miceT2DM model
Water extract group (n = 8)
Ethanol extract group (n = 8)
Saline solution group (n = 8)
Improve IR
Improve lipids profile
Lower FBG
↑ Anaeroplasma
↑ Muribaculum
↑ Odoribacter
↑ Parasutterella
↓ Aerococcus
↓ Enterococcus
↓ Klebsiella
[143]
Astragalus membranaceusPolysaccharideIn vivo studyC57BL/6J miceNon-T2DM model
Non-T2DM control group (n = 12)
T2DM model
T2DM model group (n = 12)
Mixed antibiotic group (n = 12)
Astragalus extract group (n = 12)
Astragalus extract and mixed antibiotic group (n = 12)
Alleviate systematic inflammation
Improve antioxidant ability
Improve IR
Improve lipids profile
Lower FBG
↑ Allobaculum
↑ Lactobacillus
↓ Shigella
[127]
Coptis chinensisBerberineIn vivo studyZDF ratsNon-T2DM model
Impaired glucose tolerance group (n = 10)
T2DM model
Berberine group (n = 10)
Control group (n = 5)
Alleviate systematic inflammation
Improve IR
Lower FBG
Protects intestinal barrier
↑ Aggregatibacter
↑ Akkermansia
↑ Bacteroides
↑ Clostridium
↑ Eubacterium
↑ Oscillospira
↑ Roseburia
↓ Prevotella
[128]
Water extractIn vivo studyC57BL/6 miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
Diabetes mellitus group (n = 11)
Extract group (n = 10)
Improve IR
Improve lipids profile
Lower FBG
Modulate BA production
↑ Bacteroides
↑ Clostridium
[141]
Corni fructusWater extract from fruitsIn vivo studyICR miceT2DM model
T2DM control group (n = 10)
Metformin group (n = 10)
Alcohol extract group (n = 10)
Corni fructus iridoidglycoside group (n = 10)
Corni fructus saponin group (n = 10)
Corni fructus tannin group (n = 10)
Alleviate systematic inflammation
Improve IR
Improve lipids profile
Lower FBG
Modulate SCFAs production
↑ Clostridium
↑ Firmicutes
↑ Lactobacillus
↓ Bacteroidetes
[144]
Curcuma longaCurcuminIn vivo studyC57BLKS/J miceT2DM model
T2DM control group (n = 10)
Control and curcumin group (n = 10)
Dextran sodium sulfate group (n = 14)
Dextran sodium sulfate and curcumin group (n = 13)
Lower FBG
Improve immune regulation
Improve IR
↑ Candidatus
↑ Eubacterium
[145]
TetrahydrocurcuminIn vivo studySPF miceT2DM model
Model group (n = 7)
Low-dose group (n = 7)
High-dose group (n = 7)
Improve IR
Lower FBG
↑ Bacteroidetes
↑ Firmicutes
↓ Actinobacteria
↓ Proteobacteria
[146]
Dendrobium officinaleDendrobium officinale supplementIn vivo studyBKS.Cg-Dock7m +/+Leprdb/Nju miceT2DM model
Placebo group (n = 6)
Dendrobium officinale supplement group (n = 6)
Lower FBG↑ Akkermansia
↑ Clostridium
↑ Flavonifractor
↑ Parabacteroides
[124]
Polyphenol extractIn vivo studyBKS-db miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Low-dose group (n = 8)
Medium-dose group (n = 8)
High-dose group (n = 8)
Alleviate systematic inflammation
Improve antioxidant ability
Improve IR
Improve lipids profile
Lower FBG
↑ Akkermansia
↑ Bacteroidetes
↓ Escherichia
[129]
Edgeworthia gardneriWater extractIn vivo studyC57BL/6J miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Low-dose group (n = 8)
Medium-dose group (n = 8)
High-dose group (n = 8)
Alleviate systematic inflammation
Improve antioxidant ability
Improve IR
Improve lipids profile
Lower FBG
Modulate SCFAs production
↑ Bacteroidetes
↑ Clostridiales
↓ Deferribacteres
↓ Dorea
↓ Firmicutes
↓ Lachnospiraceae
↓ Proteobacteria
↓ Rikenellaceae
[147]
Ganoderma atrumPolysaccharideIn vivo studySD ratsNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Ganoderma atrum polysaccharide group (n = 8)
Alleviate systematic inflammation
Improve antioxidant ability
Improve IR
Improve lipids profile
Lower body weight
Lower FBG
Modulate SCFAs production
↑ Blautia
↑ Bacteroides
↑ Dehalobacterium
↑ Parabacteroides
↓ Aerococcus
↓ Corynebactrium
↓ Proteus
↓ Ruminococcus
[148]
Polysaccharide F31In vivo studyKM miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Low-dose group (n = 8)
High-dose group (n = 8)
Alleviate systematic inflammation
Improve antioxidant ability
Improve IR
Lower FBG
↑ Bacteroides
↑ Bacteroidetes
↑ Lactobacillus
↑ Ruminococcaceae
↓ Firmicutes
[126]
Gastrodia elataWater extractIn vivo studyC57BL/6 miceNot reportedAlleviate systematic inflammation
Improve lipids profile
Lower FBG
Modulate BA production
↑ Faecalibaculum
↑ Lactobacillus
↑ Mucispirillum
[149]
Hypericum attenuatumWhole plant extractIn vivo studyKM miceNon-T2DM model
Non-T2DM control group (n = 10)
T2DM model
T2DM group (n = 10)
Metformin group (n = 10)
Low-dose group (n = 10)
Medium-dose group (n = 10)
High-dose group (n = 10)
Improve IR
Improve lipids profile
Lower FBG
Modulate SCFAs production
↑ Firmicutes
↓ Bacteroidetes
↓ Proteobacteria
[150]
Inonotus obliquusPolysaccharideIn vivo studyKM miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Low-dose group (n = 8)
Medium-dose group (n = 8)
High-dose group (n = 8)
Improve IR
Improve lipids profile
Lower FBG
Protects intestinal barrier
↑ Bacteroidetes[151]
Lycium barbarumWater extract from leavesIn vivo studySPF-grade ratsNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Low-dose group (n = 8)
High-dose group (n = 8)
Improve IR
Improve lipids profile
Lower FBG
↓ Blautia
↓ Coprococcus
↓ Marvinbryantia
↓ Parasutterella
↓ Prevotellaceae
↓ Ruminococcus
[152]
Maydis stigmaPolysaccharideIn vivo studyKM miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Dimethylbiguanide group (n = 8)
Low-dose group (n = 8)
Medium-dose group (n = 8)
High-dose group (n = 8)
Lower FBG↑ Bacteroidetes
↑ Lactobacillus
[153]
Momordica charantiaPolysaccharideIn vivo studyWistar ratsNon-T2DM model
Control group (n = 10)
Medium-dose fermented polysaccharide group (n = 10)
Unfermented polysaccharide group (n = 10)
T2DM model
Control group (n = 10)
Low-dose fermented polysaccharide group (n = 10)
Medium-dose fermented polysaccharide group (n = 10)
High-dose fermented polysaccharide group (n = 10)
Unfermented polysaccharide group (n = 10)
Improve antioxidant ability
Improve IR
Improve lipids profile
Lower FBG
Modulate SCFAs production
↑ Lactococcus
↑ Prevotella
[154]
Morus albaLeaf powderIn vivo studySD ratsT2DM model
Vehicle control group (n = 6)
Treatment group (n = 6)
Positive control group (n = 6)
Negative control group (n = 6)
Improve IR
Improve lipids profile
Lower FBG
Modulate SCFAs production
↑ Bacteroidetes
↑ Clostridia
↑ Proteobacteria
[155]
Ethanol extract from leavesIn vivo studySD ratsNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Treatment group (n = 6)
Improve lipids profile
Lower FBG
↑ Bacteroidetes
↑ Firmicutes
↓ Actinobacteria
↓ Bifidobacterium
[156]
Alkaloids from the twigIn vivo studyKK-Ay miceT2DM model
T2DM group (n = 8)
Low-dose group (n = 8)
High-dose group (n = 8)
Alleviate systematic inflammation
Improve IR
Improve lipids profile
Lower FBG
Protects intestinal barrier
↑ Bacteroidaceae
↑ Verrucomicrobia
↓ Desulfovibrionaceae
↓ Rikenellaceae
[130]
PolysaccharideIn vivo studydb/db miceT2DM model
T2DM group (n = 10)
Metformin group (n = 10)
Low dose group (n = 10)
Medium dose group (n = 10)
High dose group (n = 10)
Improve antioxidant ability
Improve lipids profile
Improved oral glucose tolerance
Lower FBG
↑ Allobaculum
↑ Akkermansia
↑ Bacteroidales
↑ Bacteroides
↑ Lactobacillus
↓ Enterococcus
↓ Staphylococcus
[157]
Panax ginsengGinsenoside Rb1In vivo studyKkay miceT2DM model
T2DM group without antibiotic treatment (n = 10)
Metformin group without antibiotic treatment (n = 10)
Ginsenoside group without antibiotic treatment (n = 10)
T2DM group with antibiotic treatment (n = 10)
Metformin group with antibiotic treatment (n = 10)
Ginsenoside group with antibiotic treatment (n = 10)
Improve IR
Improve lipids profile
Lower FBG
Protects intestinal barrier
↑ Parasutterella
↓ Alistipes
↓ Anaeroplasma
↓ Odoribacter
↓ Prevotellaceae_
[158]
Ginsenoside Rg1In vivo studyWistar ratsNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Low dose group (n = 8)
High dose group (n = 8)
↑ Lachnospiraceae
↑ Romboutsia
↑ Roseburia
[159]
Ginsenoside Rg5In vivo studyNon- T2DM model
Non-T2DM control group (n = 7)
Non-T2DM antibiotic control group (n = 7)
T2DM model
T2DM vehicle treatment group (n = 7)
Rg5 vehicle treatment group (n = 7)
Antibiotic vehicle treatment group (n = 7)
Rg5 non = vehicle treatment group (n = 7)
↑ Bacteroidetes
↑ Proteobacteria
↓ Firmicutes
↓ Verrucomicrobia
[160]
Physalis alkekengi var. franchetiPolysaccharideIn vivo studyKM miceNon-T2DM model
Non-T2DM control group (n = 10)
T2DM model
T2DM group (n = 10)
Dimethybiguanide group (n = 10)
Low dose group (n = 10)
High dose group (n = 10)
Alleviate systematic inflammation
Improve lipids profile
Lower FBG
↑ Bacteroides
↑ Clostridium
↑ Lactobacillus
↓ Enterobacter
[161]
Plantago asiaticaPolysaccharide from the seedsIn vivo studyWistar ratsNon-T2DM model
Non-T2DM control group (n = 10)
Non-T2DM medium dose group (n = 10)
T2DM model
T2DM control group (n = 10)
Metformin group (n = 10)
Low dose group (n = 10)
Medium dose group (n-10)
High dose group (n = 10)
Improve antioxidant ability
Improve IR
Improve lipids profile
Lower FBG
Modulate SCFAs production
↑ Bacteroides
↑ Lactobacillus
↑ Prevotella
↓ Alistipes
[125]
Sanghuangporus vaniniiFruit body polysaccharide extractIn vivo studyICR miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Low-dose group (n = 8)
High-dose group (n = 8)
Improve IR
Improve lipids profile
Lower FBG
Modulate SCFAs production
↑ Alloprevotella
↑ Dubosiella
↑ Weissella
↓ Flavonifractor
↓ Lactobacillus
↓ Odoribacter
[162]
Tribulus terrestrisEthanol extractIn vivo studySD ratsNot reportedImprove lipids profile
Lower FBG
Modulate BA production
Modulate SCFAs production
↑ Bacteroidetes
↑ Bifidobacterium
↓ Firmicutes
[163]
Abbreviations: Fasting blood glucose (FBG), Insulin resistance (IR), Short chain fatty acids (SCFA), Bile acids (BA). Legend: ↑ Increased abundance; ↓ Decreased abundance.
Table 3. Alleviating T2DM Via the modulation of gut microbiota by CHM formulas.
Table 3. Alleviating T2DM Via the modulation of gut microbiota by CHM formulas.
Herbal Formula Herbal Formula CompositionType of StudyTest SubjectTotal Sample SizeMain Therapeutic EffectsKey Changes in Microbiota PhylumReference
AMCAloe vera
Coptis chinensis
Momordica charantia
Red yeast rice
Rhizoma anemarrhenae
Salvia miltiorrhiza
Schisandra chinensis
Zingiber officinale
Randomized controlled trialT2DM patientsT2DM model
Metformin group (n = 100)
AMC treatment group (n = 100)
Improve IR
Lower FBG
↑ Blautia
↑ Coprococcus
↑ Faecalibacterium
↑ Gemmiger
↑ Megamonas
↑ Roseburia
[164]
Bai Hu Ren Sheng decoctionGlycyrrhiza uralensis
Gypsum
Japonica rice
Panax ginseng
Rhizoma anemarrhenae
In vivo studySD ratsNon-T2DM model
Non-T2DM control group (n = 10)
T2DM model
T2DM group (n = 10)
Metformin group (n = 10)
Low dose group (n = 10)
High dose group (n = 10)
Alleviate systemic inflammation
Improve antioxidant ability
Improve IR
Improve lipid metabolism
Lower FBG
↑ Anaerostipes
↑ Blautia
↑ Lactobacillus
↓ Allobaculum
↓ Candidatus
↓ Ruminococcus
↓ Saccharimonas
[165]
Bu Yang Huan Wu decoctionAngelicae sinensis
Astragalus membranaceus
Carthami flos
Ligusticum striatum
Paeoniae rubra
Persicae semen
Pheretima
In vivo studyZDF rats and ZLC ratsNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Metformin group (n = 6)
Bu Yang Huan Wu decoction group (n = 6)
Improve lipid metabolism
Lower FBG
↑ Bacteroidetes
↑ Blautia.
↑ Lactobacillus
↓ Firmicutes
[166]
Dang Gui Bu Xue decoctionAstragalus membranaceus
Angelicae sinensis
In vivo studyGoto Kakizaki (GK) ratsNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Dang Gui Bu Xue decoction group (n = 6)
Alleviate systemic inflammation
Improve antioxidant ability
Improve IR
Improve lipid metabolism
Lower FBG
↑ Adlercreutzia
↑ Peptostreptococcaceae
↑ Oscillospiraceae
↓ Firmicutes
[167]
Ge Gen Jiao Tai Wan formulaCoptis chinensis
Cortex cinnamomi
Pueraria lobata
In vivo studySD ratsNon-T2DM model
Non-T2DM control group (n = 10)
T2DM model
T2DM group (n = 10)
Ge Gen Jiao Tai Wan formula group (n = 10)
Fecal transplant group (n  =  10)
Metformin group (n = 7)
Antibiotics group (n = 10)
Ge Gen Jiao Tai Wan formula and antibiotics group (n = 10)
Improve IR
Improve lipid metabolism
Lower FBG
↑ Firmicutes
↑ Lactobacillus
[138]
Ge Gen Qin Lian decoctionCoptis chinensis
Glycyrrhiza uralensis
Pueraria lobata
Scutellaria baicalensis
Randomized controlled trialT2DM patientsT2DM model
Placebo group (n = 56)
Low dose group (n = 56)
Moderate dose group (n = 56)
High dose group (n = 56)
Alleviate systematic inflammation
Lower FBG
↑ Bifidobacterium
↑ Faecalibacterium
↑ Gemmiger
↓ Alistipes
↓ Parabacteroides
↓ Pseudobutyrivibrio
[168]
In vivo studyWistar ratsNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Metformin group (n = 6)
Ge Gen Qin Lian decoction group (n = 6)
Alleviate systematic inflammation
Improve IR
Improve lipid metabolism
Lower FBG
Protects intestinal barrier
↑ Acetatifactor
↑ Flavonifractor
↓ Anaerofustis
↓ Butyricicoccus
↓ Butyricimonas
↓ Gammaproteobacteria
[169]
Huang Lian Jie Du decoctionCoptis chinensis
Gardeniae Fructus
Phellodendri Cortex
Scutellaria baicalensis
In vivo studySD ratsNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Huang Lian Jie Du decoction group (n = 8)
Alleviate systematic inflammation
Improve antioxidant ability
Improved IR
Improve lipid metabolism
Lower FBG
↑ Akkermansia
↑ Blautia
↑ Parabacteroides
↓ Aerococcus
↓ Staphylococcus
[170]
Jiang Tang Jing granulesAstragalus membranaceus
Coicis semen
Crataegi fructus
Dioscorea oppositifolia
Hirudo
Polygonati rhizoma
Pueraria lobata
Semen brassicae
In vivo studySD ratsNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Linagliptin group (n = 6)
Huang Lian Jie Du decoction group (n = 6)
Improve IR
Lower FBG
↑ Bacteroides
↓ Actinobacteria
[171]
Jiang Tang San Huang pillAstragalus membranaceus
Cinnamomum cassia
Glycyrrhiza uralensis
Ophiopogon japonicus
Persicae semen
Rehmannia glutinosa
Rheum palmatum
Scrophularia ningpoensis
In vivo studySD ratsNon-T2DM model
Non-T2DM control group (n = 10)
T2DM model
T2DM group (n = 10)
Metformin group (n = 10)
Low dose group (n = 10)
Medium dose group (n = 10)
High dose group (n = 10)
Alleviate systemic inflammation
Improve IR
Improve lipid metabolism
Lower FBG
↑ Bacteroides
↑ Bifidobacterium
↑ Clostridium
↑ Lactobacillus
[172]
Jin Qi Jiang Tang tabletsAstragalus membranaceus
Coptis chinensis
Lonicera japonica
In vivo studyC57BL/6J miceNon-T2DM model
Non-T2DM control group (n = 5)
T2DM model
T2DM group (n = 5)
Low dose group (n = 5)
High dose group (n = 5)
Alleviate systemic inflammation
Improve IR
Lower FBG
Protects intestinal barrier
↑ Akkermansia
↓ Desulfovibrio
[173]
Liu Wei Di Huang pillsCorni fructus
Cortex moutan
Dioscorea oppositifolia
Rehmannia glutinosa
Rhizoma alismatis
Poria cocos
In vivo studyGoto Kakizaki (GK) ratsNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Metformin group (n = 6)
Liu Wei Di Huang pills group (n = 6)
Improve IR
Improve lipid metabolism
Lower FBG
Modulate SCFAs production
↑ Allobaculum
↑ Firmicutes
↑ Lactobacillus
↑ Ruminococcus
[174]
LLKL formulaCrocus sativus
Edgeworthia gardneri
Sibiraea angustata
In vivo studyZDF ratsNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
LLKL low-dose group (n = 8)
LLKL medium-dose group (n = 8)
LLKL high-dose group (n = 8)
Alleviate systemic inflammation
Improve IR
Improve lipid metabolism
Lower FBG
↑ Bacteroidetes
↑ Proteobacteria
↓ Firmicutes
[175]
Pi Dan Jian Qing decoctionAstragalus membranaceus
Coptis chinensis
Potentilla discolor
Pseudostellaria heterophylla
Pueraria lobata
Rhizoma atractylodis
Salvia miltiorrhiza
Scrophularia ningpoensis
Scutellaria baicalensis
Randomized controlled trialT2DM patientsT2DM model
Control group (n = 32)
Pi Dan Jian Qing decoction group (n = −35)
Alleviate systemic inflammation
Improve antioxidant ability
Improve IR
Improve lipid metabolism
Lower FBG
↑ Akkermansia
↑ Bacteroides
↑ Blautia
↑ Desulfovibrio
↑ Lactobacillus
↓ Prevotella
[176]
Qi Jian mixtureAstragalus membranaceus
Coptis chinensis
Pueraria lobata
Ramulus euonymi
In vivo studyKKay miceNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Metformin group (n = 6)
Qi Jian mixture low dose group (n = 6)
Qi Jian mixture high dose group (n = 6)
Ge Gen Qin Lian decoction group (n = 6)
Alleviate systematic inflammation
Improved IR
Improve lipid metabolism
Lower FBG
↑ Bacteroides[177]
Shen Lian decoctionCoptis chinensis
Panax ginseng
In vivo studyC57BL/KsJ-db/db miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Coptis chinensis group (n = 8)
Panax ginseng group (n = 8)
Shen Lian decoction group (n = 8)
Improve IR
Lower FBG
↑ Bacteroidaceae
↓ Helicobacteraceae
↓ Prevotellaceae
↓ Rikenellaceae
[178]
Shen Qi compoundAstragalus membranaceus
Corni fructus
Dioscorea oppositifolia
Panax ginseng
Rehmannia glutinosa
Rheum palmatum
Salvia miltiorrhiza
Trichosanthes kirilowii
In vivo studyGoto Kakizaki (GK) ratsNon-T2DM model
Non-T2DM control group (n = 10)
T2DM model
T2DM group (n = 10)
Sitagliptin group (n = 10)
Shen Qi compound group (n = 10)
Alleviate systemic inflammation
Lower FBG
Modulate SCFAs production
Improve IR
Improve lipid metabolism
Protects intestinal barrier
↑ Bacteroides
↑ Blautia
↑ Butyricimonas
↑ Prevotellaceae
↑ Roseburia
↓ Lactobacillus
↓ Rothia
[179]
Shen Zhu Tiao Pi granuleCodonopsis pilosula
Coptis chinensis
Pericarpium Citri Reticulatae
Poria cocos
Pueraria lobata
Rhizoma atractylodis,
Rhizoma pinelliae
In vivo studyGoto-Kakizaki rats and Wistar ratsNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Acarbose group (n = 6)
Shen Zhu Tiao Pi granule group (n = 6)
Improve lipid metabolism
Lower FBG
↑ Lactobacillus
↓ Allobaculum
↓ Bacteroidetes
↓ Desulfovibrionaceae
[136]
Xie Xin Tang decoctionCoptis chinensis
Rhizoma Rhei
Scutellaria baicalensis
In vivo studySD ratsNon-T2DM model
Non-T2DM control group (n = 6)
T2DM model
T2DM group (n = 6)
Xie Xin Tang decoction group (n = 6)
Alleviate systematic inflammation
Improve lipid metabolism
Lower FBG
↑ Alloprevotella
↑ Barnesiella
↑ Eubacterium
↑ Lachnospiraceae
↑ Papillibacter
↑ Prevotellaceae
↓ Adlercreutzia
↓ Blautia
[139]
Abbreviations: Fasting blood glucose (FBG), Insulin resistance (IR), Short chain fatty acids (SCFA), Bile acids (BA). Legend: ↑ Increased abundance; ↓ Decreased abundance.

4.2. Acupuncture

Acupuncture is a key treatment modality of CM practiced extensively in China for over 4000 years [180]. Some acupuncture techniques include manual acupuncture, electroacupuncture, and auricular acupuncture, which involve inserting and manipulating small needles into precise sites on the body to produce therapeutic results [181,182]. Studies have also shown acupuncture sites to align with cutaneous areas with strong electrical conductivity and unique histologic alterations [183]. Due to its potential in treatment, acupuncture was recommended in China’s guidelines for T2DM treatment in 2020 [184]. A summary of studies investigating the treatment effects on T2DM by acupuncture is provided in Table 4 below.
In addition to lowering fasting blood glucose (FBG) levels, the studies below have also shown that acupuncture possesses other useful therapeutic effects such as improving insulin resistance, lipid metabolism, and managing inflammation. Although the precise mechanisms are unclear at this juncture, some theories have been postulated. Recent studies have proposed that impaired parasympathetic function is a key pathological feature of T2DM [185]. The VN is part of the parasympathetic nervous system, and it is made up of afferent and efferent fibers [186]. The VN detects microbiota metabolites through its afferent fibers and transmits the information to the central nervous system, resulting in a cholinergic anti-inflammatory pathway that decreases peripheral inflammation and intestinal permeability [187]. Collectively, acupuncture drives the vagal–adrenal axis and reduces inflammation, which could contribute to the management of T2DM [188,189]. Furthermore, it is hypothesized that electroacupuncture could excite the somatic afferent fibers of the VN to improve insulin sensitivity [190]. Another possible mechanism is by lowering free fatty acids and improving the recovery of IRS1 and GLUT4 [191]. Xu et al. also showed that high frequency electroacupuncture stimulated distal colonic transit, which may be due to downregulation of apoptosis and proliferation of interstitial cells of Cajal [192]. Further studies then showed that electroacupuncture could regulate the IKKβ/NF-κB-JNK–IRS-1–AKT pathway, thus, contributing to increased tight junction protein expression and reduced inflammatory factors [193]. Collectively, it is, thus, postulated that electroacupuncture increased the diversity of gut flora, promotes colonic motility, and contributes to its hypoglycemic effect.
At this juncture, only a few studies have attempted to elucidate the mechanism of acupuncture in T2DM management. Hence, this is a potential area of research, which should be considered in the future.
Table 4. Alleviating T2DM via the modulation of gut microbiota by acupuncture.
Table 4. Alleviating T2DM via the modulation of gut microbiota by acupuncture.
Type of Acupuncture Acupoints SelectedType of StudyTest SubjectTotal Sample SizeMain Therapeutic EffectsKey Changes in Microbiota PhylumReference
ElectroacupunctureBilateral ST36In vivo studyBKS.Cg m+/+ Leprdbrdb/J (db/db) diabetic miceNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Electroacupuncture treatment group (n = 8)
Improve IR
Improve lipid metabolism
Lower FBG
↑ Lactobacillus
↓ Bacteroides
↓ Clostridia
↓ Lachnospiraceae
↓ Ruminococcaceae
[194]
In vivo studyC57BL/6 mice and KitW/Wv miceNon-T2DM model
Non-T2DM control group (n = 10)
High fat diet group (n = 10)
T2DM model
T2DM group (n = 10)
Electroacupuncture treatment group (n = 10)
Sham electroacupuncture treatment group (n = 10)
Alleviate systematic inflammation
Improve IR
Lower FBG
↓ Desulfovibrio
↓ Firmicutes
↓ Lachnoclostridium
↓ Lachnospiraceae
↓ Odoribacter
↓ Oscillibacter
[193]
Bilateral BL13, BL20, BL23, LI4, LR3, ST36, and SP6In vivo studySPF-grade ratsNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Electroacupuncture treatment group (n = 8)
Alleviate systematic inflammation
Improve IR
Improve lipids profile
Lower FBG
Modulate SCFAs production
↑ Blautia
↑ Lactobacillus
↓ Alistipes
↓ Helicobacter
↓ Prevotella
[195]
In vivo studyNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Electroacupuncture treatment group (n = 8)
Improve IR
Improve lipids profile
Lower FBG
Modulate BA production
↑ Actinobacteria
↑ Firmicutes
[196]
Bilateral ST36 and RN12In vivo studySPF-grade ratsNon-T2DM model
Non-T2DM control group (n = 8)
T2DM model
T2DM group (n = 8)
Metformin group (n = 8)
Electroacupuncture treatment group (n = 8)
Alleviate systematic inflammation
Improve lipids profile
Lower FBG
↑ Firmicutes
↓ Bacteroides
↓ Eubacterium
[197]
Abbreviations: Fasting blood glucose (FBG), Insulin resistance (IR), Short chain fatty acids (SCFA), Bile acids (BA). Legend: ↑ Increased abundance; ↓ Decreased abundance.

4.3. Moxibustion

Moxibustion is another key treatment modality of CM, which involves using moxa as burning material [198]. Moxa is a cotton wool-like material made from the leaves of Artemisia vulgaris, which possesses anti-inflammatory, hepatoprotective, antioxidant, and anti-tumoral properties [199]. Although no studies have directly evaluated the effect of moxibustion on gut microbiota modulation and T2DM improvement, the thermal effect of moxibustion has proven to be effective in treating other similar conditions. For instance, the thermal effect of moxibustion can repair mucosal tissue damage, improve intestinal mucosal immunity, and decrease submucosal inflammatory cell infiltration [200]. Moxibustion has also been proposed to target the microbiome–gut–brain axis, hence, reducing inflammation caused by the neuroendocrine-immune system [201]. Moxibustion treatment at bilateral ST25 acupoint has also been shown to reduce Proteobacteria, Saccharibacteria, Sphingomonas, and Barnesiella significantly in patients with inflammatory bowel disease [202]. In patients with intestinal mucositis, the results indicated that mild moxibustion at bilateral ST 25 helped to re-establish the α and β diversity of gut microbiota by increasing Lactobacillus, Roseburia, and Escherichia, thus, alleviating mucosal damage and inflammation [203]. Considering the presence of existing evidence showing that moxibustion can modulate gut microbiota in diseases with similar pathological factors as T2DM, investigating moxibustion and its potential effects in improving T2DM via gut microbiota modulation is also a potential area of research that should be considered in the future.

4.4. Massage

Tuina, a traditional form of hands-on manipulation treatment that combines modern scientific understanding with traditional practice, is the primary form of massage therapy in CM [204]. Furthermore, Tuina is a safe, effective, cost-efficient, and non-invasive intervention method that is well accepted by many [205,206]. Although CM-specific evidence investigating the effects of Tuina is currently lacking, studies conducted on other forms of massage have shown that it can affect gut microbiota composition and alleviate T2DM. For instance, Xie et al. found that abdominal massage guided by CM Tuina principles improved blood glucose and lipid metabolism by increasing Bifidobacteria and Lactobacillus while decreasing Enterococcus and Enterobacter [207]. Another study on patients with chronic functional constipation found that acupoint massage therapy could increase the amount of Pseudobutyrivibrio, a butyric acid-producing genus that produces short chain fatty acids (SCFAs) to reduce inflammation via GPCRs [208]. Therefore, future studies could build on these positive findings and focus on investigating Tuina therapy to validate its effects on gut microbiota modulation in treating T2DM.

4.5. Chinese Medicine-Guided Physical Exercise

Chinese Medicine-guided physical exercise serves as a key treatment modality of CM, which consists of CM exercises such as Taichi and Qigong [209]. Although CM-specific evidence on T2DM treatment is presently limited, studies conducted on other forms of CM exercise have shown that exercise can affect gut microbiota composition. Past systematic reviews have shown positive results that show CM exercises such as Taichi, Qigong, and Baduanjin improve blood glucose and lipid levels, thus, showing great potential in treatment for T2DM [210,211,212,213]. However, how these CM exercises regulate gut microbiota in T2DM patients is not well examined. In other studies, it was found that moderate intensity activity improved immune function, oxidative stress, and inflammation [214,215]. In a study conducted on patients with myalgic encephalomyelitis, it was found that maximal exercise challenge increased Bacteroidetes and decreased the composition of Firmicutes [216]. This finding has been backed by both studies on animal and human subjects, which showed improvements caused by modulating the gut microbiota [217,218,219,220,221,222]. This could be essential as reducing the proportion of Firmicutes and increasing population of Bacteroides has been associated with alleviating T2DM [223]. From an immunological standpoint, the putative hypoglycemic mechanism of CM exercises in prediabetes patients was proposed to relate to increased irisin and suppression of the nucleotide-binding-domain, leucine-rich repeat containing the protein 3 (nLRP3) inflammatory pathway [224]. CM exercise was also discovered to modulate aberrant lncRNA, mRNA, and circRNA expression, which improved T2DM patients’ depressive symptoms and blood glucose levels [225]. Given the positive findings in CM exercise-related animal and human studies, future clinical trials could be designed with CM exercises such as Taichi and Qigong as the main mode of intervention to validate CM exercises in treating T2DM.

5. Conclusions

Our present study summarized the role of gut microbiota in T2DM pathogenesis, provided an updated review of CHM, and it also evaluated other CM treatment modalities for T2DM. Clinical research has also shown that CM therapies that modify the gut microbiota can improve T2DM. Some of the key mechanisms of action mentioned above include enhancing gut barrier function, lowering systemic inflammation, improving glycemic management, and decreasing insulin resistance. Therefore, CM is a viable treatment option for T2DM, and future studies should attempt to evaluate the feasibility of larger-scale implementation of CM in T2DM treatment. Lastly, we would like to address some gaps in research and offer some perspectives and directions for future research below.
Firstly, we observed that the bulk of investigations are conducted in vivo using mouse and rat models. Although the findings from these studies are positive, more work could be performed to better understand the underlying mechanisms of action of gut microbiota modulation in T2DM treatment. Future in vivo studies could investigate the underlying mechanisms linking changes in specific gut microbiota species to therapeutic effects. Given that many of these microbiota species are naturally present in the body, it is essential to analyze dose–response relationships and to determine the optimal concentration, delivery method, and administration protocol for each microbiota species to maintain microbial balance. Additionally, future research should also include toxicological studies to evaluate treatment safety. As most studies reviewed are in vivo, clinical trials are necessary to confirm the safety of these treatments before they can be integrated into clinical practice. Therefore, future studies could attempt to conduct high-quality and large-scale clinical trials to translate these promising findings from animal models to humans.
Secondly, in terms of gut microbiota, we observed that most studies analyzed stool samples. Although conducting biopsies would be invasive for patients and not suitable for healthy controls, past research has noted that the stool samples might not fully reflect the actual gut microbiota composition [226,227]. Hence, future research could focus on developing less invasive approaches to obtain samples from different sites of the intestine to improve overall representation. Another point of contention raised by other groups today is that gut microbiota should be classified according to function rather than taxonomic similarities and that function-based analysis should be investigated [228,229]. Therefore, novel bioinformatic techniques could also be utilized to elucidate meaningful correlations between microbial composition and host physiological processes [230,231]. Finally, to build on the findings of animal studies, well-defined gnotobiotic models such as humanized gut microbiota could be utilized [232].
Lastly, we propose that future CM-related research could focus on the following areas. In terms of research on CHM, more research could also be performed to elucidate the bioavailability, pharmacokinetics, and metabolic pathways of the various CHMs and its effect on gut microbiota modulation. Furthermore, the optimal beneficial dosage of bioactive components could be better elucidated in future studies. Among the CHM herbs reviewed in our study, we also observed that many of them are currently classified as “Medicine and Food Homology” (MFH) herbs by the Chinese Ministry of Health [233]. Because of their flexibility and safety in use, MFH medicinal foods are important for chronic conditions like T2DM that require longer periods of consumption as they can be integrated into one’s daily diet [234]. For instance, a food item representing the concept of “Medicine and Food Homology” is Poria cake, which was created to improve one’s appetite and digestive functions [235,236]. Due to its ease of incorporation into one’s diet, it could be a long-term therapy for treating T2DM, supplementing existing medications that the T2DM patient is consuming. In terms of the types of CM interventions currently investigated, we also observed that CHM and acupuncture are more thoroughly investigated than other CM treatment modalities. Other CM treatments like moxibustion, massage, and CM exercises have been widely examined, although their use in the treatment of T2DM and gut microbiota regulation have not been investigated. Hence, future research could further investigate the specific impacts of these interventions on gut microbiota regulation and T2DM treatment.
In closing, CM therapies are useful in modulating gut microbiota and improving T2DM management. While current research suggests that CM may be a promising alternative for managing T2DM, future studies could focus on several key areas. First, improved in vivo study designs are needed to investigate the biomolecular mechanisms, optimal dosages, and safety of various CM interventions. Translating these findings to human models will be essential before clinical integration. Secondly, future studies could also focus on developing less invasive sampling methods for comprehensive gut microbiota analysis. Thirdly, future studies could investigate other CM interventions, including moxibustion and CM exercises, and explore other CM interventions, such as moxibustion and CM exercises, to assess their effects on gut microbiota and T2DM management. Finally, future research could focus on incorporating CHMs into food and pharmaceuticals for T2DM.

Author Contributions

C.Y.J.N.: Conceptualization, investigation, writing—original draft, writing—review and editing. L.Z., H.S.N. and K.S.G.: Writing—Review and Editing. Y.Z.: conceptualization, supervision, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Academy of Chinese Medicine Singapore and the APC was funded by the Academy of Chinese Medicine Singapore.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding authors.

Acknowledgments

We wish to acknowledge the funding support for this project from the Academy of Chinese Medicine Singapore.

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Krogh Pedersen, H.; et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef] [PubMed]
  2. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
  3. Galaviz, K.I.; Narayan, K.M.V.; Lobelo, F.; Weber, M.B. Lifestyle and the Prevention of Type 2 Diabetes: A Status Report. Am. J. Lifestyle Med. 2018, 12, 4–20. [Google Scholar] [CrossRef] [PubMed]
  4. Sami, W.; Ansari, T.; Butt, N.S.; Hamid, M.R.A. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. 2017, 11, 65–71. [Google Scholar]
  5. Hippisley-Cox, J.; Coupland, C. Diabetes treatments and risk of amputation, blindness, severe kidney failure, hyperglycaemia, and hypoglycaemia: Open cohort study in primary care. BMJ 2016, 352, i1450. [Google Scholar] [CrossRef]
  6. Bergman, M.; Buysschaert, M.; Schwarz, P.E.; Albright, A.; Narayan, K.V.; Yach, D. Diabetes prevention: Global health policy and perspectives from the ground. Diabetes Manag. 2012, 2, 309–321. [Google Scholar] [CrossRef]
  7. Landgraf, R.; Aberle, J.; Birkenfeld, A.; Gallwitz, B.; Kellerer, M.; Klein, H.; Müller-Wieland, D.; Nauck, M.; Reuter, H.-M.; Siegel, E. Therapy of Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2019, 127, S73–S92. [Google Scholar] [CrossRef]
  8. Rubin, R.R.; Peyrot, M.; Kruger, D.F.; Travis, L.B. Barriers to insulin injection therapy: Patient and health care provider perspectives. Diabetes Educ. 2009, 35, 1014–1022. [Google Scholar] [CrossRef]
  9. Russell-Jones, D.; Pouwer, F.; Khunti, K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes. Metab. 2018, 20, 488–496. [Google Scholar] [CrossRef]
  10. Aldasouqi, S.A.; Duick, D.S. Safety issues on metformin use. Diabetes Care 2003, 26, 3356–3357. [Google Scholar] [CrossRef]
  11. Andrade, C. Use of Metformin for Cardiometabolic Risks in Psychiatric Practice: Need-to-Know Safety Issues. J. Clin. Psychiatry 2016, 77, e1491–e1494. [Google Scholar] [CrossRef] [PubMed]
  12. The Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2012, 35, 731–737. [Google Scholar] [CrossRef] [PubMed]
  13. Williams, D.M.; Jones, H.; Stephens, J.W. Personalized Type 2 Diabetes Management: An Update on Recent Advances and Recommendations. Diabetes Metab. Syndr. Obes. 2022, 15, 281–295. [Google Scholar] [CrossRef] [PubMed]
  14. Zhou, Z.; Sun, B.; Yu, D.; Zhu, C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front. Cell. Infect. Microbiol. 2022, 12, 834485. [Google Scholar] [CrossRef]
  15. Liu, L.; Zhang, J.; Cheng, Y.; Zhu, M.; Xiao, Z.; Ruan, G.; Wei, Y. Gut microbiota: A new target for T2DM prevention and treatment. Front. Endocrinol. 2022, 13, 958218. [Google Scholar] [CrossRef]
  16. Krishnan, S.; Alden, N.; Lee, K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr. Opin. Biotechnol. 2015, 36, 137–145. [Google Scholar] [CrossRef]
  17. Zhang, H.-Y.; Tian, J.-X.; Lian, F.-M.; Li, M.; Liu, W.-K.; Zhen, Z.; Liao, J.-Q.; Tong, X.-L. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomed. Pharmacother. 2021, 133, 110857. [Google Scholar] [CrossRef]
  18. Zhang, B.; Yue, R.; Chen, Y.; Yang, M.; Huang, X.; Shui, J.; Peng, Y.; Chin, J. Gut Microbiota, a Potential New Target for Chinese Herbal Medicines in Treating Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2019, 2019, 2634898. [Google Scholar] [CrossRef]
  19. Zhang, F.; He, F.; Li, L.; Guo, L.; Zhang, B.; Yu, S.; Zhao, W. Bioavailability based on the gut microbiota: A new perspective. Microbiol. Mol. Biol. Rev. 2020, 84, e00072-19. [Google Scholar] [CrossRef]
  20. Jones, M.; Dilley, J.; Drossman, D.; Crowell, M. Brain–gut connections in functional GI disorders: Anatomic and physiologic relationships. Neurogastroenterol. Motil. 2006, 18, 91–103. [Google Scholar] [CrossRef]
  21. Wang, M.; Liu, W.; Ge, J.; Liu, S. The immunomodulatory mechanisms for acupuncture practice. Front. Immunol. 2023, 14, 1147718. [Google Scholar] [CrossRef] [PubMed]
  22. Nie, Q.; Chen, H.; Hu, J.; Fan, S.; Nie, S. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 848–863. [Google Scholar] [CrossRef] [PubMed]
  23. Cheng, J.; Li, J.; Xiong, R.-G.; Wu, S.-X.; Xu, X.-Y.; Tang, G.-Y.; Huang, S.-Y.; Zhou, D.-D.; Li, H.-B.; Feng, Y.; et al. Effects and mechanisms of anti-diabetic dietary natural products: An updated review. Food Funct. 2024, 15, 1758–1778. [Google Scholar] [CrossRef] [PubMed]
  24. Zheng, Y.; Ding, Q.; Wei, Y.; Gou, X.; Tian, J.; Li, M.; Tong, X. Effect of traditional Chinese medicine on gut microbiota in adults with type 2 diabetes: A systematic review and meta-analysis. Phytomedicine 2021, 88, 153455. [Google Scholar] [CrossRef] [PubMed]
  25. Feng, W.; Ao, H.; Peng, C.; Yan, D. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol. Res. 2019, 142, 176–191. [Google Scholar] [CrossRef]
  26. Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef]
  27. Iannone, L.F.; Preda, A.; Blottière, H.M.; Clarke, G.; Albani, D.; Belcastro, V.; Carotenuto, M.; Cattaneo, A.; Citraro, R.; Ferraris, C. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019, 19, 1037–1050. [Google Scholar] [CrossRef]
  28. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
  29. Kallus, S.J.; Brandt, L.J. The intestinal microbiota and obesity. J. Clin. Gastroenterol. 2012, 46, 16–24. [Google Scholar] [CrossRef]
  30. Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
  31. Turpin, W.; Espin-Garcia, O.; Xu, W.; Silverberg, M.S.; Kevans, D.; Smith, M.I.; Guttman, D.S.; Griffiths, A.; Panaccione, R.; Otley, A. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 2016, 48, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
  32. Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
  33. Fujimura, K.E.; Slusher, N.A.; Cabana, M.D.; Lynch, S.V. Role of the gut microbiota in defining human health. Expert Rev. Anti-Infect. Ther. 2010, 8, 435–454. [Google Scholar] [CrossRef] [PubMed]
  34. Sanz, Y.; Santacruz, A.; Gauffin, P. Gut microbiota in obesity and metabolic disorders. Proc. Nutr. Soc. 2010, 69, 434–441. [Google Scholar] [CrossRef] [PubMed]
  35. Woting, A.; Blaut, M. The intestinal microbiota in metabolic disease. Nutrients 2016, 8, 202. [Google Scholar] [CrossRef]
  36. Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. eBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef]
  37. Umirah, F.; Neoh, C.F.; Ramasamy, K.; Lim, S.M. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Res. Clin. Pract. 2021, 173, 108689. [Google Scholar] [CrossRef]
  38. Amoroso, C.; Perillo, F.; Strati, F.; Fantini, M.; Caprioli, F.; Facciotti, F. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells 2020, 9, 1234. [Google Scholar] [CrossRef]
  39. Delzenne, N.M.; Cani, P.D. Gut microbiota and the pathogenesis of insulin resistance. Curr. Diabetes Rep. 2011, 11, 154–159. [Google Scholar] [CrossRef]
  40. Amabebe, E.; Robert, F.O.; Agbalalah, T.; Orubu, E.S. Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism. Br. J. Nutr. 2020, 123, 1127–1137. [Google Scholar] [CrossRef]
  41. Lippert, K.; Kedenko, L.; Antonielli, L.; Kedenko, I.; Gemeier, C.; Leitner, M.; Kautzky-Willer, A.; Paulweber, B.; Hackl, E. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef. Microbes 2017, 8, 545–556. [Google Scholar] [CrossRef] [PubMed]
  42. Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
  43. Usuda, H.; Okamoto, T.; Wada, K. Leaky gut: Effect of dietary fiber and fats on microbiome and intestinal barrier. Int. J. Mol. Sci. 2021, 22, 7613. [Google Scholar] [CrossRef] [PubMed]
  44. Fernandes, R.; Viana, S.D.; Nunes, S.; Reis, F. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2019, 1865, 1876–1897. [Google Scholar] [CrossRef]
  45. Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 2018, 138, 2486–2498. [Google Scholar] [CrossRef]
  46. Allam-Ndoul, B.; Castonguay-Paradis, S.; Veilleux, A. Gut microbiota and intestinal trans-epithelial permeability. Int. J. Mol. Sci. 2020, 21, 6402. [Google Scholar] [CrossRef]
  47. Chelakkot, C.; Choi, Y.; Kim, D.-K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.-S.; Jee, Y.-K.; Gho, Y.S. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 2018, 50, e450. [Google Scholar] [CrossRef]
  48. Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2017, 23, 107–113. [Google Scholar] [CrossRef]
  49. Kinoshita, M.; Suzuki, Y.; Saito, Y. Butyrate reduces colonic paracellular permeability by enhancing PPARγ activation. Biochem. Biophys. Res. Commun. 2002, 293, 827–831. [Google Scholar] [CrossRef]
  50. Akash, M.S.H.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef]
  51. Wieser, V.; Moschen, A.R.; Tilg, H. Inflammation, cytokines and insulin resistance: A clinical perspective. Arch. Immunol. Ther. Exp. 2013, 61, 119–125. [Google Scholar] [CrossRef] [PubMed]
  52. Chaiwut, R.; Kasinrerk, W. Very low concentration of lipopolysaccharide can induce the production of various cytokines and chemokines in human primary monocytes. BMC Res. Notes 2022, 15, 42. [Google Scholar] [CrossRef] [PubMed]
  53. Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 2017, 152, 851–866.e24. [Google Scholar] [CrossRef] [PubMed]
  54. Hall, A.B.; Yassour, M.; Sauk, J.; Garner, A.; Jiang, X.; Arthur, T.; Lagoudas, G.K.; Vatanen, T.; Fornelos, N.; Wilson, R.; et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017, 9, 103. [Google Scholar] [CrossRef]
  55. Dagdeviren, S.; Jung, D.Y.; Friedline, R.H.; Noh, H.L.; Kim, J.H.; Patel, P.R.; Tsitsilianos, N.; Inashima, K.; Tran, D.A.; Hu, X. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J. 2017, 31, 701–710. [Google Scholar] [CrossRef]
  56. Hoffmann, T.W.; Pham, H.-P.; Bridonneau, C.; Aubry, C.; Lamas, B.; Martin-Gallausiaux, C.; Moroldo, M.; Rainteau, D.; Lapaque, N.; Six, A. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J. 2016, 10, 460–477. [Google Scholar] [CrossRef]
  57. Shen, Z.; Zhu, C.; Quan, Y.; Yang, J.; Yuan, W.; Yang, Z.; Wu, S.; Luo, W.; Tan, B.; Wang, X. Insights into Roseburia intestinalis which alleviates experimental colitis pathology by inducing anti-inflammatory responses. J. Gastroenterol. Hepatol. 2018, 33, 1751–1760. [Google Scholar] [CrossRef]
  58. Wang, X.; Ota, N.; Manzanillo, P.; Kates, L.; Zavala-Solorio, J.; Eidenschenk, C.; Zhang, J.; Lesch, J.; Lee, W.P.; Ross, J. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 2014, 514, 237–241. [Google Scholar] [CrossRef]
  59. Tian, P.; Li, B.; He, C.; Song, W.; Hou, A.; Tian, S.; Meng, X.; Li, K.; Shan, Y. Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Funct. 2016, 7, 3789–3797. [Google Scholar] [CrossRef]
  60. Liu, W.-C.; Yang, M.-C.; Wu, Y.-Y.; Chen, P.-H.; Hsu, C.-M.; Chen, L.-W. Lactobacillus plantarum reverse diabetes-induced Fmo3 and ICAM expression in mice through enteric dysbiosis-related c-Jun NH2-terminal kinase pathways. PLoS ONE 2018, 13, e0196511. [Google Scholar] [CrossRef]
  61. Chang, Y.-C.; Ching, Y.-H.; Chiu, C.-C.; Liu, J.-Y.; Hung, S.-W.; Huang, W.-C.; Huang, Y.-T.; Chuang, H.-L. TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS ONE 2017, 12, e0180025. [Google Scholar] [CrossRef] [PubMed]
  62. Sun, K.-Y.; Xu, D.-H.; Xie, C.; Plummer, S.; Tang, J.; Yang, X.F.; Ji, X.H. Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner. Cytokine 2017, 92, 1–11. [Google Scholar] [CrossRef] [PubMed]
  63. Zhu, C.; Song, K.; Shen, Z.; Quan, Y.; Tan, B.; Luo, W.; Wu, S.; Tang, K.; Yang, Z.; Wang, X. Roseburia intestinalis inhibits interleukin-17 excretion and promotes regulatory T cells differentiation in colitis. Mol. Med. Rep. 2018, 17, 7567–7574. [Google Scholar] [CrossRef] [PubMed]
  64. Matsuzaki, T.; Nagata, Y.; Kado, S.; Uchida, K.; Kato, I.; Hashimoto, S.; Yokokura, T. Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 1997, 105, 643–649. [Google Scholar] [CrossRef]
  65. Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2013, 63, 1275–1283. [Google Scholar] [CrossRef]
  66. Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef]
  67. Vincenzi, A.; Goettert, M.I.; de Souza, C.F.V. An evaluation of the effects of probiotics on tumoral necrosis factor (TNF-α) signaling and gene expression. Cytokine Growth Factor Rev. 2021, 57, 27–38. [Google Scholar] [CrossRef]
  68. Yu, H.; Liu, Z.; Dong, S. Changes in intestinal flora, TNF-α, L-17, and IL-6 levels in patients with gestational diabetes mellitus. Eur. J. Inflamm. 2018, 16, 2058739218793550. [Google Scholar] [CrossRef]
  69. Zhang, L.; Qin, Q.; Liu, M.; Zhang, X.; He, F.; Wang, G. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog. Dis. 2018, 76, fty028. [Google Scholar] [CrossRef]
  70. Zeng, Z.; Guo, X.; Zhang, J.; Yuan, Q.; Chen, S. Lactobacillus paracasei modulates the gut microbiota and improves inflammation in type 2 diabetic rats. Food Funct. 2021, 12, 6809–6820. [Google Scholar] [CrossRef]
  71. da Silva Rosa, S.C.; Nayak, N.; Caymo, A.M.; Gordon, J.W. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol. Rep. 2020, 8, e14607. [Google Scholar] [CrossRef] [PubMed]
  72. Balaji, R.; Duraisamy, R.; Kumar, M. Complications of diabetes mellitus: A review. Drug Invent. Today 2019, 12, 98–103. [Google Scholar]
  73. Han, H.-S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.-H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef] [PubMed]
  74. Kim, S.H.; Huh, C.S.; Choi, I.D.; Jeong, J.W.; Ku, H.K.; Ra, J.H.; Kim, T.Y.; Kim, G.B.; Sim, J.H.; Ahn, Y.T. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. J. Appl. Microbiol. 2014, 117, 834–845. [Google Scholar] [CrossRef]
  75. Miao, J.; Ling, A.V.; Manthena, P.V.; Gearing, M.E.; Graham, M.J.; Crooke, R.M.; Croce, K.J.; Esquejo, R.M.; Clish, C.B.; Morbid Obesity Study Group; et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 2015, 6, 6498. [Google Scholar] [CrossRef]
  76. Wang, G.; Li, X.; Zhao, J.; Zhang, H.; Chen, W. Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food Funct. 2017, 8, 3155–3164. [Google Scholar] [CrossRef]
  77. Li, X.; Wang, E.; Yin, B.; Fang, D.; Chen, P.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef. Microbes 2017, 8, 421–432. [Google Scholar] [CrossRef]
  78. Zhang, Y.; Guo, X.; Guo, J.; He, Q.; Li, H.; Song, Y.; Zhang, H. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx. Sci. Rep. 2014, 4, 5654. [Google Scholar] [CrossRef]
  79. Singh, S.; Sharma, R.; Malhotra, S.; Pothuraju, R.; Shandilya, U. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef. Microbes 2017, 8, 243–255. [Google Scholar] [CrossRef]
  80. Kang, J.-H.; Yun, S.-I.; Park, M.-H.; Park, J.-H.; Jeong, S.-Y.; Park, H.-O. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS ONE 2013, 8, e54617. [Google Scholar] [CrossRef]
  81. Dang, F.; Jiang, Y.; Pan, R.; Zhou, Y.; Wu, S.; Wang, R.; Zhuang, K.; Zhang, W.; Li, T.; Man, C. Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct. 2018, 9, 3630–3639. [Google Scholar] [CrossRef] [PubMed]
  82. Everard, A.; Cani, P.D. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 2014, 15, 189–196. [Google Scholar] [CrossRef] [PubMed]
  83. Covasa, M.; Stephens, R.W.; Toderean, R.; Cobuz, C. Intestinal sensing by gut microbiota: Targeting gut peptides. Front. Endocrinol. 2019, 10, 82. [Google Scholar] [CrossRef] [PubMed]
  84. Christiansen, C.B.; Gabe, M.B.N.; Svendsen, B.; Dragsted, L.O.; Rosenkilde, M.M.; Holst, J.J. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 315, G53–G65. [Google Scholar] [CrossRef]
  85. Trauner, M.; Claudel, T.; Fickert, P.; Moustafa, T.; Wagner, M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig. Dis. 2010, 28, 220–224. [Google Scholar] [CrossRef]
  86. Allin, K.H.; Nielsen, T.; Pedersen, O. Gut microbiota in patients with type 2 diabetes mellitus. Endocrinology 2015, 172, R167–R177. [Google Scholar]
  87. Hou, G.; Peng, W.; Wei, L.; Li, R.; Yuan, Y.; Huang, X.; Yin, Y. Lactobacillus delbrueckii interfere with bile acid enterohepatic circulation to regulate cholesterol metabolism of growing–finishing pigs via its bile salt hydrolase activity. Front. Nutr. 2020, 7, 617676. [Google Scholar] [CrossRef]
  88. Lefebvre, P.; Cariou, B.; Lien, F.; Kuipers, F.; Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 2009, 89, 147–191. [Google Scholar] [CrossRef]
  89. Kuhre, R.E.; Albrechtsen, N.J.W.; Larsen, O.; Jepsen, S.L.; Balk-Møller, E.; Andersen, D.B.; Deacon, C.F.; Schoonjans, K.; Reimann, F.; Gribble, F.M. Bile acids are important direct and indirect regulators of the secretion of appetite-and metabolism-regulating hormones from the gut and pancreas. Mol. Metab. 2018, 11, 84–95. [Google Scholar] [CrossRef]
  90. Hylemon, P.B.; Zhou, H.; Pandak, W.M.; Ren, S.; Gil, G.; Dent, P. Bile acids as regulatory molecules. J. Lipid Res. 2009, 50, 1509–1520. [Google Scholar] [CrossRef]
  91. Yamagata, K.; Daitoku, H.; Shimamoto, Y.; Matsuzaki, H.; Hirota, K.; Ishida, J.; Fukamizu, A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J. Biol. Chem. 2004, 279, 23158–23165. [Google Scholar] [CrossRef] [PubMed]
  92. Prawitt, J.; Abdelkarim, M.; Stroeve, J.H.M.; Popescu, I.; Duez, H.; Velagapudi, V.R.; Dumont, J.; Bouchaert, E.; van Dijk, T.H.; Lucas, A.; et al. Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes 2011, 60, 1861–1871. [Google Scholar] [CrossRef]
  93. Boden, G. Fatty acid—Induced inflammation and insulin resistance in skeletal muscle and liver. Curr. Diabetes Rep. 2006, 6, 177–181. [Google Scholar] [CrossRef] [PubMed]
  94. Xia, F.; Wen, L.-P.; Ge, B.-C.; Li, Y.-X.; Li, F.-P.; Zhou, B.-J. Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World J. Diabetes 2021, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
  95. Houmard, J.A. Intramuscular lipid oxidation and obesity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 294, R1111–R1116. [Google Scholar] [CrossRef]
  96. Wu, W.; Kaicen, W.; Bian, X.; Yang, L.; Ding, S.; Li, Y.; Li, S.; Zhuge, A.; Li, L. Akkermansia muciniphila alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. Microb. Biotechnol. 2023, 16, 1924–1939. [Google Scholar] [CrossRef]
  97. Chen, K.; Nakasone, Y.; Yi, S.; Ibrahim, H.R.; Sakao, K.; Hossain, M.A.; Hou, D.-X. Natural garlic organosulfur compounds prevent metabolic disorder of lipid and glucose by increasing gut commensal Bacteroides acidifaciens. J. Agric. Food Chem. 2022, 70, 5829–5837. [Google Scholar] [CrossRef]
  98. Liu, P.; Wang, Y.; Yang, G.; Zhang, Q.; Meng, L.; Xin, Y.; Jiang, X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol. Res. 2021, 165, 105420. [Google Scholar] [CrossRef]
  99. Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef]
  100. Yang, J.; Lee, Y.; Kim, Y.; Lee, S.; Ryu, S.; Fukuda, S.; Hase, K.; Yang, C.; Lim, H.; Kim, M. Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol. 2017, 10, 104–116. [Google Scholar] [CrossRef]
  101. Li, X.; Wang, N.; Yin, B.; Fang, D.; Jiang, T.; Fang, S.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W. Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice. J. Appl. Microbiol. 2016, 121, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
  102. Den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.-J. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
  103. Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
  104. Bigagli, E.; Lodovici, M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications. Oxidative Med. Cell. Longev. 2019, 2019, 5953685. [Google Scholar] [CrossRef]
  105. Schwartz, S.S.; Epstein, S.; Corkey, B.E.; Grant, S.F.; Gavin, J.R., III; Aguilar, R.B.; Herman, M.E. A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol. Metab. 2017, 28, 645–655. [Google Scholar] [CrossRef]
  106. Riaz Rajoka, M.S.; Thirumdas, R.; Mehwish, H.M.; Umair, M.; Khurshid, M.; Hayat, H.F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F.J.; Barba, F.J. Role of food antioxidants in modulating gut microbial communities: Novel understandings in intestinal oxidative stress damage and their impact on host health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef]
  107. Deledda, A.; Annunziata, G.; Tenore, G.C.; Palmas, V.; Manzin, A.; Velluzzi, F. Diet-derived antioxidants and their role in inflammation, obesity and gut microbiota modulation. Antioxidants 2021, 10, 708. [Google Scholar] [CrossRef]
  108. Gai, Z.; Liao, W.; Huang, Y.; Dong, Y.; Feng, H.; Han, M. Effects of Bifidobacterium BL21 and Lacticaseibacillus LRa05 on gut microbiota in type 2 diabetes mellitus mice. AMB Express 2023, 13, 97. [Google Scholar] [CrossRef]
  109. Teng, Y.; Wang, Y.; Tian, Y.; Chen, Y.-Y.; Guan, W.-Y.; Piao, C.-H.; Wang, Y.-H. Lactobacillus plantarum LP104 ameliorates hyperlipidemia induced by AMPK pathways in C57BL/6N mice fed high-fat diet. J. Funct. Foods 2020, 64, 103665. [Google Scholar] [CrossRef]
  110. Zhao, D.; Zhu, H.; Gao, F.; Qian, Z.; Mao, W.; Yin, Y.; Tan, J.; Chen, D. Antidiabetic effects of selenium-enriched Bifidobacterium longum DD98 in type 2 diabetes model of mice. Food Funct. 2020, 11, 6528–6541. [Google Scholar] [CrossRef]
  111. Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
  112. Durack, J.; Lynch, S.V. The gut microbiome: Relationships with disease and opportunities for therapy. J. Exp. Med. 2019, 216, 20–40. [Google Scholar] [CrossRef] [PubMed]
  113. Aschner, M.; Skalny, A.V.; Gritsenko, V.A.; Kartashova, O.L.; Santamaria, A.; Rocha, J.B.; Spandidos, D.A.; Zaitseva, I.P.; Tsatsakis, A.; Tinkov, A.A. Role of gut microbiota in the modulation of the health effects of advanced glycation end-products. Int. J. Mol. Med. 2023, 51, 44. [Google Scholar] [CrossRef] [PubMed]
  114. Gaike, A.H.; Kalamkar, S.D.; Gajjar, V.; Divate, U.; Karandikar-Iyer, S.; Goel, P.; Shouche, Y.S.; Ghaskadbi, S.S. Effect of long-term oral glutathione supplementation on gut microbiome of type 2 diabetic individuals. FEMS Microbiol. Lett. 2023, 370, fnad116. [Google Scholar] [CrossRef] [PubMed]
  115. Bazyar, H.; Maghsoumi-Norouzabad, L.; Yarahmadi, M.; Gholinezhad, H.; Moradi, L.; Salehi, P.; Haghighi-Zadeh, M.H.; Zare Javid, A. The impacts of synbiotic supplementation on periodontal indices and biomarkers of oxidative stress in type 2 diabetes mellitus patients with chronic periodontitis under non-surgical periodontal therapy. A double-blind, placebo-controlled trial. Diabetes Metab. Syndr. Obes. 2020, 13, 19–29. [Google Scholar] [CrossRef]
  116. El-Baz, A.M.; Shata, A.; Hassan, H.M.; El-Sokkary, M.M.; Khodir, A.E. The therapeutic role of lactobacillus and montelukast in combination with metformin in diabetes mellitus complications through modulation of gut microbiota and suppression of oxidative stress. Int. Immunopharmacol. 2021, 96, 107757. [Google Scholar] [CrossRef]
  117. Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxidative Med. Cell. Longev. 2019, 2019, 8267234. [Google Scholar] [CrossRef]
  118. Abot, A.; Fried, S.; Cani, P.D.; Knauf, C. Reactive oxygen species/reactive nitrogen species as messengers in the gut: Impact on physiology and metabolic disorders. Antioxid. Redox Signal. 2022, 37, 394–415. [Google Scholar] [CrossRef]
  119. Goriuc, A.; Cojocaru, K.-A.; Luchian, I.; Ursu, R.-G.; Butnaru, O.; Foia, L. Using 8-Hydroxy-2′-Deoxiguanosine (8-OHdG) as a Reliable Biomarker for Assessing Periodontal Disease Associated with Diabetes. Int. J. Mol. Sci. 2024, 25, 1425. [Google Scholar] [CrossRef]
  120. Covington, M.B. Traditional Chinese medicine in the treatment of diabetes. Diabetes Spectr. 2001, 14, 154–159. [Google Scholar] [CrossRef]
  121. Lu, W.I.; Lu, D.P. Impact of chinese herbal medicine on american society and health care system: Perspective and concern. Evid. Based Complement. Altern. Med. 2014, 2014, 251891. [Google Scholar] [CrossRef] [PubMed]
  122. Courtois, J. Oligosaccharides from land plants and algae: Production and applications in therapeutics and biotechnology. Curr. Opin. Microbiol. 2009, 12, 261–273. [Google Scholar] [CrossRef] [PubMed]
  123. Chlubnová, I.; Sylla, B.; Nugier-Chauvin, C.; Daniellou, R.; Legentil, L.; Kralová, B.; Ferrières, V. Natural glycans and glycoconjugates as immunomodulating agents. Nat. Prod. Rep. 2011, 28, 937–952. [Google Scholar] [CrossRef] [PubMed]
  124. Wang, S.; Li, X.-Y.; Shen, L. Modulation effects of Dendrobium officinale on gut microbiota of type 2 diabetes model mice. FEMS Microbiol. Lett. 2021, 368, fnab020. [Google Scholar] [CrossRef]
  125. Nie, Q.; Hu, J.; Gao, H.; Fan, L.; Chen, H.; Nie, S. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocoll. 2019, 86, 34–42. [Google Scholar] [CrossRef]
  126. Shao, W.; Xiao, C.; Yong, T.; Zhang, Y.; Hu, H.; Xie, T.; Liu, R.; Huang, L.; Li, X.; Xie, Y.; et al. A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice. Int. J. Biol. Macromol. 2022, 197, 23–38. [Google Scholar] [CrossRef]
  127. Chen, X.; Chen, C.; Fu, X. Hypoglycemic effect of the polysaccharides from Astragalus membranaceus on type 2 diabetic mice based on the “gut microbiota–mucosal barrier”. Food Funct. 2022, 13, 10121–10133. [Google Scholar] [CrossRef]
  128. Wang, Y.; Liu, H.; Zheng, M.; Yang, Y.; Ren, H.; Kong, Y.; Wang, S.; Wang, J.; Jiang, Y.; Yang, J.; et al. Berberine Slows the Progression of Prediabetes to Diabetes in Zucker Diabetic Fatty Rats by Enhancing Intestinal Secretion of Glucagon-Like Peptide-2 and Improving the Gut Microbiota. Front. Endocrinol. 2021, 12, 609134. [Google Scholar] [CrossRef]
  129. Li, X.-W.; Chen, H.-P.; He, Y.-Y.; Chen, W.-L.; Chen, J.-W.; Gao, L.; Hu, H.-Y.; Wang, J. Effects of Rich-Polyphenols Extract of Dendrobium loddigesii on Anti-Diabetic, Anti-Inflammatory, Anti-Oxidant, and Gut Microbiota Modulation in db/db Mice. Molecules 2018, 23, 3245. [Google Scholar] [CrossRef]
  130. Liu, Q.; Liu, S.; Cao, H.; Ji, W.; Li, C.; Huan, Y.; Lei, L.; Fu, Y.; Gao, X.; Liu, Y. Ramulus Mori (Sangzhi) alkaloids (SZ-A) ameliorate glucose metabolism accompanied by the modulation of gut microbiota and ileal inflammatory damage in type 2 diabetic KKAy mice. Front. Pharmacol. 2021, 12, 642400. [Google Scholar] [CrossRef]
  131. Liu, J.-Y.; Lee, K.-F.; Sze, C.-W.; Tong, Y.; Tang, S.C.-W.; Ng, T.-B.; Zhang, Y.-B. Intestinal absorption and bioavailability of traditional Chinese medicines: A review of recent experimental progress and implication for quality control. J. Pharm. Pharmacol. 2013, 65, 621–633. [Google Scholar] [CrossRef] [PubMed]
  132. Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; De Filippis, A.; Xiao, H.; Quiles, J.L.; Xiao, J. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
  133. Wu, Y.; Wan, J.; Choe, U.; Pham, Q.; Schoene, N.W.; He, Q.; Li, B.; Yu, L.; Wang, T.T. Interactions between food and gut microbiota: Impact on human health. Annu. Rev. Food Sci. Technol. 2019, 10, 389–408. [Google Scholar] [CrossRef] [PubMed]
  134. Pan, L.; Zhai, X.; Duan, Z.; Xu, K.; Liu, G. Systematic review and meta-analysis of Coptis chinensis Franch.-containing traditional Chinese medicine as an adjunct therapy to metformin in the treatment of type 2 diabetes mellitus. Front. Pharmacol. 2022, 13, 956313. [Google Scholar] [CrossRef]
  135. Xu, M. Effects of Banxia Xiexin Decoction on intestinal flora and inflammatory factors of diabetic gastroparesis rats. Chin. Tradit. Herb. Drugs 2018, 24, 3056–3061. [Google Scholar]
  136. Zhao, J.; Li, Y.; Sun, M.; Xin, L.; Wang, T.; Wei, L.; Yu, C.; Liu, M.; Ni, Y.; Lu, R.; et al. The Chinese Herbal Formula Shenzhu Tiaopi Granule Results in Metabolic Improvement in Type 2 Diabetic Rats by Modulating the Gut Microbiota. Evid. Based Complement. Altern. Med. 2019, 2019, 6976394. [Google Scholar] [CrossRef]
  137. Zhang, C.-H. Effect of Gegen Qinlian Decoction on LPS, TNF-α, IL-6, and intestinal flora in diabetic KK-Ay mice. Chin. Tradit. Herb. Drugs 2017, 48, 1611–1616. [Google Scholar]
  138. Chen, H.; Yao, Y.; Wang, W.; Wang, D. Ge-Gen-Jiao-Tai-Wan Affects Type 2 Diabetic Rats by Regulating Gut Microbiota and Primary Bile Acids. Evid. Based Complement. Altern. Med. 2021, 2021, 5585952. [Google Scholar] [CrossRef]
  139. Wei, X.; Tao, J.; Xiao, S.; Jiang, S.; Shang, E.; Zhu, Z.; Qian, D.; Duan, J. Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Sci. Rep. 2018, 8, 3685. [Google Scholar] [CrossRef]
  140. Liu, L.; Yu, Y.-L.; Yang, J.-S.; Li, Y.; Liu, Y.-W.; Liang, Y.; Liu, X.-D.; Xie, L.; Wang, G.-J. Berberine suppresses intestinal disaccharidases with beneficial metabolic effects in diabetic states, evidences from in vivo and in vitro study. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2010, 381, 371–381. [Google Scholar] [CrossRef]
  141. Li, D.; Feng, G.; Li, Y.; Pan, H.; Luo, P.; Liu, B.; Ding, T.; Wang, X.; Xu, H.; Zhao, Y. Benefits of Huang Lian mediated by gut microbiota on HFD/STZ-induced type 2 diabetes mellitus in mice. Front. Endocrinol. 2023, 14, 1120221. [Google Scholar] [CrossRef] [PubMed]
  142. Hu, Y.-L.; Li, M.; Ding, L.; Peng, C.; Wu, Y.; Liu, W.; Zhao, D.; Qin, L.-L.; Guo, X.-Y.; Wu, L.-L. Ampelopsis grossedentata improves type 2 diabetes mellitus through modulating the gut microbiota and bile acid metabolism. J. Funct. Foods 2023, 107, 105622. [Google Scholar] [CrossRef]
  143. Yuan, Y.; Zhou, J.; Zheng, Y.; Xu, Z.; Li, Y.; Zhou, S.; Zhang, C. Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomed. Pharmacother. 2020, 127, 110182. [Google Scholar] [CrossRef] [PubMed]
  144. Niu, D.; An, S.; Chen, X.; Bi, H.; Zhang, Q.; Wang, T.; Han, B.; Zhang, H.; Kang, J. Corni Fructus as a natural resource can treat type 2 diabetes by regulating gut microbiota. Am. J. Chin. Med. 2020, 48, 1385–1407. [Google Scholar] [CrossRef]
  145. Xiao, Q.P.; Zhong, Y.B.; Kang, Z.P.; Huang, J.Q.; Fang, W.Y.; Wei, S.Y.; Long, J.; Li, S.S.; Zhao, H.M.; Liu, D.Y. Curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis. Phytother. Res. 2022, 36, 1708–1723. [Google Scholar] [CrossRef]
  146. Yuan, T.; Yin, Z.; Yan, Z.; Hao, Q.; Zeng, J.; Li, L.; Zhao, J. Tetrahydrocurcumin ameliorates diabetes profiles of db/db mice by altering the composition of gut microbiota and up-regulating the expression of GLP-1 in the pancreas. Fitoterapia 2020, 146, 104665. [Google Scholar] [CrossRef]
  147. Zhang, Z.; Xu, H.; Zhao, H.; Geng, Y.; Ren, Y.; Guo, L.; Shi, J.; Xu, Z. Edgeworthia gardneri (Wall.) Meisn. water extract improves diabetes and modulates gut microbiota. J. Ethnopharmacol. 2019, 239, 111854. [Google Scholar] [CrossRef]
  148. Chen, M.; Xiao, D.; Liu, W.; Song, Y.; Zou, B.; Li, L.; Li, P.; Cai, Y.; Liu, D.; Liao, Q.; et al. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int. J. Biol. Macromol. 2020, 155, 890–902. [Google Scholar] [CrossRef]
  149. Wang, D.; Wang, J.-X.; Yan, C.; Liu, Y.; Liu, H.; Li, D.; Zhu, J.; Luo, Z.-B.; Han, S.-Z.; Jin, Z.-Y. Gastrodia elata Blume extract improves high-fat diet-induced type 2 diabetes by regulating gut microbiota and bile acid profile. Front. Microbiol. 2022, 13, 1091712. [Google Scholar] [CrossRef]
  150. Jin, D.-X.; He, J.-F.; Luo, X.-G.; Zhang, T.-C. Hypoglycemic effect of Hypericum attenuatum Choisy extracts on type 2 diabetes by regulating glucolipid metabolism and modulating gut microbiota. J. Funct. Foods 2019, 52, 479–491. [Google Scholar] [CrossRef]
  151. Su, L.; Xin, C.; Yang, J.; Dong, L.; Mei, H.; Dai, X.; Wang, Q. A polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus. Int. J. Biol. Macromol. 2022, 214, 312–323. [Google Scholar] [CrossRef] [PubMed]
  152. Zhao, X.-Q.; Guo, S.; Lu, Y.-Y.; Hua, Y.; Zhang, F.; Yan, H.; Shang, E.-X.; Wang, H.-Q.; Zhang, W.-H.; Duan, J.-A. Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition. Biomed. Pharmacother. 2020, 121, 109559. [Google Scholar] [CrossRef] [PubMed]
  153. Wang, C.; Yin, Y.; Cao, X.; Li, X. Effects of Maydis stigma polysaccharide on the intestinal microflora in type-2 diabetes. Pharm. Biol. 2016, 54, 3086–3092. [Google Scholar] [CrossRef] [PubMed]
  154. Gao, H.; Wen, J.-J.; Hu, J.-L.; Nie, Q.-X.; Chen, H.-H.; Xiong, T.; Nie, S.-P.; Xie, M.-Y. Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohydr. Polym. 2018, 201, 624–633. [Google Scholar] [CrossRef]
  155. Sheng, Y.; Zheng, S.; Ma, T.; Zhang, C.; Ou, X.; He, X.; Xu, W.; Huang, K. Mulberry leaf alleviates streptozotocin-induced diabetic rats by attenuating NEFA signaling and modulating intestinal microflora. Sci. Rep. 2017, 7, 12041. [Google Scholar] [CrossRef]
  156. Liu, Z.-Z.; Liu, Q.-H.; Liu, Z.; Tang, J.-W.; Chua, E.-G.; Li, F.; Xiong, X.-S.; Wang, M.-M.; Wen, P.-B.; Shi, X.-Y. Ethanol extract of mulberry leaves partially restores the composition of intestinal microbiota and strengthens liver glycogen fragility in type 2 diabetic rats. BMC Complement. Med. Ther. 2021, 21, 172. [Google Scholar] [CrossRef]
  157. Chen, C.; You, L.-J.; Huang, Q.; Fu, X.; Zhang, B.; Liu, R.-H.; Li, C. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice. Food Funct. 2018, 9, 3732–3742. [Google Scholar] [CrossRef]
  158. Zhou, R.; He, D.; Zhang, H.; Xie, J.; Zhang, S.; Tian, X.; Zeng, H.; Qin, Y.; Huang, L. Ginsenoside Rb1 protects against diabetes-associated metabolic disorders in Kkay mice by reshaping gut microbiota and fecal metabolic profiles. J. Ethnopharmacol. 2023, 303, 115997. [Google Scholar] [CrossRef]
  159. Peng, M.; Wang, L.; Su, H.; Zhang, L.; Yang, Y.; Sun, L.; Wu, Y.; Ran, L.; Liu, S.; Yin, M. Ginsenoside Rg1 improved diabetes through regulating the intestinal microbiota in high-fat diet and streptozotocin-induced type 2 diabetes rats. J. Food Biochem. 2022, 46, e14321. [Google Scholar] [CrossRef]
  160. Wei, Y.; Yang, H.; Zhu, C.; Deng, J.; Fan, D. Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic db/db Mice. J. Agric. Food Chem. 2020, 68, 5107–5117. [Google Scholar] [CrossRef]
  161. Zhao, X.; Chen, Z.; Yin, Y.; Li, X. Effects of polysaccharide from Physalis alkekengi var. francheti on liver injury and intestinal microflora in type-2 diabetic mice. Pharm. Biol. 2017, 55, 2020–2025. [Google Scholar] [PubMed]
  162. Huang, Z.-R.; Huang, Q.-Z.; Chen, K.-W.; Huang, Z.-F.; Liu, Y.; Jia, R.-B.; Liu, B. Sanghuangporus vaninii fruit body polysaccharide alleviates hyperglycemia and hyperlipidemia via modulating intestinal microflora in type 2 diabetic mice. Front. Nutr. 2022, 9, 1013466. [Google Scholar] [CrossRef] [PubMed]
  163. Meng, X.; Shi, M.; Guo, G.; Xing, J.; Liu, Z.; Song, F.; Liu, S. In-depth investigation of the therapeutic effect of Tribulus terrestris L. on type 2 diabetes based on intestinal microbiota and feces metabolomics. J. Ethnopharmacol. 2024, 325, 117815. [Google Scholar] [CrossRef] [PubMed]
  164. Tong, X.; Xu, J.; Lian, F.; Yu, X.; Zhao, Y.; Xu, L.; Zhang, M.; Zhao, X.; Shen, J.; Wu, S. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula: A multicenter, randomized, open label clinical trial. MBio 2018, 9, e02392-17. [Google Scholar] [CrossRef]
  165. Yao, B.; Pan, B.; Tian, T.; Su, X.; Zhang, S.; Li, H.; Li, W.; Wang, Y.; Lv, S.; Zhang, Z. Baihu renshen decoction ameliorates type 2 diabetes mellitus in rats through affecting gut microbiota enhancing gut permeability and inhibiting TLR4/NF-κB-mediated inflammatory response. Front. Cell. Infect. Microbiol. 2022, 12, 1051962. [Google Scholar] [CrossRef]
  166. Liu, M.; Zhao, Q.; Liu, J.; Huang, A.; Xia, X. Buyang Huanwu decoction affects gut microbiota and lipid metabolism in a ZDF rat model of co-morbid type 2 diabetes mellitus and obesity: An integrated metabolomics analysis. Front. Chem. 2022, 10, 1036380. [Google Scholar] [CrossRef]
  167. Wang, W.-K.; Fan, L.; Ge, F.; Li, Z.; Zhu, J.; Yin, K.; Xia, J.; Xue, M. Effects of Danggui Buxue decoction on host gut microbiota and metabolism in GK rats with type 2 diabetes. Front. Microbiol. 2022, 13, 1029409. [Google Scholar] [CrossRef]
  168. Xu, J.; Lian, F.; Zhao, L.; Zhao, Y.; Chen, X.; Zhang, X.; Guo, Y.; Zhang, C.; Zhou, Q.; Xue, Z.; et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 2015, 9, 552–562. [Google Scholar] [CrossRef]
  169. Tian, J.; Bai, B.; Gao, Z.; Yang, Y.; Wu, H.; Wang, X.; Wang, J.; Li, M.; Tong, X. Alleviation effects of GQD, a traditional Chinese medicine formula, on diabetes rats linked to modulation of the gut microbiome. Front. Cell. Infect. Microbiol. 2021, 11, 740236. [Google Scholar] [CrossRef]
  170. Chen, M.; Liao, Z.; Lu, B.; Wang, M.; Lin, L.; Zhang, S.; Li, Y.; Liu, D.; Liao, Q.; Xie, Z. Huang-Lian-Jie-Du-Decoction Ameliorates Hyperglycemia and Insulin Resistant in Association with Gut Microbiota Modulation. Front. Microbiol. 2018, 9, 2380. [Google Scholar] [CrossRef]
  171. Sun, Y.; Qu, W.; Liao, J.; Chen, L.; Cao, Y.; Li, H. Jiangtangjing ameliorates type 2 diabetes through effects on the gut microbiota and cAMP/PKA pathway. Tradit. Med. Res. 2022, 7, 7. [Google Scholar] [CrossRef]
  172. Tawulie, D.; Jin, L.; Shang, X.; Li, Y.; Sun, L.; Xie, H.; Zhao, J.; Liao, J.; Zhu, Z.; Cui, H. Jiang-Tang-San-Huang pill alleviates type 2 diabetes mellitus through modulating the gut microbiota and bile acids metabolism. Phytomedicine 2023, 113, 154733. [Google Scholar] [CrossRef] [PubMed]
  173. Cao, Y.; Yao, G.; Sheng, Y.; Yang, L.; Wang, Z.; Yang, Z.; Zhuang, P.; Zhang, Y. JinQi Jiangtang Tablet Regulates Gut Microbiota and Improve Insulin Sensitivity in Type 2 Diabetes Mice. J. Diabetes Res. 2019, 2019, 1872134. [Google Scholar] [CrossRef] [PubMed]
  174. Yi, Z.-Y.; Chen, L.; Wang, Y.; He, D.; Zhao, D.; Zhang, S.-H.; Yu, R.; Huang, J.-H. The potential mechanism of Liu–Wei–Di–Huang Pills in treatment of type 2 diabetic mellitus: From gut microbiota to short-chain fatty acids metabolism. Acta Diabetol. 2022, 59, 1295–1308. [Google Scholar] [CrossRef]
  175. Li, M.; Ding, L.; Hu, Y.L.; Qin, L.L.; Wu, Y.; Liu, W.; Wu, L.L.; Liu, T.H. Herbal formula LLKL ameliorates hyperglycaemia, modulates the gut microbiota and regulates the gut-liver axis in Zucker diabetic fatty rats. J. Cell. Mol. Med. 2021, 25, 367–382. [Google Scholar] [CrossRef]
  176. Xie, X.; Zhao, J.; Chen, Y.; Wen, W. Efficacy of Pidan Jianqing decoction in treatment of type 2 diabetes with spleen deficiency and damp-heat syndrome. TMR Pharmacol. Res. 2021, 1, 19–24. [Google Scholar] [CrossRef]
  177. Gao, K.; Yang, R.; Zhang, J.; Wang, Z.; Jia, C.; Zhang, F.; Li, S.; Wang, J.; Murtaza, G.; Xie, H.; et al. Effects of Qijian mixture on type 2 diabetes assessed by metabonomics, gut microbiota and network pharmacology. Pharmacol. Res. 2018, 130, 93–109. [Google Scholar] [CrossRef]
  178. Sun, R.-X.; Huang, W.-J.; Xiao, Y.; Wang, D.-D.; Mu, G.-H.; Nan, H.; Ni, B.-R.; Huang, X.-Q.; Wang, H.-C.; Liu, Y.-F.; et al. Shenlian (SL) Decoction, a Traditional Chinese Medicine Compound, May Ameliorate Blood Glucose via Mediating the Gut Microbiota in db/db Mice. J. Diabetes Res. 2022, 2022, 7802107. [Google Scholar] [CrossRef]
  179. Zhang, X.; Wang, H.; Xie, C.; Hu, Z.; Zhang, Y.; Peng, S.; He, Y.; Kang, J.; Gao, H.; Yuan, H.; et al. Shenqi compound ameliorates type-2 diabetes mellitus by modulating the gut microbiota and metabolites. J. Chromatogr. B 2022, 1194, 123189. [Google Scholar] [CrossRef]
  180. Chon, T.Y.; Lee, M.C. Acupuncture. Mayo Clin. Proc. 2013, 88, 1141–1146. [Google Scholar] [CrossRef]
  181. Han, J.-S. Acupuncture. In Treatment of Chronic Pain by Integrative Approaches: The American Academy of Pain Medicine Textbook on Patient Management; Springer: New York, NY, USA, 2014; pp. 123–136. [Google Scholar]
  182. Ulett, G.A.; Han, S.; Han, J.-S. Electroacupuncture: Mechanisms and clinical application. Biol. Psychiatry 1998, 44, 129–138. [Google Scholar] [CrossRef] [PubMed]
  183. Becker, R.O.; Reichmanis, M.; Marino, A.; Spadaro, J.A. Electrophysiological correlates of acupuncture points and meridians. Psychoenergetic Syst. 1976, 1, 105–112. [Google Scholar]
  184. Zhu, D.; Society, C. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin. J. Endocrinol. Metab. 2021, 37, 311–398. [Google Scholar] [CrossRef]
  185. Motataianu, A.; Barcutean, L.; Bajko, Z.; Stoian, A.; Maier, S.; Voidazan, S.; Balasa, R. Autonomic and somatic nerve functions in type 2 diabetes mellitus patients: Electrophysiological aspects. Diagnostics 2021, 11, 2005. [Google Scholar] [CrossRef]
  186. Bonaz, B.; Sinniger, V.; Pellissier, S. The vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Front. Immunol. 2017, 8, 1452. [Google Scholar] [CrossRef]
  187. Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef]
  188. De Couck, M.; Mravec, B.; Gidron, Y. You may need the vagus nerve to understand pathophysiology and to treat diseases. Clin. Sci. 2012, 122, 323–328. [Google Scholar] [CrossRef]
  189. Liu, S.; Wang, Z.; Su, Y.; Qi, L.; Yang, W.; Fu, M.; Jing, X.; Wang, Y.; Ma, Q. A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis. Nature 2021, 598, 641–645. [Google Scholar] [CrossRef]
  190. Higashimura, Y.; Shimoju, R.; Maruyama, H.; Kurosawa, M. Electro-acupuncture improves responsiveness to insulin via excitation of somatic afferent fibers in diabetic rats. Auton. Neurosci. 2009, 150, 100–103. [Google Scholar] [CrossRef]
  191. Lin, R.T.; Tzeng, C.Y.; Lee, Y.C.; Ho, W.J.; Cheng, J.T.; Lin, J.G.; Chang, S.L. Acute effect of electroacupuncture at the Zusanli acupoints on decreasing insulin resistance as shown by lowering plasma free fatty acid levels in steroid-background male rats. BMC Complement. Altern. Med. 2009, 9, 26. [Google Scholar] [CrossRef]
  192. Xu, J.; Chen, Y.; Liu, S.; Hou, X. Electroacupuncture regulates apoptosis/proliferation of intramuscular interstitial cells of cajal and restores colonic motility in diabetic constipation rats. Evid. Based Complement. Altern. Med. 2013, 2013, 584179. [Google Scholar] [CrossRef] [PubMed]
  193. An, J.; Wang, L.; Song, S.; Tian, L.; Liu, Q.; Mei, M.; Li, W.; Liu, S. Electroacupuncture reduces blood glucose by regulating intestinal flora in type 2 diabetic mice. J. Diabetes 2022, 14, 695–710. [Google Scholar] [CrossRef] [PubMed]
  194. Cao, L.; Zhou, S.; Li, J.; Chen, K.; Xue, X.; Yi, W. Effects of electroacupuncture on intestinal microflora and plasma metabolites in an insulin-resistant mouse model of type 2 diabetes mellitus. Acupunct. Med. 2023, 42, 76–86. [Google Scholar] [CrossRef] [PubMed]
  195. Zhang, L.; Chen, X.; Wang, H.; Huang, H.; Li, M.; Yao, L.; Ma, S.; Zhong, Z.; Yang, H.; Wang, H. “Adjusting internal organs and dredging channel” electroacupuncture ameliorates insulin resistance in Type 2 diabetes mellitus by regulating the intestinal flora and inhibiting inflammation. Diabetes Metab. Syndr. Obes. 2021, 14, 2595–2607. [Google Scholar] [CrossRef]
  196. Pan, T.; Li, X.; Guo, X.; Wang, H.; Zhou, X.; Shang, R.; Xie, D.; Qian, X.; Dai, M.; Fan, E. Electroacupuncture Improves Insulin Resistance in Type 2 Diabetes Mice by Regulating Intestinal Flora and Bile Acid. Diabetes Metab. Syndr. Obes. 2023, 16, 4025–4042. [Google Scholar] [CrossRef]
  197. Wang, H.; Chen, X.; Chen, C.; Pan, T.; Li, M.; Yao, L.; Li, X.; Lu, Q.; Wang, H.; Wang, Z. Electroacupuncture at Lower He-Sea and Front-Mu Acupoints Ameliorates Insulin Resistance in Type 2 Diabetes Mellitus by Regulating the Intestinal Flora and Gut Barrier. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2265–2276. [Google Scholar] [CrossRef]
  198. Deng, H.; Shen, X. The mechanism of moxibustion: Ancient theory and modern research. Evid. Based Complement. Altern. Med. 2013, 2013, 379291. [Google Scholar] [CrossRef]
  199. Anibogwu, R.; Jesus, K.D.; Pradhan, S.; Pashikanti, S.; Mateen, S.; Sharma, K. Extraction, Isolation and Characterization of Bioactive Compounds from Artemisia and Their Biological Significance: A Review. Molecules 2021, 26, 6995. [Google Scholar] [CrossRef]
  200. Qi, Q.; Liu, Y.N.; Jin, X.M.; Zhang, L.S.; Wang, C.; Bao, C.H.; Liu, H.R.; Wu, H.G.; Wang, X.M. Moxibustion treatment modulates the gut microbiota and immune function in a dextran sulphate sodium-induced colitis rat model. World J. Gastroenterol. 2018, 24, 3130–3144. [Google Scholar] [CrossRef]
  201. Shi, J.; Zhang, X.; Chen, J.; Shen, R.; Cui, H.; Wu, H. Acupuncture and moxibustion therapy for cognitive impairment: The microbiome–gut–brain axis and its role. Front. Neurosci. 2024, 17, 1275860. [Google Scholar] [CrossRef]
  202. Wang, X.; Qi, Q.; Wang, Y.; Wu, H.; Jin, X.; Yao, H.; Jin, D.; Liu, Y.; Wang, C. Gut microbiota was modulated by moxibustion stimulation in rats with irritable bowel syndrome. Chin. Med. 2018, 13, 63. [Google Scholar] [CrossRef] [PubMed]
  203. Li, B.R.; Shao, S.Y.; Yuan, L.; Jia, R.; Sun, J.; Ji, Q.; Sui, H.; Zhou, L.H.; Zhang, Y.; Liu, H.; et al. Effects of mild moxibustion on intestinal microbiome and NLRP3 inflammasome in rats with 5-fluorouracil-induced intestinal mucositis. J. Integr. Med. 2021, 19, 144–157. [Google Scholar] [CrossRef] [PubMed]
  204. Wang, Z.; Xu, H.; Zhou, H.; Lei, Y.; Yang, L.; Guo, J.; Wang, Y.; Zhou, Y. A systematic review with meta-analysis: Traditional Chinese tuina therapy for insomnia. Front. Neurosci. 2022, 16, 1096003. [Google Scholar] [CrossRef] [PubMed]
  205. Zhang, J.; Chen, Y.; Cao, L.; Zhang, R.; Ren, R.; Zhang, Q. Tuina for children with upper respiratory tract infections: A protocol for a systematic review. Medicine 2019, 98, e16443. [Google Scholar] [CrossRef]
  206. Liu, Z.; Wang, H.; Yu, T.; Jiao, Y.; Zhang, Y.; Liu, D.; Xu, Y.; Guan, Q.; Lu, M. A Review on the Mechanism of Tuina Promoting the Recovery of Peripheral Nerve Injury. Evid. Based Complement. Altern. Med. 2021, 2021, 6652099. [Google Scholar] [CrossRef]
  207. Xie, Y.; Huan, M.-T.; Sang, J.-J.; Luo, S.-S.; Kong, X.-T.; Xie, Z.-Y.; Zheng, S.-H.; Wei, Q.-B.; Wu, Y.-C. Clinical Effect of Abdominal Massage Therapy on Blood Glucose and Intestinal Microbiota in Patients with Type 2 Diabetes. Oxidative Med. Cell. Longev. 2022, 2022, 2286598. [Google Scholar] [CrossRef]
  208. Chen, H.; Tan, P.-S.; Li, C.-P.; Chen, B.-Z.; Xu, Y.-Q.; He, Y.-Q.; Ke, X. Acupoint Massage Therapy Alters the Composition of Gut Microbiome in Functional Constipation Patients. Evid. Based Complement. Altern. Med. 2021, 2021, 1416236. [Google Scholar] [CrossRef]
  209. de Sá Ferreira, A. Evidence-based practice of Chinese medicine in physical rehabilitation science. Chin. J. Integr. Med. 2013, 19, 723–729. [Google Scholar] [CrossRef]
  210. Shi, H.; Wang, S.; Zhang, Y.; Liu, P.; Dong, C.; Wang, D.; Si, G.; Wang, W.; Li, Y. The Effects of Tai Chi Exercise for Patients with Type 2 Diabetes Mellitus: An Overview of Systematic Reviews and Meta-Analyses. J. Diabetes Res. 2022, 2022, 6587221. [Google Scholar] [CrossRef]
  211. Yu, D.D.; You, L.Z.; Huang, W.Q.; Cao, H.; Wang, F.J.; Tang, X.Q.; Fang, Z.H.; Shen, G.M.; Guan, Y.X. Effects of traditional Chinese exercises on blood glucose and hemoglobin A1c levels in patients with prediabetes: A systematic review and meta-analysis. J. Integr. Med. 2020, 18, 292–302. [Google Scholar] [CrossRef]
  212. Song, G.; Chen, C.; Zhang, J.; Chang, L.; Zhu, D.; Wang, X. Association of traditional Chinese exercises with glycemic responses in people with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. J. Sport Health Sci. 2018, 7, 442–452. [Google Scholar] [CrossRef] [PubMed]
  213. Ding, M.; Wang, C.; Dong, X.; Yi, X. The Effects of Qigong on Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2018, 2018, 8182938. [Google Scholar] [CrossRef]
  214. Cook, M.D.; Allen, J.M.; Pence, B.D.; Wallig, M.A.; Gaskins, H.R.; White, B.A.; Woods, J.A. Exercise and gut immune function: Evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunol. Cell Biol. 2016, 94, 158–163. [Google Scholar] [CrossRef] [PubMed]
  215. Sallam, I.E.; Abdelwareth, A.; Attia, H.; Aziz, R.K.; Homsi, M.N.; von Bergen, M.; Farag, M.A. Effect of gut microbiota biotransformation on dietary tannins and human health implications. Microorganisms 2021, 9, 965. [Google Scholar] [CrossRef]
  216. Shukla, S.K.; Cook, D.; Meyer, J.; Vernon, S.D.; Le, T.; Clevidence, D.; Robertson, C.E.; Schrodi, S.J.; Yale, S.; Frank, D.N. Changes in Gut and Plasma Microbiome following Exercise Challenge in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS ONE 2015, 10, e0145453. [Google Scholar] [CrossRef]
  217. Leonel, A.J.; Alvarez-Leite, J.I. Butyrate: Implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 474–479. [Google Scholar] [CrossRef]
  218. Queipo-Ortuño, M.I.; Seoane, L.M.; Murri, M.; Pardo, M.; Gomez-Zumaquero, J.M.; Cardona, F.; Casanueva, F.; Tinahones, F.J. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS ONE 2013, 8, e65465. [Google Scholar] [CrossRef]
  219. Evans, C.C.; LePard, K.J.; Kwak, J.W.; Stancukas, M.C.; Laskowski, S.; Dougherty, J.; Moulton, L.; Glawe, A.; Wang, Y.; Leone, V.; et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE 2014, 9, e92193. [Google Scholar] [CrossRef]
  220. Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
  221. Valder, S.; Brinkmann, C. Exercise for the Diabetic Gut—Potential Health Effects and Underlying Mechanisms. Nutrients 2022, 14, 813. [Google Scholar] [CrossRef]
  222. Yao, T.; Wang, H.; Lin, K.; Wang, R.; Guo, S.; Chen, P.; Wu, H.; Liu, T.; Wang, R. Exercise-induced microbial changes in preventing type 2 diabetes. Sci. China Life Sci. 2023, 67, 892–899. [Google Scholar] [CrossRef] [PubMed]
  223. Craciun, C.I.; Neag, M.A.; Catinean, A.; Mitre, A.O.; Rusu, A.; Bala, C.; Roman, G.; Buzoianu, A.D.; Muntean, D.M.; Craciun, A.E. The Relationships between Gut Microbiota and Diabetes Mellitus, and Treatments for Diabetes Mellitus. Biomedicines 2022, 10, 308. [Google Scholar] [CrossRef] [PubMed]
  224. Hu, S.; Hu, Y.; Long, P.; Li, P.; Chen, P.; Wang, X. The effect of tai chi intervention on NLRP3 and its related antiviral inflammatory factors in the serum of patients with pre-diabetes. Front. Immunol. 2022, 13, 1026509. [Google Scholar] [CrossRef] [PubMed]
  225. An, T.; He, Z.-C.; Zhang, X.-Q.; Li, J.; Chen, A.-L.; Tan, F.; Chen, H.-D.; Lv, B.-H.; Lian, J.; Gao, S.-H.; et al. Baduanjin exerts anti-diabetic and anti-depression effects by regulating the expression of mRNA, lncRNA, and circRNA. Chin. Med. 2019, 14, 3. [Google Scholar] [CrossRef]
  226. Levitan, O.; Ma, L.; Giovannelli, D.; Burleson, D.B.; McCaffrey, P.; Vala, A.; Johnson, D.A. The gut microbiome–Does stool represent right? Heliyon 2023, 9, e13602. [Google Scholar] [CrossRef]
  227. Kim, D.; Jung, J.-Y.; Oh, H.-S.; Jee, S.-R.; Park, S.J.; Lee, S.-H.; Yoon, J.-S.; Yu, S.J.; Yoon, I.-C.; Lee, H.S. Comparison of sampling methods in assessing the microbiome from patients with ulcerative colitis. BMC Gastroenterol. 2021, 21, 396. [Google Scholar] [CrossRef]
  228. Mohr, A.E.; Jäger, R.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Townsend, J.R.; West, N.P.; Black, K.; Gleeson, M.; Pyne, D.B.; et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 2020, 17, 24. [Google Scholar] [CrossRef]
  229. Hamady, M.; Knight, R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. 2009, 19, 1141–1152. [Google Scholar] [CrossRef]
  230. Morgun, A.; Dzutsev, A.; Dong, X.; Greer, R.L.; Sexton, D.J.; Ravel, J.; Schuster, M.; Hsiao, W.; Matzinger, P.; Shulzhenko, N. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 2015, 64, 1732–1743. [Google Scholar] [CrossRef]
  231. Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vich Vila, A.; Võsa, U.; Mujagic, Z.; Masclee, A.A.M.; Jonkers, D.; Oosting, M.; et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 2019, 51, 600–605. [Google Scholar] [CrossRef]
  232. Park, J.C.; Im, S.-H. Of men in mice: The development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp. Mol. Med. 2020, 52, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
  233. He, C.; Zhao, X.; Yao, R.; Xiao, P. Food-medicine can promote cross-culture communication between East and West. Chin. Herb. Med. 2023, 15, 3–5. [Google Scholar] [CrossRef] [PubMed]
  234. Ng, C.Y.J.; Bun, H.H.; Zhao, Y.; Zhong, L.L.D. TCM “medicine and food homology” in the management of post-COVID disorders. Front. Immunol. 2023, 14, 1234307. [Google Scholar] [CrossRef] [PubMed]
  235. Yao, C.; Hao, R.; Pan, S.; Wang, Y. Functional Foods Based on Traditional Chinese Medicine. In Nutrition, Well-Being and Health; IntechOpen: London, UK, 2012. [Google Scholar]
  236. Ng, C.Y.J.; Lai, N.P.Y.; Ng, W.M.; Siah, K.T.H.; Gan, R.-Y.; Zhong, L.L.D. Chemical structures, extraction and analysis technologies, and bioactivities of edible fungal polysaccharides from Poria cocos: An updated review. Int. J. Biol. Macromol. 2024, 261, 129555. [Google Scholar] [CrossRef]
Figure 1. Summary of potential interactions between the gut microbiota and T2DM.
Figure 1. Summary of potential interactions between the gut microbiota and T2DM.
Nutrients 16 03935 g001
Figure 2. Potential mechanisms of action of various CM therapies on the modulation of gut microbiota to improve T2DM.
Figure 2. Potential mechanisms of action of various CM therapies on the modulation of gut microbiota to improve T2DM.
Nutrients 16 03935 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ng, C.Y.J.; Zhong, L.; Ng, H.S.; Goh, K.S.; Zhao, Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024, 16, 3935. https://doi.org/10.3390/nu16223935

AMA Style

Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients. 2024; 16(22):3935. https://doi.org/10.3390/nu16223935

Chicago/Turabian Style

Ng, Chester Yan Jie, Linda Zhong, Han Seong Ng, Kia Seng Goh, and Yan Zhao. 2024. "Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective" Nutrients 16, no. 22: 3935. https://doi.org/10.3390/nu16223935

APA Style

Ng, C. Y. J., Zhong, L., Ng, H. S., Goh, K. S., & Zhao, Y. (2024). Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients, 16(22), 3935. https://doi.org/10.3390/nu16223935

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop