Ultra-Processed Food Consumption and Cardiometabolic Risk Factors in Children Living in Northeastern Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethical Considerations
2.2. Participants and Study Design
2.3. Data Collection
2.4. Variables
2.4.1. Ultra-Processed Food Consumption
2.4.2. Anthropometry Assessment and Body Composition
2.4.3. Blood Pressure Measurement
2.4.4. Blood Samples, Biochemical and Cytokines Measurements
2.4.5. Covariables
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations and Strengths
- Expanding the sample to include more schools or schools from different cities in Paraíba and other states in the northeast region, which would allow a broader representation of the association between UPF use and cardiometabolic risk factors, further increasing the robustness of the results.
- Investigating UPF consumption in a longitudinal design, following the evolution of cardiometabolic factors over time. This type of study would allow the long-term effects of UPFs on child development and health to be observed.
- Expanding the analysis to include other markers of inflammation and oxidative stress that may provide a more detailed view of the inflammatory and oxidative effects of UPFs on children’s bodies.
- Exploring the impact of UPF use on children’s gut microbiota and how this impact may influence the development of cardiometabolic and inflammatory risk factors. This analysis could provide new perspectives on the pathways by which UPFs affect health.
- Finally, considering variables related to children’s family and food environment and inequalities to understand how these influences may modify UPFS consumption and its health effects.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordova, R.; Viallon, V.; Fontvieille, E.; Peruchet-Noray, L.; Jansana, A.; Wagner, K.-H.; Kyrø, C.; Tjønneland, A.; Katzke, V.; Bajracharya, R. Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: A multinational cohort study. Lancet Reg. Health–Eur. 2023, 35, 100771. [Google Scholar] [CrossRef] [PubMed]
- Touvier, M.; da Costa Louzada, M.L.; Mozaffarian, D.; Baker, P.; Juul, F.; Srour, B. Ultra-processed foods and cardiometabolic health: Public health policies to reduce consumption cannot wait. BMJ 2023, 383, e075294. [Google Scholar] [CrossRef] [PubMed]
- Grinshpan, L.S.; Eilat-Adar, S.; Ivancovsky-Wajcman, D.; Kariv, R.; Gillon-Keren, M.; Zelber-Sagi, S. Ultra-processed food consumption and non-alcoholic fatty liver disease, metabolic syndrome and insulin resistance: A systematic review. JHEP Rep. 2023, 6, 100964. [Google Scholar] [CrossRef] [PubMed]
- Neri, D.; Steele, E.M.; Khandpur, N.; Cediel, G.; Zapata, M.E.; Rauber, F.; Marrón-Ponce, J.A.; Machado, P.; da Costa Louzada, M.L.; Andrade, G.C. Ultraprocessed food consumption and dietary nutrient profiles associated with obesity: A multicountry study of children and adolescents. Obes. Rev. 2022, 23, e13387. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.-L.; Wei, Y.-F.; Sun, J.-N.; Shi, Y.-C.; Liu, F.-H.; Sun, M.-H.; Chang, Q.; Wu, Q.-J.; Zhao, Y.-H. Ultra-processed food consumption and metabolic disease risk: An umbrella review of systematic reviews with meta-analyses of observational studies. Front. Nutr. 2024, 11, 1306310. [Google Scholar] [CrossRef]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Bentov, I.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Ultra-processed food is associated with features of metabolic syndrome and non-alcoholic fatty liver disease. Liver Int. 2021, 41, 2635–2645. [Google Scholar] [CrossRef]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-processed foods and cardiovascular diseases: Potential mechanisms of action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ 2019, 365, 1451. [Google Scholar] [CrossRef]
- Vancells Lujan, P.; Vinas Esmel, E.; Sacanella Meseguer, E. Overview of non-alcoholic fatty liver disease (NAFLD) and the role of sugary food consumption and other dietary components in its development. Nutrients 2021, 13, 1442. [Google Scholar] [CrossRef]
- Neri, D.; Martínez-Steele, E.; Khandpur, N.; Levy, R.; Dietetics. Associations between ultra-processed foods consumption and indicators of adiposity in US adolescents: Cross-sectional analysis of the 2011–2016 National Health and Nutrition Examination Survey. J. Acad. Nutr. 2022, 122, 1474–1487.e2. [Google Scholar] [CrossRef]
- Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef] [PubMed]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-grade inflammation and ultra-processed foods consumption: A review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.-C.; Levy, R.B.; Canella, D.S.; da Costa Louzada, M.L.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Scaglioni, S.; De Cosmi, V.; Ciappolino, V.; Parazzini, F.; Brambilla, P.; Agostoni, C. Factors influencing children’s eating behaviours. Nutrients 2018, 10, 706. [Google Scholar] [CrossRef]
- Vitale, M.; Costabile, G.; Testa, R.; D’Abbronzo, G.; Nettore, I.C.; Macchia, P.E.; Giacco, R. Ultra-processed foods and human health: A systematic review and meta-analysis of prospective cohort studies. Adv. Nutr. 2023, 15, 100121. [Google Scholar] [CrossRef]
- Markey, O.; Pradeilles, R.; Goudet, S.; Griffiths, P.L.; Boxer, B.; Carroll, C.; Rousham, E.K. Unhealthy food and beverage consumption during childhood and risk of cardiometabolic disease: A systematic review of prospective cohort studies. J. Nutr. 2023, 153, 176–189. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- BRASIL. Sistema de Vigilância Alimentar e Nutricional (SISVAN). Relatórios de Acesso Público. Relatórios do Estado Nutricional de Indivíduos Acompanhados por Período, Fase do Ciclo de Vida: Crianças (5 a 10 anos); Departamento de Atenção Primária à Saúde. Ministério da Saúde: Rio de Janeiro, Brasil, 2023. Available online: https://sisaps.saude.gov.br/sisvan/relatoriopublico/estadonutricional (accessed on 28 August 2024).
- Leffa, P.S.; Hoffman, D.J.; Rauber, F.; Sangalli, C.N.; Valmórbida, J.L.; Vitolo, M.R. Longitudinal associations between ultra-processed foods and blood lipids in childhood. Br. J. Nutr. 2020, 124, 341–348. [Google Scholar] [CrossRef]
- Khoury, N.; Martínez, M.Á.; Garcidueñas-Fimbres, T.E.; Pastor-Villaescusa, B.; Leis, R.; de Las Heras-Delgado, S.; Miguel-Berges, M.L.; Navas-Carretero, S.; Portoles, O.; Pérez-Vega, K.A.; et al. Ultraprocessed Food Consumption and Cardiometabolic Risk Factors in Children. JAMA Netw. Open 2024, 7, e2411852. [Google Scholar] [CrossRef]
- Chang, K.; Khandpur, N.; Neri, D.; Touvier, M.; Huybrechts, I.; Millett, C.; Vamos, E.P. Association between childhood consumption of ultraprocessed food and adiposity trajectories in the avon longitudinal study of parents and children birth cohort. JAMA Pediatr. 2021, 175, e211573. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.S.; Rauber, F.; Leffa, P.S.; Sangalli, C.N.; Campagnolo, P.D.B.; Vitolo, M.R. Ultra-processed food consumption and its effects on anthropometric and glucose profile: A longitudinal study during childhood. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, I.d.C.; Santos de Almeida Oliveira, T.L.P.; Santos, G.C.J.; Nobre, I.G.; Dos Santos, R.M.; Rodrigues, C.P.S.; dos Santos Costa, M.V.; Damasceno, M.C.M.; Ferreira e Silva, W.T.; Leandro, C.G.; et al. Daily consumption of ultra-processed foods and cardiometabolic risk factors in children aged 7 to 10 years in Northeast Brazil. Nutr. Health 2023, 29, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Handakas, E.; Chang, K.; Khandpur, N.; Vamos, E.P.; Millett, C.; Sassi, F.; Vineis, P.; Robinson, O. Metabolic profiles of ultra-processed food consumption and their role in obesity risk in British children. Clin. Nutr. 2022, 41, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; Campagnolo, P.D.; Hoffman, D.J.; Vitolo, M.R.J.N.; Metabolism; Diseases, C. Consumption of ultra-processed food products and its effects on children’s lipid profiles: A longitudinal study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 116–122. [Google Scholar] [CrossRef]
- Bawaked, R.A.; Fernández-Barrés, S.; Navarrete-Muñoz, E.M.; González-Palacios, S.; Guxens, M.; Irizar, A.; Lertxundi, A.; Sunyer, J.; Vioque, J.; Schröder, H.; et al. Impact of lifestyle behaviors in early childhood on obesity and cardiometabolic risk in children: Results from the Spanish INMA birth cohort study. Pediatr. Obes. 2020, 15, e12590. [Google Scholar] [CrossRef]
- Vilela, S.; Magalhães, V.; Severo, M.; Oliveira, A.; Torres, D.; Lopes, C. Effect of the food processing degree on cardiometabolic health outcomes: A prospective approach in childhood. Clin. Nutr. 2022, 41, 2235–2243. [Google Scholar] [CrossRef]
- SECRETARIA DE EDUCAÇÃO E CULTURA DO MUNICÍPIO DE JOÃO PESSOA; Paraíba, Brasil. 2020. Available online: https://www.joaopessoa.pb.gov.br/secretaria/sedec/ (accessed on 20 December 2020).
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. NOVA. The star shines bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Medicine, I.O. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005; p. 1358. [Google Scholar] [CrossRef]
- World Health Organization. BMI-For-Age (5–19 Years) [Internet]; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Slaughter, M.H.; Lohman, T.; Boileau, R.; Horswill, C.; Stillman, R.; Van Loan, M.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar]
- Costa, P.C.T.; Souza, J.R.d.; Lima, P.C.; Duarte, D.B.; Neves, T.A.F.V.d.; Pereira, J.K.G.; Silva-Luis, C.C.; Moraes, R.C.S.d.; Braga, V.d.A.; Souza, E.L.d.J. Evaluation of cardiac autonomic function and low-grade inflammation in children with obesity living in the Northeast Brazilian region. J. De Pediatr. 2024, 100, 74–80. [Google Scholar] [CrossRef]
- Yoo JangSuk, Y.J.; Lee SeonYeong, L.S.; Kim KyuNam, K.K.; Yoo SunMi, Y.S.; Sung EunJu, S.E.; Yim, J. Relationship between insulin resistance and serum alanine aminotransferase as a surrogate of NAFLD (nonalcoholic fatty liver disease) in obese Korean children. Diabetes Res. Clin. Pract. 2008, 81, 321–326. [Google Scholar] [PubMed]
- Moriles, K.E.; Azer, S.A. Alanine Amino Transferase; Statpearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Sadeghian, M.; Vafadar, M.; Torabi, A.; Torabi, S.; Fazel, M. Prevalence of fatty liver and its related factors in children. J. Fam. Med. Prim. Care 2022, 11, 5604–5608. [Google Scholar]
- Dongiovanni, P.; Stender, S.; Pietrelli, A.; Mancina, R.; Cespiati, A.; Petta, S.; Pelusi, S.; Pingitore, P.; Badiali, S.; Maggioni, M. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J. Intern. Med. 2018, 283, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Sevastianova, K.; Santos, A.; Kotronen, A.; Hakkarainen, A.; Makkonen, J.; Silander, K.; Peltonen, M.; Romeo, S.; Lundbom, J.; Lundbom, N. Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans. Am. J. Clin. Nutr. 2012, 96, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Tutunchi, H.; Saghafi-Asl, M.; Asghari-Jafarabadi, M.; Ostadrahimi, A. Association between dietary patterns and non-alcoholic fatty liver disease: Results from a case-control study. Arch. Iran. Med. 2021, 24, 35–42. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Henney, A.E.; Gillespie, C.S.; Alam, U.; Hydes, T.J.; Cuthbertson, D.J. Ultra-processed food intake is associated with non-alcoholic fatty liver disease in adults: A systematic review and meta-analysis. Nutrients 2023, 15, 2266. [Google Scholar] [CrossRef]
- Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.-E.; Larsson, A.; Johansson, L.; Ahlström, H.; Arner, P.; Dahlman, I. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 2014, 63, 2356–2368. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Sädevirta, S.; Zhou, Y.; Kayser, B.; Ali, A.; Ahonen, L.; Lallukka, S.; Pelloux, V.; Gaggini, M.; Jian, C. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 2018, 41, 1732–1739. [Google Scholar] [CrossRef]
- Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.-H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol. 2018, 68, 1063–1075. [Google Scholar] [CrossRef]
- Fang, Y.-L.; Chen, H.; Wang, C.-L.; Liang, L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J. Gastroenterol. 2018, 24, 2974. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Vargas, M.A.; González-Montoya, M.; Torres-Isidro, O.; García-Berumen, C.I.; Ortiz-Avila, O.; Calderón-Cortés, E.; Cortés-Rojo, C. Assessing the impact of concurrent high-fructose and high-saturated fat diets on pediatric metabolic syndrome: A review. World J. Clin. Pediatr. 2024, 13, 91478. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Lotfaliany, M.; Forbes, M.; Loughman, A.; Rocks, T.; O’Neil, A.; Machado, P.; Jacka, F.N.; Hodge, A.; Marx, W. Higher ultra-processed food consumption is associated with greater high-sensitivity C-reactive protein concentration in adults: Cross-sectional results from the Melbourne collaborative cohort study. Nutrients 2022, 14, 3309. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Martins, G.M.; da Cunha França, A.K.T.; Viola, P.C.d.A.F.; de Carvalho, C.A.; Marques, K.D.S.; Dos Santos, A.M.; Batalha, M.A.; de Alencar Alves, J.D.; Ribeiro, C.C.C. Intake of ultra-processed foods is associated with inflammatory markers in Brazilian adolescents. Public Health Nutr. 2022, 25, 591–599. [Google Scholar] [CrossRef]
- González-Gil, E.M.; Tognon, G.; Lissner, L.; Intemann, T.; Pala, V.; Galli, C.; Wolters, M.; Siani, A.; Veidebaum, T.; Michels, N. Prospective associations between dietary patterns and high sensitivity C-reactive protein in European children: The IDEFICS study. Eur. J. Nutr. 2018, 57, 1397–1407. [Google Scholar] [CrossRef]
- Ridker, P.M. A test in context: High-sensitivity C-reactive protein. J. Am. Coll. Cardiol. 2016, 67, 712–723. [Google Scholar] [CrossRef]
- Collaboration, E.R.F. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010, 375, 132–140. [Google Scholar]
- Dos Santos, F.S.; Mintem, G.C.; de Oliveira, I.O.; Horta, B.L.; Ramos, E.; Lopes, C.; Gigante, D.P. Consumption of ultra-processed foods and IL-6 in two cohorts from high-and middle-income countries. Br. J. Nutr. 2023, 129, 1552–1562. [Google Scholar] [CrossRef]
- Whelan, K.; Bancil, A.S.; Lindsay, J.O.; Chassaing, B. Ultra-processed foods and food additives in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 406–427. [Google Scholar] [CrossRef]
- Rauber, F.; Levy, R.B. Ultra-processed foods and cardiovascular disease. Nat. Rev. Cardiol. 2024, 21, 213–214. [Google Scholar] [CrossRef]
- Müller, D.N.; Wilck, N.; Haase, S.; Kleinewietfeld, M.; Linker, R.A. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat. Rev. Immunol. 2019, 19, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mähler, A.; Balogh, A.; Markó, L. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017, 551, 585–589. [Google Scholar] [CrossRef]
- Maki, K.A.; Sack, M.N.; Hall, K.D. Ultra-processed foods: Increasing the risk of inflammation and immune dysregulation? Nat. Rev. Immunol. 2024, 24, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019, 30, 67–77.e63. [Google Scholar] [CrossRef] [PubMed]
- Link, V.M.; Subramanian, P.; Cheung, F.; Han, K.L.; Stacy, A.; Chi, L.; Sellers, B.A.; Koroleva, G.; Courville, A.B.; Mistry, S. Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Nat. Med. 2024, 30, 560–572. [Google Scholar] [CrossRef]
Tertiles of Energy-Percentage-Adjusted Ultra Processed Food Consumption | |||||
---|---|---|---|---|---|
Variables | All | 1 (Lowest) n = 50 | 2 n = 51 | 3 (Highest) n = 50 | p-Value |
Sex-boys/girls (n) † | 66/85 | 22/28 | 23/28 | 21/29 | 0.95 |
Age (years) | 9.0 (8.0–10.0) | 8.7 (1.2) | 8.9 (1.1) | 9.0 (1.0) | 0.41 |
Nutritional status (OB/NW) | 97/54 | 35/15 | 32/19 | 30/20 | 0.55 |
BMI for age (z-score) † | 2.2 (0.3–2.8) | 2.2 (0.6–2.9) | 2.3 (0.04–2.8) | 2.1 (0.4–2.7) | 0.92 |
WC (cm) | 71.2 (61.0–81.4) | 73.0 (12.4) | 70.4 (11.4) | 72.3 (14.4) | 0.56 |
BFP (%) | 31.7 (10.6) | 31.2 (9.1) | 31.7 (11.5) | 32.1 (11.0) | 0.91 |
FBG (mg/dL) | 80.9 (9.5) | 81.2 (8.5) | 79.6 (9.1) | 81.9 (10.9) | 0.46 |
HbA1C (%) † | 5.6 (5.4–9.6) | 5.7 (5.4–6.0) | 5.6 (5.4–5.9) | 5.6 (5.4–5.8) | 0.27 |
HOMA-IR † | 2.2 (1.3–3.2) | 2.5 (1.1–3.4) | 1.9 (1.2–3.0) | 2.3 (1.4–3.2) | 0.73 |
ALT (U/L) | 19.2 (8.3) | 17.8 (8.1) | 17.7 (7.1) | 22.0 (9.2) *# | 0.01 |
AST (U/L) | 34.9 (9.1) | 33.3 (7.3) | 34.0 (9.4) | 37.3 (9.9) | 0.06 |
GGT (U/L) | 16.8 (7.4) | 17.5 (7.5) | 15.3 (7.7) | 17.5 (6.9) | 0.23 |
Creatinine (mg/dL) | 0.56 (0.1) | 0.6 (0.1) | 0.6 (0.1) | 0.6 (0.1) | 0.75 |
Urea (mg/dL) | 21.0 (6.6) | 21.1 (6.6) | 21.0 (7.1) | 20.9 (6.3) | 0.99 |
Cholesterol (mg/dL) | 174.5 (29.9) | 168.0 (19.4) | 177.5 (37.7) | 177.6 (28.8) | 0.19 |
Triglycerides (mg/dL) | 83.8 (33.3) | 83.27 (34.9) | 82.7 (34.3) | 85.4 (30.9) | 0.91 |
HDL-c (mg/dL) | 52.5 (12.8) | 53.3 (13.4) | 53.1 (11.8) | 51.1 (13.1) | 0.65 |
LDL-c (mg/dL) | 92.4 (19.6) | 86.8 (15.9) | 93.7 (22.2) | 96.4 (19.2) * | 0.04 |
hs-CRP (mg/dL) † | 1.1 (0.3–2.9) | 1.0 (0.2–2.3) | 1.2 (0.3–3.4) | 1.2 (0.3–3.3) | 0.30 |
SBP (mmHg) | 104 (13) | 105 (11.6) | 103 (12.1) | 103 (14.6) | 0.40 |
DBP (mmHg) † | 60 (55–95) | 61 (55–69) | 61 (55–64) | 60 (55–69) | 0.89 |
HR (bpm) | 93.8 (11.6) | 96 (12.6) | 92 (10.8) | 93 (11.0) | 0.10 |
Tertiles of Energy-Percentage-Adjusted Ultra-Processed Food Consumption | ||||
---|---|---|---|---|
Variables | 1 (Lowest) | 2 | 3 (Highest) | p-Value |
(n = 50) | (n = 51) | (n = 50) | ||
Total energy intake (Kcal/d) | 1775 (373) | 1998 (374) * | 1981 (406) * | 0.01 |
Carbohydrates (%) | 53 (5.3) | 53 (4.9) | 55 (4.0) | 0.24 |
Protein (%) | 16 (2.5) | 15 (2.3) | 13 (2.1) *# | <0.01 |
Total Fat (%) | 32 (3.2) | 33 (3.2) | 33 (3.8) | 0.13 |
Saturated fatty acids (%) | 10.7 (1.2) | 10.8 (1.3) | 10.9 (1.3) | 0.82 |
Monounsaturated fatty acids (%) | 10.1 (1.0) | 10.0 (1.0) | 9.9 (0.9) | 0.84 |
Polyunsaturated fatty acids (%) † | 7.9 (7.5–9.1) | 8.2 (7.2–8.8) | 8.5 (7.4–9.4) | 0.64 |
Trans fatty acids (%) | 0.9 (0.2) | 1.1 (0.3) | 1.2 (0.4) * | 0.02 |
Fiber (g/d) | 19.8 (4.5) | 19.1 (4.9) | 18.1 (4.4) | 0.22 |
≥14 g/1000 kcal, N° (%) | 9 (18) | 1 (2.0) * | 1 (2.0) * | <0.01 |
Sodium (mg/d) | 264.6 (63.3) | 291.3 (72.2) | 298.7 (71.1) * | 0.04 |
LDL-c | ALT | AST | |||||||
---|---|---|---|---|---|---|---|---|---|
β | p-Value | Adjusted R2 (p-Value) | β | p-Value | Adjusted R2 (p-Value) | β | p-Value | Adjusted R2 (p-Value) | |
UPFs | 0.42 | <0.01 | 0.07 (p = 0.01) | 0.15 | <0.01 | 0.22 (p < 0.01) | 0.18 | <0.01 | 0.12 (p = 0.05) |
Age | −0.56 | 0.67 | 0.10 | 0.83 | 0.26 | 0.66 | |||
Sex | 1.78 | 0.58 | 1.89 | 0.14 | 1.9 | 0.19 | |||
BMI for age | −0.90 | 0.18 | 0.39 | 0.14 | −0.60 | 0.04 | |||
BFP (%) | 0.71 | 0.03 | 0.15 | 0.21 | 0.39 | <0.01 | |||
SFAI (%) | 1.45 | 0.21 | −0.05 | 0.91 | −0.10 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Luis, C.C.; Lopes, M.S.; Gomes, S.M.; Cantalice Matias, P.K.; Brandini, F.P.; Costa, P.C.T.; de Moraes, R.C.S.; Baccin Martins, V.J.; de Brito Alves, J.L. Ultra-Processed Food Consumption and Cardiometabolic Risk Factors in Children Living in Northeastern Brazil. Nutrients 2024, 16, 3944. https://doi.org/10.3390/nu16223944
Silva-Luis CC, Lopes MS, Gomes SM, Cantalice Matias PK, Brandini FP, Costa PCT, de Moraes RCS, Baccin Martins VJ, de Brito Alves JL. Ultra-Processed Food Consumption and Cardiometabolic Risk Factors in Children Living in Northeastern Brazil. Nutrients. 2024; 16(22):3944. https://doi.org/10.3390/nu16223944
Chicago/Turabian StyleSilva-Luis, Cristiane Cosmo, Mariana Souza Lopes, Sávio Marcelino Gomes, Palloma Karlla Cantalice Matias, Fernando Paiva Brandini, Paulo César Trindade Costa, Rúbia Cartaxo Squizato de Moraes, Vinícius José Baccin Martins, and José Luiz de Brito Alves. 2024. "Ultra-Processed Food Consumption and Cardiometabolic Risk Factors in Children Living in Northeastern Brazil" Nutrients 16, no. 22: 3944. https://doi.org/10.3390/nu16223944
APA StyleSilva-Luis, C. C., Lopes, M. S., Gomes, S. M., Cantalice Matias, P. K., Brandini, F. P., Costa, P. C. T., de Moraes, R. C. S., Baccin Martins, V. J., & de Brito Alves, J. L. (2024). Ultra-Processed Food Consumption and Cardiometabolic Risk Factors in Children Living in Northeastern Brazil. Nutrients, 16(22), 3944. https://doi.org/10.3390/nu16223944