Endurance in Long-Distance Swimming and the Use of Nutritional Aids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Information
2.2. Study Selection
2.3. Data Extraction
2.4. Assessing the Quality of Experiments: Risk of Bias and Levels of Evidence
3. Results
4. Discussion
4.1. Energy Requirements
4.2. Physiological Demands
- Anaerobic threshold level, which is especially important to maintain a high percentage of VO2max without accumulating lactate (80–91%), to maintain a high average speed with lactate concentrations between 3–5 mmol/L.
- Aerobic capacity (VO2max). The higher the VO2max, the easier it is to use oxygen in anaerobic threshold conditions.
- Satisfactory level of aerobic strength endurance to apply and maintain stroke power in aerobic conditions.
- Good ability to distribute effort tactically and execute it effectively and economically in open water (technique).
- Muscle and liver glycogen. Increasing these stores is of utmost importance to not affect performance over these distances. In addition, depending on the duration of the race, it is advisable to take CHO during the effort to maintain a high intensity.
- Fat mobilisation (aerobic threshold). Good capacity of fat metabolism to provide energy, which can reach up to 40%.
- Good ability to distribute effort tactically and execute it efficiently and economically (technique).
- High aerobic efficiency at low intensity effort levels below the anaerobic threshold (50–60 60% VO2max);
- Mobilisation of proteins and fats can contribute up to 65% of total aerobic energy;
- Anaerobic threshold to help maintain lactate concentrations between 2–3 mmol/L;
- Muscle and liver glycogen is extremely low, and CHO intake is desirable to maintain higher intensity during exertion;
- Aerobic strength: in anaerobic threshold conditions, increasing VO2max will increase oxygen utilisation;
- Temperature control is necessary to administer fluids to avoid losses through perspiration (more than 3 litres) and electrolytes (Na+, Cl-, H+ and Mg) to regulate internal temperature and maintain nerve and muscle conduction functions;
- Tendon and ligament tissue strength; the ability of the locomotor system to withstand these stresses is particularly crucial.
4.3. Body Composition
Reference Values for Body Composition in Swimmers
4.4. Nutrition
4.5. Ergogenic Nutritional Aids
4.5.1. Sodium Bicarbonate
- Taking sodium bicarbonate (in doses of 0.2 to 0.5 g/kg) improves performance in muscular endurance activities such as swimming [219].
- NaHCO3 improves performance in single and multi-session exercise [219].
- NaHCO3 improves exercise performance in both men and women [220].
- For single-dose supplementation protocols, 0.2 g/kg sodium bicarbonate appears to be the minimum dose necessary to experience improvements in exercise performance. The optimal dose of sodium bicarbonate for ergogenic effects appears to be 0.3 g/kg. Higher doses (e.g., 0.4 or 0.5 g/kg) may not be necessary as they do not provide additional benefits and are associated with a higher incidence and severity of adverse side effects [221].
- For single-dose supplementation protocols, the recommended time to take sodium bicarbonate is 60–180 min before exercise or competition [219].
- Multiple days of sodium bicarbonate supplementation can improve exercise performance. These protocols typically last 3–7 days prior to activity, and a total daily dose of 0.4 or 0.5 g/kg of sodium bicarbonate produces beneficial effects. The daily dose is divided into several intakes throughout the day, such as breakfast, lunch, and dinner. The advantage of multi-day protocols is that they can help reduce the potential side effects of sodium bicarbonate on the day of competition [222].
- Prolonged use of sodium bicarbonate (such as before each exercise session) may improve training adaptations, such as increasing time to fatigue and power output [219].
- The most common side effects of sodium bicarbonate supplementation are bloating, nausea, vomiting, and abdominal pain. The frequency and severity of these effects vary from person to person and from individual to individual but are generally mild. Nevertheless, these side effects can adversely affect exercise performance. Strategies to minimise the likelihood and severity of these effects include taking smaller doses (such as 0.2 g/kg or 0.3 g/kg), taking approximately 180 min before exercise or adjusting the timing according to individual response, taking with a carbohydrate-rich meal, and using enteric-coated capsules [223].
- Combining sodium bicarbonate with creatine or beta-alanine may have additional effects on exercise performance. It is unclear whether combining sodium bicarbonate with caffeine or nitrates provides additional benefits [219].
4.5.2. Sodium Bicarbonate and Beta-Alanine
4.5.3. Sodium Bicarbonate and Caffeine
4.5.4. Sodium Bicarbonate and Creatine
4.5.5. Sodium Bicarbonate and Nitrates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ben-Zaken, S.; Eliakim, A.; Nemet, D.; Kaufman, L.; Meckel, Y. Genetic Characteristics of Competitive Swimmers: A Review. Biol. Sport 2022, 39, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Pyne, D.B.; Sharp, R.L. Physical and Energy Requirements of Competitive Swimming Events. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 351–359. [Google Scholar] [CrossRef]
- Amawi, A.; AlKasasbeh, W.; Jaradat, M.; Almasri, A.; Alobaidi, S.; Hammad, A.A.; Bishtawi, T.; Fataftah, B.; Turk, N.; Saoud, H.; et al. Athletes’ Nutritional Demands: A Narrative Review of Nutritional Requirements. Front. Nutr. 2023, 10, 1331854. [Google Scholar] [CrossRef] [PubMed]
- Wirth, K.; Keiner, M.; Fuhrmann, S.; Nimmerichter, A.; Haff, G.G. Strength Training in Swimming. Int. J. Environ. Res. Public Health 2022, 19, 5369. [Google Scholar] [CrossRef]
- Mujika, I.; Stellingwerff, T.; Tipton, K. Nutrition and Training Adaptations in Aquatic Sports. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Boyd, K.T.; Burke, L.M.; Koivisto, A. Nutrition for Swimming. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 360–372. [Google Scholar] [CrossRef]
- Domínguez, R.; Sánchez-Oliver, A.J.; Cuenca, E.; Jodra, P.; Fernandes da Silva, S.; Mata-Ordóñez, F. Nutritional Needs in the Professional Practice of Swimming: A Review. J. Exerc. Nutr. Biochem. 2017, 21, 1–10. [Google Scholar] [CrossRef]
- Duffield, R.; Dawson, B.; Goodman, C. Energy System Contribution to 1500- and 3000-Metre Track Running. J. Sports Sci. 2005, 23, 993–1002. [Google Scholar] [CrossRef]
- Alghannam, A.F.; Ghaith, M.M.; Alhussain, M.H. Regulation of Energy Substrate Metabolism in Endurance Exercise. Int. J. Environ. Res. Public Health 2021, 18, 4963. [Google Scholar] [CrossRef]
- Sousa, A.; Borrani, F.; Rodríguez, F.A.; Millet, G.P. Oxygen Uptake Kinetics Is Slower in Swimming than Arm Cranking and Cycling during Heavy Intensity. Front. Physiol. 2017, 8, 639. [Google Scholar] [CrossRef]
- Pinna, M.; Milia, R.; Roberto, S.; Marongiu, E.; Olla, S.; Loi, A.; Ortu, M.; Migliaccio, G.M.; Tocco, F.; Concu, A.; et al. Assessment of the Specificity of Cardiopulmonary Response during Tethered Swimming Using a New Snorkel Device. J. Physiol. Sci. 2013, 63, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.J.; Roels, B.; Hellard, P.; Fauquet, C.; Libicz, S.; Millet, G.P. Physiological Responses during Submaximal Interval Swimming Training: Effects of Interval Duration. J. Sci. Med. Sport 2005, 8, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.A.; Wing, A.N.; Morris, N.R. Oxygen Uptake and Heart Rate Kinetics during Heavy Exercise: A Comparison between Arm Cranking and Leg Cycling. Eur. J. Appl. Physiol. 2002, 88, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Sales, M.M.; de Sousa, C.V.; Sampaio, W.B.; Ernesto, C.; Browne, R.A.V.; de Moraes, J.F.V.N.; Motta-Santos, D.; Moraes, M.R.; Lewis, J.E.; Simões, H.G.; et al. Contact Karate Promotes Post-Exercise Hypotension in Young Adult Males. Asian J. Sports Med. 2016, 7, e33850. [Google Scholar] [CrossRef]
- VanHeest, J.L.; Mahoney, C.E.; Herr, L. Characteristics of Elite Open-Water Swimmers. J. Strength Cond. Res. 2004, 18, 302–305. [Google Scholar] [CrossRef]
- Pla, R.; Aubry, A.; Resseguier, N.; Merino, M.; Toussaint, J.F.; Hellard, P. Training Organization, Physiological Profile and Heart Rate Variability Changes in an Open-Water World Champion. Int. J. Sports Med. 2019, 40, 519–527. [Google Scholar] [CrossRef]
- Dyce, C. Kinanthropometry in Aquatic Sports: A Study of World Class Athletes; Human Kinetics: Champaign, IL, USA, 1995; Volume 81. [Google Scholar] [CrossRef]
- Zamparo, P.; Bonifazi, M.; Faina, M.; Milan, A.; Sardella, F.; Schena, F.; Capelli, C. Energy Cost of Swimming of Elite Long-Distance Swimmers. Eur. J. Appl. Physiol. 2005, 9, 697–704. [Google Scholar] [CrossRef]
- Shaw, G.; Koivisto, A.; Gerrard, D.; Burke, L.M. Nutrition Considerations for Open-Water Swimming. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 373–381. [Google Scholar] [CrossRef]
- Witkoś, J.; Błażejewski, G.; Hagner-Derengowska, M.; Makulec, K. The Impact of Competitive Swimming on Menstrual Cycle Disorders and Subsequent Sports Injuries as Related to the Female Athlete Triad and on Premenstrual Syndrome Symptoms. Int. J. Environ. Res. Public Health 2022, 19, 5854. [Google Scholar] [CrossRef]
- Bircher, S.; Enggist, A.; Jehle, T.; Knechtle, B. Effects of an extreme endurance race on energy balance and body composition—A case study. J. Sports Sci. Med. 2006, 5, 154–162. Available online: https://pubmed.ncbi.nlm.nih.gov/24198693/ (accessed on 5 April 2024).
- Knechtle, B.; Knechtle, P.; Kohler, G.; Rosemann, T. Does a 24-Hour Ultra-Swim Lead to Dehydration? J. Hum. Sport Exerc. 2011, 6, 68–79. [Google Scholar] [CrossRef]
- Acevedo, E.O.; Meyers, M.C.; Hayman, M.; Haskin, J. Applying physiological principles and assessment techniques to swimming the English Channel: A case study. J. Sports Med. Phys. Fit. 1997, 37, 78–85. Available online: https://pubmed.ncbi.nlm.nih.gov/9190130/ (accessed on 22 March 2024).
- Derave, W.; Tipton, K.D. Dietary Supplements for Aquatic Sports. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Alfageme, R.; Domínguez, R.; Sanchez-Oliver, A.J.; Tapia-Castillo, P.; Martínez-Sanz, J.M.; Sospedra, I. Analysis of the Consumption of Sports Supplements in Open Water Swimmers According to the Competitive Level. Nutrients 2022, 14, 5211. [Google Scholar] [CrossRef] [PubMed]
- Giráldez-Costas, V.; Del Coso, J.; Mañas, A.; Salinero, J.J. The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review. Nutrients 2023, 15, 1178. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef]
- Forbes, S.C.; Candow, D.G.; Neto, J.H.F.; Kennedy, M.D.; Forbes, J.L.; Machado, M.; Bustillo, E.; Gomez-Lopez, J.; Zapata, A.; Antonio, J. Creatine Supplementation and Endurance Performance: Surges and Sprints to Win the Race. J. Int. Soc. Sports Nutr. 2023, 20, 2204071. [Google Scholar] [CrossRef]
- Fernández-Landa, J.; Calleja-González, J.; León-Guereño, P.; Caballero-García, A.; Córdova, A.; Mielgo-Ayuso, J. Effect of the Combination of Creatine Monohydrate plus Hmb Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review. Nutrients 2019, 11, 2528. [Google Scholar] [CrossRef]
- Persky, A.M.; Berry, N.S.; Pollack, G.M.; Brouwer, K.L.R. Modelling the Cardiovascular Effects of Ephedrine. Br. J. Clin. Pharmacol. 2004, 57, 552–562. [Google Scholar] [CrossRef]
- Gepner, Y.; Varanoske, A.N.; Boffey, D.; Hoffman, J.R. Benefits of β-Hydroxy-β-Methylbutyrate Supplementation in Trained and Untrained Individuals. Res. Sport. Med. 2019, 27, 204–218. [Google Scholar] [CrossRef]
- Fernández-Landa, J.; Todorovic, N.; Santibañez-Gutierrez, A.; Ostojic, S.M.; Calleja-González, J.; Sekulic, D.; Mielgo-Ayuso, J. Effects of HMB on Endurance Performance in a Healthy Population: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2024, 38, E202–E210. [Google Scholar] [CrossRef] [PubMed]
- Juhn, M.S. Popular Sports Supplements and Ergogenic Aids. Sport. Med. 2003, 33, 921–939. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Green, S.; Higgins, J.P. Defining the Review Question and Developing Criteria for Including Studies. In Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; Green, S., Higgins, J.P., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 81–94. [Google Scholar] [CrossRef]
- Horsley, T.; Dingwall, O.; Sampson, M. Checking Reference Lists to Find Additional Studies for Systematic Reviews. Cochrane Database Syst. Rev. 2011, 2011, MR000026. [Google Scholar] [CrossRef] [PubMed]
- Gentles, S.J.; Charles, C.; Ploeg, J.; Ann McKibbon, K. Sampling in Qualitative Research: Insights from an Overview of the Methods Literature. Qual. Rep. 2015, 20, 1772–1789. [Google Scholar] [CrossRef]
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series. Cochrane Handb. Syst. Rev. Interv. Cochrane B. Ser. 2008, 2010, 1–649. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Close, G.L.; Kasper, A.M.; Morton, J.P. From Paper to Podium: Quantifying the Translational Potential of Performance Nutrition Research. Sport. Med. 2019, 49 (Suppl. 1), 25–37. [Google Scholar] [CrossRef]
- Knechtle, B.; Knechtle, P.; Kohler, G. No correlation of anthropometry and race performance in ultra-endurance swimmers at a 12-hours-swim. Anthropol. Anz. 2008, 66, 73–79. [Google Scholar] [CrossRef]
- Knechtle, B.; Baumann, B.; Knechtle, P.; Rosemann, T. Speed during Training and Anthropometric Measures in Relation to Race Performance by Male and Female Open-Water Ultra-Endurance Swimmers. Percept. Mot. Skills 2010, 111, 463–474. [Google Scholar] [CrossRef]
- Knechtle, B.; Baumann, B.; Knechtle, P.; Rosemann, T. What Influences Race Performance in Male Open-Water Ultra-Endurance Swimmers: Anthropometry or Training? Hum. Mov. 2010, 11, 5–10. [Google Scholar] [CrossRef]
- Vanheest, J.L.; Rodgers, C.D.; Mahoney, C.E.; De Souza, M.J. Ovarian Suppression Impairs Sport Performance in Junior Elite Female Swimmers. Med. Sci. Sports Exerc. 2014, 46, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Zamparo, P.; Cortesi, M.; Gatta, G. The Energy Cost of Swimming and Its Determinants. Eur. J. Appl. Physiol. 2020, 120, 41–66. [Google Scholar] [CrossRef]
- Brian, R.H.; David, L.S.; Gordon, H.G. Clinical Epidemiology: How to Do Clinical Practice Research, 3rd ed.; Lippincott Williams & Wilkins (LWW): Philadelphia, PA, USA, 2012. [Google Scholar] [CrossRef]
- Olivo, S.A.; Macedo, L.G.; Gadotti, I.C.; Fuentes, J.; Stanton, T.; Magee, D.J. Scales to Assess the Quality of Randomized Controlled Trials: A Systematic Review. Phys. Ther. 2008, 88, 156–175. [Google Scholar] [CrossRef] [PubMed]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the Quality of Reports of Randomized Clinical Trials: Is Blinding Necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Medbo, J.I.; Mohn, A.C.; Tabata, I.; Bahr, R.; Vaage, O.; Sejersted, O.M. Anaerobic Capacity Determined by Maximal Accumulated O2 Deficit. J. Appl. Physiol. 1988, 64, 50–60. [Google Scholar] [CrossRef]
- Withers, R.T.; Sherman, W.M.; Clark, D.G.; Esselbach, P.C.; Nolan, S.R.; Mackay, M.H.; Brinkman, M. Muscle Metabolism during 30, 60 and 90 s of Maximal Cycling on an Air-Braked Ergometer. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 63, 354–362. [Google Scholar] [CrossRef]
- Ring, S.; Mader, A.; Wirtz, W.; Wilke, K. Energy Metabolism during Sprint Swimming. In Biomechanics and Medicine in Swimming VII; Routledge: London, UK, 1996; pp. 177–184. [Google Scholar]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K.A. Contribution of Phosphocreatine and Aerobic Metabolism to Energy Supply during Repeated Sprint Exercise. J. Appl. Physiol. 1996, 80, 876–884. [Google Scholar] [CrossRef]
- Vallières, F.; Tremblay, A.; St-Jean, L. Study of the Energy Balance and the Nutritional Status of Highly Trained Female Swimmers. Nutr. Res. 1989, 9, 699–708. [Google Scholar] [CrossRef]
- Jones, P.J.H.; Leitch, C.A. Validation of Doubly Labeled Water for Measurement of Caloric Expenditure in Collegiate Swimmers. J. Appl. Physiol. 1993, 74, 2909–2914. [Google Scholar] [CrossRef] [PubMed]
- Alméras, N.; Lemieux, S.; Bouchard, C.; Tremblay, A. Fat Gain in Female Swimmers. Physiol. Behav. 1997, 61, 811–817. [Google Scholar] [CrossRef]
- Trappe, T.A.; Gastaldelli, A.; Jozsi, A.C.; Troup, J.P.; Wolfe, R.R. Energy Expenditure of Swimmers during High Volume Training. Med. Sci. Sports Exerc. 1997, 29, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Ousley-Pahnke, L.; Black, D.R.; Gretebeck, R.J. Dietary Intake and Energy Expenditure of Female Collegiate Swimmers during Decreased Training Prior to Competition. J. Am. Diet. Assoc. 2001, 101, 351–354. [Google Scholar] [CrossRef]
- Hassapidou, M.N.; Manstrantoni, A. Dietary Intakes of Elite Female Athletes in Greece. J. Hum. Nutr. Diet. 2001, 14, 391–396. [Google Scholar] [CrossRef]
- Sato, A.; Shimoyama, Y.; Ishikawa, T.; Murayama, N. Dietary Thiamin and Riboflavin Intake and Blood Thiamin and Riboflavin Concentrations in College Swimmers Undergoing Intensive Training. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 195–204. [Google Scholar] [CrossRef]
- Slattery, K.M.; Jcoutts, A.; Wallace, L.K. Nutritional Practices of Elite Swimmers during an Intensified Training Camp: With Particular Reference to Antioxidants. J. Sports Med. Phys. Fitness 2012, 52, 501–505. [Google Scholar] [PubMed]
- Louise, B. Practical Sports Nutrition; Human Kinetics: Champaign, IL, USA, 2007; Available online: https://books.google.co.ug/books?hl=en&lr=&id=ET5GHcVBHqcC&oi=fnd&pg=PP11&dq=challenges+in+sports+nutrition&ots=Ihuu1mn9MW&sig=3sEFAS4xv2eVUju2nqDTvTmU8Rc&redir_esc=y#v=onepage&q=challenges in sports nutrition&f=false (accessed on 21 March 2024).
- Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested Protein Dose Response of Muscle and Albumin Protein Synthesis after Resistance Exercise in Young Men. Am. J. Clin. Nutr. 2009, 89, 161–168. [Google Scholar] [CrossRef]
- Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Myofibrillar Muscle Protein Synthesis Rates Subsequent to a Meal in Response to Increasing Doses of Whey Protein at Rest and after Resistance Exercise. Am. J. Clin. Nutr. 2014, 99, 86–95. [Google Scholar] [CrossRef]
- Stager, J.M.; Cordain, L.; Becker, T.J. Relationship of Body Composition to Swimming Performance in Female Swimmers. J. Swim. Res. 1884, 1, 21–26. [Google Scholar]
- Chatard, J.C.; Collomp, C.; Maglischo, E.; Maglischo, C. Swimming Skill and Stroking Characteristics of Front Crawl Swimmers. Int. J. Sports Med. 1990, 11, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Siders, W.A.; Lukaski, H.C.; Bolonchuk, W.W. Relationships among Swimming Performance, Body Composition and Somatotype in Competitive Collegiate Swimmers. J. Sports Med. Phys. Fitness 1993, 33, 166–171. [Google Scholar] [PubMed]
- Lowensteyn, I.; Signorile, J.F.; Giltz, K. The Effect of Varying Body Composition on Swimming Performance. J. Strength Cond. Res. 1994, 8, 149–154. [Google Scholar] [CrossRef]
- Pelayo, P.; Sidney, M.; Kherif, T.; Chollet, D.; Tourny, C. Stroking Characteristics in Freestyle Swimming and Relationships with Anthropometric Characteristics. J. Appl. Biomech. 1996, 12, 197–206. [Google Scholar] [CrossRef]
- Strass, D. Effects of Maximal Strength Training on Sprint Performance of Competitive Swimmers. Swim. Sci. V 1988, 18, 149–156. [Google Scholar]
- Dopsaj, M.; Milosevic, M.; Matkovic, I.; Arlov, D.; Blagojevic, M. The Relation between Sprint Ability in Free-style Swimming and Force Characteristics of Different Muscle Groups. Biomech. Med. Swim. VIII 1999, 1998, 203–208. [Google Scholar]
- Nevill, A.M.; Holder, R.L. Invited Review: Modelling Health-Related Performance Indices. Ann. Hum. Biol. 2000, 27, 543–559. [Google Scholar] [CrossRef]
- Mameletzi, D.; Siatras, T.; Tsalis, G.; Kellis, S. The Relationship between Lean Body Mass and Isokinetic Peak Torque of Knee Extensors and Flexors in Young Male and Female Swimmers. Isokinet. Exerc. Sci. 2003, 11, 159–163. [Google Scholar] [CrossRef]
- Geladas, N.D.; Nassis, G.P.; Pavlicevic, S. Somatic and Physical Traits Affecting Sprint Swimming Performance in Young Swimmers. Int. J. Sports Med. 2005, 26, 139–144. [Google Scholar] [CrossRef]
- Barbosa, T.; Fernandes, R.; Keskinen, K.L.; Colaço, P.; Cardoso, C.; Silva, J.; Vilas-Boas, J.P. Evaluation of the Energy Expenditure in Competitive Swimming Strokes. Int. J. Sports Med. 2006, 27, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Pyne, D.B.; Anderson, M.E.; Hopkins, W.G. Monitoring Changes in Lean Mass of Elite Male and Female Swimmers. Int. J. Sports Physiol. Perform. 2006, 1, 14–26. [Google Scholar] [CrossRef]
- Junior, A.G.B.; Popov, I.I.; Bulgakova, N. Trajectoty of development of morfofunctionals pointers as criteria of identification of the sports talent in swimming. Fit. Perform. J. 2007, 6, 382. Available online: https://openurl.ebsco.com/EPDB%3Agcd%3A3%3A16003651/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A35447221&crl=c (accessed on 21 February 2024). [CrossRef]
- Jürimäe, J.; Haljaste, K.; Cicchella, A.; Lätt, E.; Purge, P.; Leppik, A.; Jürimäe, T. Analysis of Swimming Performance from Physical, Physiological, and Biomechanical Parameters in Young Swimmers. Pediatr. Exerc. Sci. 2007, 19, 70–81. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Bragada, J.A.; Reis, V.M.; Marinho, D.A.; Carvalho, C.; Silva, A.J. Energetics and Biomechanics as Determining Factors of Swimming Performance: Updating the State of the Art. J. Sci. Med. Sport 2010, 13, 262–269. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Escalante, Y.; Rodríguez, F.A. A Multivariate Analysis of Performance in Young Swimmers. Pediatr. Exerc. Sci. 2010, 22, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Lätt, E.; Jürimäe, J.; Mäestu, J.; Purge, P.; Rämson, R.; Haljaste, K.; Keskinen, K.L.; Rodriguez, F.A.; Jürimäe, T. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. J. Sports Sci. Med. 2010, 9, 398–404. Available online: https://pubmed.ncbi.nlm.nih.gov/24149633/ (accessed on 26 February 2024). [PubMed]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and Power Predictors of Swimming Starts in International Sprint Swimmers. J. Strength Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef]
- Kjendlie, P.L.; Stallman, R. Morphology and Swimming Performance. In World Book of Swimming: From Science to Performance; Seifert, L., Chollet, D., Mujika, I., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 203–221. [Google Scholar]
- Perez, A.J.; Bassini, C.F.; Pereira, B.M.F.; Sarro, K.J. Correlação Entre Variáveis Antropométricas E O Comprimento E a Frequência Da Braçada. Rev. Mackenzie Educ. Física Eporte 2011, 10, 19–27. Available online: https://www.researchgate.net/publication/264672480_CORRELACAO_ENTRE_VARIAVEIS_ANTROPOMETRICAS_E_O_COMPRIMENTO_E_A_FREQUENCIA_DA_BRACADA_DE_NADADORES_DO_ESPIRITO_SANTO (accessed on 26 February 2024).
- Zuniga, J.; Housh, T.J.; Michelle, M.; Hendrix, C.R.; Camic, C.L.; Johnson, G.O.; Housh, D.J.; Schmidt, R.J. Gender Comparisons of Anthropometric Characteristics of Young Sprint Swimmers. J. Strength Cond. Res. 2011, 25, 103–108. [Google Scholar] [CrossRef]
- Morouço, P.; Keskinen, K.L.; Vilas-Boas, J.P.; Fernandes, R.J. Relationship between Tethered Forces and the Four Swimming Techniques Performance. J. Appl. Biomech. 2011, 27, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.G.; Marinho, D.A.; Amaro, N.M.; Peréz-Turpin, J.A.; Marques, M.C. Effects of Dry-Land Strength Training on Swimming Performance: A Brief Review. J. Hum. Sport Exerc. 2012, 7, 553–559. [Google Scholar] [CrossRef]
- Miller, T. NSCA’s Guide to Tests and Assessments; Human Kinetics: Champaign, LI, USA, 2012; pp. 304–315. [Google Scholar]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference Values for Body Composition and Anthropometric Measurements in Athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef]
- Ćopić, N.; Dopsaj, M.; Ivanović, J.; Nešić, G.; Jarić, S. Body Composition and Muscle Strength Predictors of Jumping Performance: Differences between Elite Female Volleyball Competitors and Nontrained Individuals. J. Strength Cond. Res. 2014, 28, 2709–2716. [Google Scholar] [CrossRef] [PubMed]
- Moura, T.; Costa, M.; Oliveira, S.; Júnior, M.B.; Ritti-Dias, R.; Santos, M. Height and Body Composition Determine Arm Propulsive Force in Youth Swimmers Independent of a Maturation Stage. J. Hum. Kinet. 2014, 42, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Gatta, G.; Cortesi, M.; Fantozzi, S.; Zamparo, P. Planimetric Frontal Area in the Four Swimming Strokes: Implications for Drag, Energetics and Speed. Hum. Mov. Sci. 2015, 39, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Bond, D.; Goodson, L.; Oxford, S.W.; Nevill, A.M.; Duncan, M.J. The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers. Sports 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Nasirzade, A.; Sadeghi, H.; Sobhkhiz, A.; Mohammadian, K.; Nikouei, A.; Baghaiyan, M.; Fattahi, A. Multivariate analysis of 200-m front crawl swimming performance in young male swimmers. Acta Bioeng. Biomech. 2015, 17, 137–143. [Google Scholar] [CrossRef]
- Nevill, A.M.; Oxford, S.W.; Duncan, M.J. Optimal Body Size and Limb Length Ratios Associated with 100-m Personal-Best Swim Speeds. Med. Sci. Sports Exerc. 2015, 47, 1714–1718. [Google Scholar] [CrossRef]
- Gatta, G.; Cortesi, M.; Zamparo, P. The Relationship between Power Generated by Thrust and Power to Overcome Drag in Elite Short Distance Swimmers. PLoS ONE 2016, 11, e0162387. [Google Scholar] [CrossRef]
- Roelofs, E.J.; Smith-Ryan, A.E.; Trexler, E.T.; Hirsch, K.R. Seasonal Effects on Body Composition, Muscle Characteristics, and Performance of Collegiate Swimmers and Divers. J. Athl. Train. 2017, 52, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Silva, A.J.; Marinho, D.A.; Lopes, V.P.; Barbosa, T.M. Determinant Factors of Long-Term Performance Development in Young Swimmers. Int. J. Sports Physiol. Perform. 2017, 12, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Sammoud, S.; Nevill, A.M.; Negra, Y.; Bouguezzi, R.; Helmi, C.; Hachana, Y. Key Somatic Variables in Young Backstroke Swimmers. J. Sports Sci. 2019, 37, 1162–1167. [Google Scholar] [CrossRef]
- Ortiz, E.M.; Colomina, R.A. Regression Analysis Model Applied to Age-Group Swimmers: 50 m Race Component Times Analysis. J. Hum. Sport Exerc. 2019, 14, 315–324. [Google Scholar] [CrossRef]
- Cortesi, M.; Gatta, G.; Michielon, G.; Di Michele, R.; Bartolomei, S.; Scurati, R. Passive Drag in Young Swimmers: Effects of Body Composition, Morphology and Gliding Position. Int. J. Environ. Res. Public Health 2020, 17, 2002. [Google Scholar] [CrossRef] [PubMed]
- Troup, J.P.; Barzdukas, A.; Trappe, S. Adjustment to Maximal Work Intensity during Interval Swimming Using Various Work:Rest Ratios. In Biomechanics and Medicine in Swimming. Swimming Science VI; MacLaren, D., Reilly, T., Lees, A., Eds.; Taylor & Francis: Abingdon, UK, 1992; pp. 263–269. [Google Scholar]
- dos Santos, M.A.M.; Henrique, R.S.; Salvina, M.; Silva, A.H.O.; Junior, M.A.d.V.C.; Queiroz, D.R.; Duncan, M.J.; Maia, J.A.R.; Nevill, A.M. The Influence of Anthropometric Variables, Body Composition, Propulsive Force and Maturation on 50 m Freestyle Swimming Performance in Junior Swimmers: An Allometric Approach. J. Sports Sci. 2021, 39, 1615–1620. [Google Scholar] [CrossRef]
- Espada, M.C.; Ferreira, C.C.; Gamonales, J.M.; Hernández-Beltrán, V.; Massini, D.A.; Macedo, A.G.; Almeida, T.A.F.; Castro, E.A.; Pessôa Filho, D.M. Body Composition Relationship to Performance, Cardiorespiratory Profile, and Tether Force in Youth Trained Swimmers. Life 2023, 13, 1806. [Google Scholar] [CrossRef]
- Norton, K.; Marfell-Jones, M.; Whittingham, N.; Kerr, D.; Carter, L.; Saddington, K.; Gore, C. Anthropometric Assessment Protocols, Third edit; Canberra Australian Sports Commission: Bruce, Australia, 2000.
- Bogdanis, G.C.; Nevill, M.E.; Lakomy, H.K.A.; Boobis, L.H. Power Output and Muscle Metabolism during and Following Recovery from 10 and 20 s of Maximal Sprint Exercise in Humans. Acta Physiol. Scand. 1998, 163, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Troup, J. Measurement of Swimming Anaerobic Capacity. Colorado Springs: International Center for Aquatic Research Annual; United States Swimming Press: Springs, CO, USA, 1990; Volume 1, pp. 9–15. [Google Scholar]
- Ogita, F.; Onodera, T.; Tamaki, H.; Toussaint, H.; Hollander, P.; Wakayoshi, K. Metabolic Profile during Exhaustive Arm Stroke, Leg Kick and Whole Body Swimming Lasting 15 s to 10 min. Biomech. Med. Swim. IX 2003, 361–366. [Google Scholar]
- Rodríguez, F.A.; Mader, A. World Book of Swimming: From Science to Performance; Seifert, L., Chollet, D.M.I., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2011. [Google Scholar]
- Troup, J.P.; Hollander, A.P.; Bone, M.; Trappe, S.; Barzdukas, A.P. Performance Related Differences in the Anaerobic Contribution of Competitive Freestyle Swimmers. In Biomechanics and Medicine in Swimming V1; Taylor & Francis: Abingdon, UK, 2013; pp. 231–237. [Google Scholar]
- Berning, J.R.; Troup, J.P.; VanHandel, P.J.; Daniels, J.; Daniels, N. The Nutritional Habits of Young Adolescent Swimmers. Int. J. Sport Nutr. 1991, 1, 240–248. [Google Scholar] [CrossRef]
- Kabasakalis, A.; Kalitsis, K.; Tsalis, G.; Mougios, V. Imbalanced Nutrition of Top-Level Swimmers. Int. J. Sports Med. 2007, 28, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Noland, R.C.; Baker, J.T.; Boudreau, S.R.; Kobe, R.W.; Tanner, C.J.; Hickner, R.C.; McCammon, M.R.; Houmard, J.A. Effect of Intense Training on Plasma Leptin in Male and Female Swimmers. Med. Sci. Sports Exerc. 2001, 33, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Barr, S.I.; Costill, D.L. Effect of Increased Training Volume on Nutrient Intake of Male Collegiate Swimmers. Int. J. Sports Med. 1992, 13, 47–51. [Google Scholar] [CrossRef]
- Costill, D.L.; Flynn, M.G.; Kirwan, J.P.; Houmard, J.A.; Mitchell, J.B.; Thomas, R.; Park, S.H. Effects of Repeated Days of Intensified Training on Muscle Glycogen and Swimming Performance. Med. Sci. Sports Exerc. 1988, 20, 249–254. [Google Scholar] [CrossRef]
- Costill, D.L.; Kovaleski, J.; Porter, D.; Kirwan, J.; Fielding, R.; King, D. Energy Expenditure during Front Crawl Swimming: Predicting Success in Middle-Distance Events. Int. J. Sports Med. 1985, 6, 266–270. [Google Scholar] [CrossRef]
- Zamparo, P.; Capelli, C.; Pendergast, D. Energetics of Swimming: A Historical Perspective. Eur. J. Appl. Physiol. 2011, 111, 367–378. [Google Scholar] [CrossRef]
- Lambert, C.P.; Robergs, R.A.; Pascoe, D.D.; Zachwieja, J.J.; Costill, D.L. 492 Does Increased Training Volume Improve Indices of Swimming Performance? Med. Sci. Sport. Exerc. 1990, 22, S82. [Google Scholar] [CrossRef]
- White, L.J.; Dressendorfer, R.H.; Holland, E.; McCoy, S.C.; Ferguson, M.A. Increased Caloric Intake Soon after Exercise in Cold Water. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 38–47. [Google Scholar] [CrossRef]
- Lamb, D.R.; Rinehardt, K.F.; Bartels, R.L.; Sherman, W.M.; Snook, J.T. Dietary Carbohydrate and Intensity of Interval Swim Training. Am. J. Clin. Nutr. 1990, 52, 1058–1063. [Google Scholar] [CrossRef]
- Frączek, B.; Grzelak, A.; Klimek, A.T. Analysis of Daily Energy Expenditure of Elite Athletes in Relation to Their Sport, the Measurement Method and Energy Requirement Norms. J. Hum. Kinet. 2019, 70, 81–92. [Google Scholar] [CrossRef]
- Jagim, A.R.; Jones, M.T.; Askow, A.T.; Luedke, J.; Erickson, J.L.; Fields, J.B.; Kerksick, C.M. Sex Differences in Resting Metabolic Rate among Athletes and Association with Body Composition Parameters: A Follow-Up Investigation. J. Funct. Morphol. Kinesiol. 2023, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Arciero, P.J.; Miller, V.J.; Ward, E. Performance Enhancing Diets and the PRISE Protocol to Optimize Athletic Performance. J. Nutr. Metab. 2015, 2015, 715859. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.J.; Cardoso, C.S.; Soares, S.M.; Ascensao, A.; Colaço, P.J.; Vilas-Boas, J.P. Time Limit and VO2 Slow Component at Intensities Corresponding to VO2max in Swimmers. Int. J. Sports Med. 2003, 24, 576–581. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, K.; Sousa, A.; de Jesus, K.; Ribeiro, J.; Machado, L.; Rodríguez, F.; Keskinen, K.; Vilas-Boas, J.P.; Fernandes, R.J. The Effects of Intensity on (Formula Presented.) Kinetics during Incremental Free Swimming. Appl. Physiol. Nutr. Metab. 2015, 40, 918–923. [Google Scholar] [CrossRef]
- Capelli, C.; Pendergast, D.R.; Termin, B. Energetics of Swimming at Maximal Speeds in Humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 385–393. [Google Scholar] [CrossRef]
- Avlonitou, E.; Georgiou, E.; Douskas, C.; Louizi, A. Estimation of Body Composition in Competitive Swimmers by Means of Three Different Techniques. Int. J. Sports Med. 1997, 18, 363–368. [Google Scholar] [CrossRef]
- Chatard, J.C.; Stewart, A.M. Training Load and Performance in Swimming. In World Book of Swimming: From Science to Performance; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 359–373. [Google Scholar]
- Gastin, P.B. Energy System Interaction and Relative Contribution during Maximal Exercise. Sport. Med. 2001, 31, 725–741. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, L.J.C.; Greenhaff, P.L.; Constantin-Teodosiu, D.; Saris, W.H.M.; Wagenmakers, A.J.M. The Effects of Increasing Exercise Intensity on Muscle Fuel Utilisation in Humans. J. Physiol. 2001, 536, 295–304. [Google Scholar] [CrossRef]
- Di Prampero, P.E. The Energy Cost of Human Locomotion on Land and in Water. Int. J. Sports Med. 1986, 7, 55–72. [Google Scholar] [CrossRef]
- Cermak, N.M.; Van Loon, L.J.C. The Use of Carbohydrates during Exercise as an Ergogenic Aid. Sport. Med. 2013, 43, 1139–1155. [Google Scholar] [CrossRef]
- Pelarigo, J.G.; Machado, L.; Fernandes, R.J.; Greco, C.C.; Vilas-Boas, J.P. Oxygen Uptake Kinetics and Energy System’s Contribution around Maximal Lactate Steady State Swimming Intensity. PLoS ONE 2017, 12, e0167263. [Google Scholar] [CrossRef] [PubMed]
- Neumann, G.; Pfützner, A.; Berbalk, A. Successful Endurance Training; Meyer & Meyer Verlag: Aachen, Germany, 1999; p. 320. [Google Scholar]
- Patel, H.; Alkhawam, H.; Madanieh, R.; Shah, N.; Kosmas, C.E.; Vittorio, T.J. Aerobic vs Anaerobic Exercise Training Effects on the Cardiovascular System. World J. Cardiol. 2017, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.; Daniels, N. Running economy of elite male and elite female runners. Med. Sci. Sports Exerc. 1992, 24, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.V.; Vandenbogaerde, T.J.; Hopkins, W.G. Career Performance Trajectories of Olympic Swimmers: Benchmarks for Talent Development. Eur. J. Sport Sci. 2014, 14, 643–651. [Google Scholar] [CrossRef]
- Avlonitou, E. Maximal Lactate Values Following Competitive Performance Varying According to Age, Sex and Swimming Style. J. Sports Med. Phys. Fitness 1996, 36, 24–30. [Google Scholar]
- Mavroudi, M.; Kabasakalis, A.; Petridou, A.; Mougios, V. Blood Lactate and Maximal Lactate Accumulation Rate at Three Sprint Swimming Distances in Highly Trained and Elite Swimmers. Sports 2023, 11, 87. [Google Scholar] [CrossRef]
- Venckunas, T.; Achramavicius, J. Higher Blood Lactate with Prolongation of Underwater Section in Submaximal Front-Crawl Swimming. Sports 2024, 12, 121. [Google Scholar] [CrossRef]
- Muscella, A.; Stefàno, E.; Lunetti, P.; Capobianco, L.; Marsigliante, S. The Regulation of Fat Metabolism during Aerobic Exercise. Biomolecules 2020, 10, 1699. [Google Scholar] [CrossRef]
- De Cort, S.C.; Innes, J.A.; Barstow, T.J.; Guz, A. Cardiac Output, Oxygen Consumption and Arteriovenous Oxygen Difference Following a Sudden Rise in Exercise Level in Humans. J. Physiol. 1991, 441, 501–512. [Google Scholar] [CrossRef]
- Bae, W.R.; Seo, Y.; Yun, S.; Lee, D.T. Determination of Moderate Walking Intensity Using Step Rate and VO2 Reserve in Healthy Men. BMC Public Health 2024, 24, 403. [Google Scholar] [CrossRef]
- Matt Denning, W.; Bressel, E.; Dolny, D.; Bressel, M.; Seeley, M.K. A Review of Biophysical Differences between Aquatic and Land-Based Exercise. Int. J. Aquat. Res. Educ. 2012, 6, 46–67. [Google Scholar] [CrossRef]
- Pinto, S.S.; Alberton, C.L.; Zaffari, P.; Cadore, E.L.; Kanitz, A.C.; Liedtke, G.V.; Tartaruga, M.P.; Kruel, L.F.M. Rating of Perceived Exertion and Physiological Responses in Water-Based Exercise. J. Hum. Kinet. 2015, 49, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, C.M.; Steiper, M.E.; Pontzer, H. Elite Swimmers Do Not Exhibit a Body Mass Index Trade-off across a Wide Range of Event Distances. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180684. [Google Scholar] [CrossRef] [PubMed]
- Pendergast, D.R.; Di Prampero, P.E.; Craig, A.B.; Wilson, D.R.; Rennie, D.W. Quantitative Analysis of the Front Crawl in Men and Women. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 475–479. [Google Scholar] [CrossRef]
- Lavoie, J.M.; Montpetit, R.R. Applied Physiology of Swimming. Sport. Med. An Int. J. Appl. Med. Sci. Sport Exerc. 1986, 3, 165–189. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Clemente, F.M.; Lima, R.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The Effect of Plyometric Training in Volleyball Players: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 2960. [Google Scholar] [CrossRef]
- Seene, T.; Alev, K.; Kaasik, P.; Pehme, A.; Parring, A.M. Endurance Training: Volume-Dependent Adaptational Changes in Myosin. Int. J. Sports Med. 2005, 26, 815–821. [Google Scholar] [CrossRef]
- Carbuhn, A.F.; Fernandez, T.E.; Bragg, A.F.; Green, J.S.; Crouse, S.F. Sport and Training Influence Bone and Body Composition in Women Collegiate Athletes. J. Strength Cond. Res. 2010, 24, 1710–1717. [Google Scholar] [CrossRef]
- Strzała, M.; Stanula, A.; Krężałek, P.; Sadowski, W.; Wilk, R.; Pałka, T.; Sokołowski, K.; Radecki-Pawlik, A. Body Composition and Specific and General Strength Indices as Predictors of 100-m Front Crawl Performance. Acta Bioeng. Biomech. 2020, 22, 51–60. [Google Scholar] [CrossRef]
- Cochrane, K.C.; Housh, T.J.; Smith, C.M.; Hill, E.C.; Jenkins, N.D.M.; Johnson, G.O.; Housh, D.J.; Schmidt, R.J.; Cramer, J.T. Relative Contributions of Strength, Anthropometric, and Body Composition Characteristics to Estimated Propulsive Force in Young Male Swimmers. J. Strength Cond. Res. 2015, 29, 1473–1479. [Google Scholar] [CrossRef]
- Veronese da Costa, A.; dos Santos, M.A.; Barbosa, J.; Costa, M.D.C.; Melo, W.V.D.C. Estimate of Propulsive Force in Front Crawl Swimming in Young Athletes. Open Access J. Sport. Med. 2012, 3, 115. [Google Scholar] [CrossRef] [PubMed]
- Hawes, M.R.; Sovak, D. Morphological Prototypes, Assessment and Change in Elite Athletes. J. Sports Sci. 1994, 12, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Piras, A.; Raffi, M.; Toselli, S. Functional Movement Patterns and Body Composition of High-Level Volleyball, Soccer, and Rugby Players. J. Sport Rehabil. 2019, 28, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Dopsaj, M.; Zuoziene, I.J.; Milić, R.; Cherepov, E.; Erlikh, V.; Masiulis, N.; Di Nino, A.; Vodičar, J. Body Composition in International Sprint Swimmers: Are There Any Relations with Performance? Int. J. Environ. Res. Public Health 2020, 17, 9464. [Google Scholar] [CrossRef]
- Almeida, T.A.F.; Pessôa Filho, D.M.; Espada, M.C.; Reis, J.F.; Sancassani, A.; Massini, D.A.; Santos, F.J.; Alves, F.B. Physiological Responses During High-Intensity Interval Training in Young Swimmers. Front. Physiol. 2021, 12, 662029. [Google Scholar] [CrossRef]
- Kolmogorov, S.; Vorontsov, A.; Vilas-boas, J.P. Metabolic Power, Active Drag, Mechanical and Propelling Efficiency of Elite Swimmers at 100 Meter Events in Different Competitive Swimming Techniques. Appl. Sci. 2021, 11, 8511. [Google Scholar] [CrossRef]
- Massini, D.A.; Almeida, T.A.F.; Vasconcelos, C.M.T.; Macedo, A.G.; Espada, M.A.C.; Reis, J.F.; Alves, F.J.B.; Fernandes, R.J.P.; Pessôa Filho, D.M. Are Young Swimmers Short and Middle Distances Energy Cost Sex-Specific? Front. Physiol. 2021, 12, 796886. [Google Scholar] [CrossRef]
- Anderson, T.; Lane, A.R.; Hackney, A.C. Cortisol and Testosterone Dynamics Following Exhaustive Endurance Exercise. Eur. J. Appl. Physiol. 2016, 116, 1503–1509. [Google Scholar] [CrossRef]
- Anderson, M.E.; Hopkins, W.G.; Roberts, A.D.; Pyne, D.B. Monitoring Seasonal and Long-Term Changes in Test Performance in Elite Swimmers. Eur. J. Sport Sci. 2006, 6, 145–154. [Google Scholar] [CrossRef]
- Petersen, H.L.; Peterson, C.T.; Reddy, M.B.; Hanson, K.B.; Swain, J.H.; Sharp, R.L.; Alekel, D.L. Body Composition, Dietary Intake, and Iron Status of Female Collegiate Swimmers and Divers. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 281–295. [Google Scholar] [CrossRef]
- Meleski, B.W.; Malina, R.M. Changes in Body Composition and Physique of Elite University-Level Female Swimmers during a Competitive Season. J. Sports Sci. 1985, 3, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Silva, A.J.; Marinho, D.A.; Marques, M.C.; Barbosa, T.M. Effect of a Specific Concurrent Water and Dry-Land Training over a Season in Young Swimmers’ Performance. Int. J. Perform. Anal. Sport 2016, 16, 761–775. [Google Scholar] [CrossRef]
- Nevill, A.M.; Negra, Y.; Myers, T.D.; Sammoud, S.; Chaabene, H. Key Somatic Variables Associated with, and Differences between the 4 Swimming Strokes. J. Sports Sci. 2020, 38, 787–794. [Google Scholar] [CrossRef]
- Sammoud, S.; Nevill, A.M.; Negra, Y.; Bouguezzi, R.; Chaabene, H.; Hachana, Y. Allometric Associations between Body Size, Shape, and 100-m Butterfly Speed Performance. J. Sports Med. Phys. Fitness 2018, 58, 630–637. [Google Scholar] [CrossRef]
- Negra, Y.; Chaabene, H.; Hammami, M.; Amara, S.; Sammoud, S.; Mkaouer, B.; Hachana, Y. Agility in Young Athletes: Is It a Different Ability From Speed and Power? J. strength Cond. Res. 2017, 31, 727–735. [Google Scholar] [CrossRef]
- Caputo, F.; De Oliveira, M.F.M.; Denadai, B.S.; Greco, C.C. Fatores Intrínsecos Do Custo Energético Da Locomoção Durante a Natação. Rev. Bras. Med. do Esporte 2006, 12, 399–404. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Physical development and swimming performance during biological maturation in young female swimmers. Coll. Antropol. 2009, 33, 117–122. Available online: https://pubmed.ncbi.nlm.nih.gov/19408614/ (accessed on 29 February 2024).
- Navarro, F.; Castañón Castañon, F.J.; Oca, A.; Navarro, N.V. El Entrenamiento Del Nadador Joven; Gymnos Publishing: Porto, Portugal, 2003. [Google Scholar]
- De Ioannon, G.; Cibelli, G.; Mignardi, S.; Antonelli, A.; Capranica, L.; Piacentini, M.F. Pacing and Mood Changes While Crossing the Adriatic Sea from Italy to Albania: A Case Study. Int. J. Sports Physiol. Perform. 2015, 10, 520–523. [Google Scholar] [CrossRef]
- Baldassarre, R.; Bonifazi, M.; Zamparo, P.; Piacentini, M.F. Characteristics and Challenges of Open-Water Swimming Performance: A Review. Int. J. Sports Physiol. Perform. 2017, 12, 1275–1284. [Google Scholar] [CrossRef]
- Pla, R.; Raineteau, Y.; Barbier, X.; Aubry, A. Physiological Key Determinants of Elite Open-Water Swimmers. Physiologia 2024, 4, 305–316. [Google Scholar] [CrossRef]
- Morais, J.E.; Barbosa, T.M.; Garrido, N.D.; Cirilo-Sousa, M.S.; Silva, A.J.; Marinho, D.A. Agreement between Different Methods to Measure the Active Drag Coefficient in Front-Crawl Swimming. J. Hum. Kinet. 2023, 86, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ali Khan, J.; Raman, A.M.; Sambamoorthy, N.; Prashanth, K. Research Methodology (Methods, Approaches and Techniques); San International Scientific Publications: Marthandam, India, 2023. [Google Scholar] [CrossRef]
- Cullen, S.; Fleming, J.; Logue, D.M.; O’connor, J.; Connor, B.; Cleary, J.; Watson, J.A.; Madigan, S.M. Anthropometric Profiles of Elite Athletes. J. Hum. Sport Exerc. 2022, 17, 145–155. [Google Scholar] [CrossRef]
- Ballard, R.J.; Dewanti, R.A.; Sayuti, S.; Umar, N. Correlation between Sum of 8 Skinfolds to Predicted % Body Fat Range as a Reliable Measure of Body Composition Assessment for Well-Trained Athletes. Asian Soc. Sci. 2014, 10, 12–21. [Google Scholar] [CrossRef]
- Costill, D.L.; Hinrichs, D.; Fink, W.J.; Hoopes, D. Muscle Glycogen Depletion during Swimming Interval Training. J. Swim. Res. 1988, 4, 15–18. [Google Scholar]
- Hawley, J.A.; Schabort, E.J.; Noakes, T.D.; Dennis, S.C. Carbohydrate-Loading and Exercise Performance. Sport. Med. 1997, 24, 73–81. [Google Scholar] [CrossRef]
- Mata, F.; Valenzuela, P.L.; Gimenez, J.; Tur, C.; Ferreria, D.; Domínguez, R.; Sanchez-Oliver, A.J.; Sanz, J.M.M. Carbohydrate Availability and Physical Performance: Physiological Overview and Practical Recommendations. Nutrients 2019, 11, 1084. [Google Scholar] [CrossRef]
- Bussau, V.A.; Fairchild, T.J.; Rao, A.; Steele, P.; Fournier, P.A. Carbohydrate Loading in Human Muscle: An Improved 1 Day Protocol. Eur. J. Appl. Physiol. 2002, 87, 290–295. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Zawada, C.; Richmond, L.B.; Carter, S.; Shearer, J.; Graham, T.; Phillips, S.M. Gender Differences in Carbohydrate Loading Are Related to Energy Intake. J. Appl. Physiol. 2001, 91, 225–230. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011, 29 (Suppl. 1), S17–S27. [Google Scholar] [CrossRef]
- Martín-Rodríguez, A.; Belinchón-deMiguel, P.; Rubio-Zarapuz, A.; Tornero-Aguilera, J.F.; Martínez-Guardado, I.; Villanueva-Tobaldo, C.V.; Clemente-Suárez, V.J. Advances in Understanding the Interplay between Dietary Practices, Body Composition, and Sports Performance in Athletes. Nutrients 2024, 16, 571. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Millet, G.; Tarnopolsky, M.A. Nutrition for Distance Events. J. Sports Sci. 2007, 25 (Suppl. 1), 29–38. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.T.; Veniamakis, E.; Rosemann, T.; Knechtle, B. Nutrition in Ultra-Endurance: State of the Art. Nutrients 2018, 10, 1995. [Google Scholar] [CrossRef]
- Pérez-Castillo, Í.M.; Williams, J.A.; López-Chicharro, J.; Mihic, N.; Rueda, R.; Bouzamondo, H.; Horswill, C.A. Compositional Aspects of Beverages Designed to Promote Hydration Before, During, and After Exercise: Concepts Revisited. Nutrients 2024, 16, 17. [Google Scholar] [CrossRef]
- Knechtle, B.; Schulze, I. Nutritional Behaviours in Ultra-Endurance Runners--Deutschlandlauf 2006. Praxis 2008, 97, 243–251. [Google Scholar] [CrossRef]
- Knez, W.L.; Peake, J.M. The Prevalence of Vitamin Supplementation in Ultraendurance Triathletes. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.; Hughes, J.; Della Gatta, P.A.; Mason, S.; Lamon, S.; Russell, A.P.; Wadley, G.D. Vitamin C and E Supplementation Prevents Some of the Cellular Adaptations to Endurance-Training in Humans. Free Radic. Biol. Med. 2015, 89, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.A.; Kelton, R.; Nismo, M.L. Mitochondrial Actaptations to Chronic Muscle Use: Effect of Iron Deficiency. Comp. Biochem. Physiol. Part A Physiol. 1992, 101, 597–605. [Google Scholar] [CrossRef]
- Deakin, V. Iron Depletion in Athletes. Clin. Sports Nutr. 2006, 3, 263–312. [Google Scholar]
- Yong Yong, G.; Yin Ler, H. Effects Of Different Dosage of Sodium Bicarbonate On 200-M Freestyle Swimming Performance In Recreational Swimmers. Int. J. Life Sci. Pharma Res. 2018, 66–71. [Google Scholar]
- McClung, M.; Collins, D. “Because I Know It Will!”: Placebo Effects of an Ergogenic Aid on Athletic Performance. J. Sport Exerc. Psychol. 2007, 29, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Lindh, A.M.; Peyrebrune, M.C.; Ingham, S.A.; Bailey, D.M.; Folland, J.P. Sodium Bicarbonate Improves Swimming Performance. Int. J. Sports Med. 2008, 29, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Pruscino, C.L.; Ross, M.L.R.; Gregory, J.R.; Savage, B.; Flanagan, T.R. Effects of Sodium Bicarbonate, Caffeine, and Their Combination on Repeated 200-m Freestyle Performance. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.; Cholewa, J.; Poprzecki, S.; Waśkiewicz, Z.; Langfort, J. Effects of sodium bicarbonate ingestion on swim performance in youth athletes. J. Sports Sci. Med. 2009, 8, 45–50. Available online: https://pubmed.ncbi.nlm.nih.gov/24150555/ (accessed on 22 March 2024). [PubMed]
- Siegler, J.C.; Gleadall-Siddall, D.O. Sodium Bicarbonate Ingestion and Repeated Swim Sprint Performance. J. Strength Cond. Res. 2010, 24, 3105–3111. [Google Scholar] [CrossRef]
- Kilding, A.E.; Overton, C.; Gleave, J. Effects of Caffeine, Sodium Bicarbonate, and Their Combined Ingestion on High-Intensity Cycling Performance. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 175–183. [Google Scholar] [CrossRef]
- Joyce, S.; Minahan, C.; Anderson, M.; Osborne, M. Acute and Chronic Loading of Sodium Bicarbonate in Highly Trained Swimmers. Eur. J. Appl. Physiol. 2012, 112, 461–469. [Google Scholar] [CrossRef]
- Kupcis, P.D.; Slater, G.J.; Pruscino, C.L.; Kemp, J.G. Influence of Sodium Bicarbonate on Performance and Hydration in Lightweight Rowing. Int. J. Sports Physiol. Perform. 2012, 7, 11–18. [Google Scholar] [CrossRef]
- Tobias, G.; Benatti, F.B.; De Salles Painelli, V.; Roschel, H.; Gualano, B.; Sale, C.; Harris, R.C.; Lancha, A.H.; Artioli, G.G. Additive Effects of Beta-Alanine and Sodium Bicarbonate on Upper-Body Intermittent Performance. Amino Acids 2013, 45, 309–317. [Google Scholar] [CrossRef]
- Mero, A.A.; Hirvonen, P.; Saarela, J.; Hulmi, J.J.; Hoffman, J.R.; Stout, J.R. Effect of Sodium Bicarbonate and Beta-Alanine Supplementation on Maximal Sprint Swimming. J. Int. Soc. Sports Nutr. 2013, 10, 52. [Google Scholar] [CrossRef]
- Mueller, S.M.; Gehrig, S.M.; Frese, S.; Wagner, C.A.; Boutellier, U.; Toigo, M. Multiday Acute Sodium Bicarbonate Intake Improves Endurance Capacity and Reduces Acidosis in Men. J. Int. Soc. Sports Nutr. 2013, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Driller, M.W.; Gregory, J.R.; Williams, A.D.; Fell, J.W. The Effects of Chronic Sodium Bicarbonate Ingestion and Interval Training in Highly Trained Rowers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Hobson, R.M.; Harris, R.C.; Martin, D.; Smith, P.; Macklin, B.; Gualano, B.; Sale, C. Effect of β-Alanine, with & without Sodium Bicarbonate, on 2000 m Rowing Performance. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Hobson, R.M.; Harris, R.C.; Martin, D.; Smith, P.; Macklin, B.; Elliott-Sale, K.J.; Sale, C. Effect of Sodium Bicarbonate Supplementation on 2000-m Rowing Performance. Int. J. Sports Physiol. Perform. 2014, 9, 139–144. [Google Scholar] [CrossRef]
- Stöggl, T.; Torres-Peralta, R.; Cetin, E.; Nagasaki, M. Repeated High Intensity Bouts with Long Recovery: Are Bicarbonate or Carbohydrate Supplements an Option? Sci. World J. 2014, 2014, 145747. [Google Scholar] [CrossRef]
- Christensen, P.M.; Petersen, M.H.; Friis, S.N.; Bangsbo, J. Caffeine, but Not Bicarbonate, Improves 6 Min Maximal Performance in Elite Rowers. Appl. Physiol. Nutr. Metab. 2014, 39, 1058–1063. [Google Scholar] [CrossRef]
- Egger, F.; Meyer, T.; Such, U.; Hecksteden, A. Effects of Sodium Bicarbonate on High-Intensity Endurance Performance in Cyclists: A Double-Blind, Randomized Cross-over Trial. PLoS ONE 2014, 9, e114729. [Google Scholar] [CrossRef]
- Thomas, C.; Delfour-Peyrethon, R.; Bishop, D.J.; Perrey, S.; Leprêtre, P.M.; Dorel, S.; Hanon, C. Effects of Pre-Exercise Alkalosis on the Decrease in VO2 at the End of All-out Exercise. Eur. J. Appl. Physiol. 2016, 116, 85–95. [Google Scholar] [CrossRef]
- Freis, T.; Hecksteden, A.; Such, U.; Meyer, T. Effect of Sodium Bicarbonate on Prolonged Running Performance: A Randomized, Double-Blind, Cross-over Study. PLoS ONE 2017, 12, e0182158. [Google Scholar] [CrossRef]
- Gao, J.; Costill, D.L.; Horswill, C.A.; Park, S.H. Sodium Bicarbonate Ingestion Improves Performance in Interval Swimming. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 58, 171–174. [Google Scholar] [CrossRef]
- Pierce, E.F.; Eastman, N.W.; Hammer, W.H.; Lynn, T.D. Effect of Induced Alkalosis on Swimming Time Trials. J. Sports Sci. 1992, 10, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.Z.; Sangali, E.B.; Neto, J.G.; Gobbi, R.B.; Freitas, I.F.; Papoti, M. Effects of Sodium Bicarbonate Ingestion during an Intermittent Exercise on Blood Lactate, Stroke Parameters, and Performance of Swimmers. J. Exerc. Physiol. Online 2012, 15, 84–92. [Google Scholar]
- Kumstát, M.; Hlinsky, T.; Struhár, I.; Thomas, A. Does Sodium Citrate Cause the Same Ergogenic Effect as Sodium Bicarbonate on Swimming Performance? J. Hum. Kinet. 2018, 65, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Pedisic, Z.; Saunders, B.; Artioli, G.G.; Schoenfeld, B.J.; McKenna, M.J.; Bishop, D.J.; Kreider, R.B.; Stout, J.R.; Kalman, D.S.; et al. International Society of Sports Nutrition Position Stand: Sodium Bicarbonate and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 61. [Google Scholar] [CrossRef]
- Hadzic, M.; Eckstein, M.L.; Schugardt, M. The Impact of Sodium Bicarbonate on Performance in Response to Exercise Duration in Athletes: A Systematic Review. J. Sports Sci. Med. 2019, 18, 271–281. [Google Scholar]
- Gurton, W.H.; King, D.G.; Ranchordas, M.K.; Siegler, J.C.; Gough, L.A. Enhancing Exercise Performance and Recovery through Sodium Bicarbonate Supplementation: Introducing the Ingestion Recovery Framework. Eur. J. Appl. Physiol. 2024, 124, 3175–3190. [Google Scholar] [CrossRef]
- Naderi, A.; de Oliveira, E.P.; Ziegenfuss, T.N.; Willems, M.E.T. Timing, Optimal Dose and Intake Duration of Dietary Supplements with Evidence-Based Use in Sports Nutrition. J. Exerc. Nutr. Biochem. 2016, 20, 1–12. [Google Scholar] [CrossRef]
- Zhou, N.; Fan, Y.; Wang, X.; Wang, J.; Wu, H. Acute Enteric-Coated Sodium Bicarbonate Has Negligible Effect on Anaerobic Performance but Affects Metabolomics and Attenuates the Gastrointestinal Response. Front. Physiol. 2022, 13, 996381. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; Elliott-Sale, K.; Artioli, G.G.; Swinton, P.A.; Dolan, E.; Roschel, H.; Sale, C.; Gualano, B. β-Alanine Supplementation to Improve Exercise Capacity and Performance: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2017, 51, 658–669. [Google Scholar] [CrossRef]
- de Salles Painelli, V.; Roschel, H.; de Jesus, F.; Sale, C.; Harris, R.C.; Solis, M.Y.; Benatti, F.B.; Gualano, B.; Lancha, A.H.; Artioli, G.G. The Ergogenic Effect of Beta-Alanine Combined with Sodium Bicarbonate on High-Intensity Swimming Performance. Appl. Physiol. Nutr. Metab. 2013, 38, 525–532. [Google Scholar] [CrossRef]
- Mero, A.A.; Keskinen, K.L.; Malvela, M.T.; Sallinen, J.M. Combined Creatine and Sodium Bicarbonate Supplementation Enhances Interval Swimming. J. Strength Cond. Res. 2004, 18, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Smith-Ryan, A.E.; Fukuda, D.H.; Stout, J.R.; Kendall, K.L. The Influence of β-Alanine Supplementation on Markers of Exercise-Induced Oxidative Stress. Appl. Physiol. Nutr. Metab. 2014, 39, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.E.; Stout, J.R.; Kendall, K.L.; Fukuda, D.H.; Cramer, J.T. Exercise-Induced Oxidative Stress: The Effects of β-Alanine Supplementation in Women. Amino Acids 2012, 43, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.R.; Cramer, J.T.; Zoeller, R.F.; Torok, D.; Costa, P.; Hoffman, J.R.; Harris, R.C.; O’Kroy, J. Effects of β-Alanine Supplementation on the Onset of Neuromuscular Fatigue and Ventilatory Threshold in Women. Amino Acids 2007, 32, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Hobson, R.M.; Saunders, B.; Ball, G.; Harris, R.C.; Sale, C. Effects of β-Alanine Supplementation on Exercise Performance: A Meta-Analysis. Amino Acids 2012, 43, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International Society of Sports Nutrition Position Stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef]
- Saunders, B.; Franchi, M.; de Oliveira, L.F.; da Eira Silva, V.; da Silva, R.P.; de Salles Painelli, V.; Costa, L.A.R.; Sale, C.; Harris, R.C.; Roschel, H.; et al. 24-Week β-Alanine Ingestion Does Not Affect Muscle Taurine or Clinical Blood Parameters in Healthy Males. Eur. J. Nutr. 2020, 59, 57–65. [Google Scholar] [CrossRef]
- Edenfield, K.M. Sports Supplements: Pearls and Pitfalls. Prim. Care Clin. Off. Pract. 2020, 47, 37–48. [Google Scholar] [CrossRef]
- Dolan, E.; Swinton, P.A.; Painelli, V.D.S.; Hemingway, B.S.; Mazzolani, B.; Smaira, F.I.; Saunders, B.; Artioli, G.G.; Gualano, B. A Systematic Risk Assessment and Meta-Analysis on the Use of Oral β-Alanine Supplementation. Adv. Nutr. 2019, 10, 452–463. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International Society of Sports Nutrition Position Stand: Caffeine and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sport. Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A Review of Caffeine’s Effects on Cognitive, Physical and Occupational Performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2017, 14, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Mageswari, A.; Subramanian, P.; Suganthi, C.; Chaitanyakumar, A.; Aswini, V.; Gothandam, K.M. Bicarbonate Supplementation Enhances Growth and Biochemical Composition of Dunaliella Salina V-101 by Reducing Oxidative Stress Induced during Macronutrient Deficit Conditions. Sci. Rep. 2018, 8, 6972. [Google Scholar] [CrossRef]
Random sequence generation (selection bias) | Allocation concealment (selection bias) | Blinding of participants and personnel (performance bias) | Blinding of outcome assessment (detection bias) (patient-reported outcomes) | Blinding of outcome assessment (detection bias) (all-cause mortality) | Incomplete outcome data (attrition bias) (short-term [2–6 weeks]) | Incomplete outcome data (attrition bias) (long term [>6 weeks]) | Selective reporting (reporting bias) | |
Zamparo 2005 [18] | + | + | + | + | ? | + | ? | + |
Knechtle 2008 [41] | ? | ? | + | + | + | + | ? | + |
Knechtle 2010 A [42] | ? | ? | + | + | + | + | ? | ? |
Knechtle 2010 B [43] | ? | ? | + | + | + | + | ? | + |
Pyne 2014 [2] | + | + | + | ? | + | ? | + | + |
Shaw 2014 [19] | + | + | + | ? | + | ? | + | ? |
VanHeest 2014 [44] | + | + | + | ? | + | ? | + | ? |
Domínguez 2017 [7] | - | ? | + | ? | + | ? | + | ? |
Zamparo 2020 [45] | - | ? | + | ? | + | ? | + | ? |
Jiménez-Alfageme 2022 [25] | ? | + | + | + | + | ? | + | ? |
Ben-Zaken 2022 [1] | - | ? | + | ? | + | - | ? | ? |
Research | Level |
---|---|
Zamparo et al. (2005) [18] | A/1b |
Knechtle et al. (2008) [41] | A/1b |
Knechtle et al. A (2010) [42] | A/1b |
Knechtle et al. B (2010) [43] | A/1b |
Pyne et al. (2014) [2] | A/1a |
Shaw et al. (2014) [19] | A/1a |
VanHeest et al. (2014) [45] | A/1b |
Domínguez et al. (2017) [7] | A/1a |
Zamparo et al. (2020) [46] | A/1a |
Jiménez-Alfageme et al. (2022) [25] | A/1b |
Ben-Zaken et al. (2022) [1] | A/1b |
Journal | Q | Authors (Year) and Reference | Population | Method | Intervention | Variables | Outcomes Analysed | Main Conclusions | |
---|---|---|---|---|---|---|---|---|---|
Ph | Eur. J. Appl. Physiol | Q1 | Zamparo et al. (2005) [18] | 5 ♂ and ♀ 5 elite | S; DB | 3 × 400 m + 2 km | VO2; BLC; HR; BW; s; SR; WT | EC ± ♂ lower ♀ | EC with s; VO2 s EC ♀ < ♂; ST p on Eff/P |
Anthr | Anthropologischer Anzeiger | Q2 | Knechtle et al. (2008) [41] | 12 ♂ | S; DB | 12 h | BMI; BH; LC; SMM; FFM | Average distance covered | AntrC no p on P |
Anthr | Percept. Mot. Skills | Q3 | Knechtle et al. (2010) [42] | 39 ♂ 24 ♀ | S; DB | 26.4 km | BM; BH; SF; lL; %FM; HC V (km/t); I (km/h) | BH/BMI/Al r with t ♂ No r with P and AnthrC | AntrC nor r in t ts r with t on ♀/♂; BMI on ♂ too |
Anthr | Hum. Mov. | Q2 | Knechtle et al. (2010) [43] | 15 ♂ | S; DB | 26.4 km | AntrC; BM; BH; BMI; lL; %FM; Σ7SF; YAS; tV (t/km); ts; TRt; Rs | TRt; Rs r: AnthrC+tv/TRt | ts predictor P ♂ AnthrC no p with P |
Ph | Int. J. Sport Nutr. Exerc. Metab. | Q2 | Pyne et al. (2014) [2] | ♂ and ♀ elite | DB | Seasonal | AnthrC; Ee; Rl; I; Gl | BH; FFM; Pw; aPw; E; VO2; BLC | Rs determined by medium, style employed and methods used |
Ph | Int. J. Sport Nutr. Exerc. Metab. | Q2 | Shaw et al. (2014) [19] | ♂ and ♀ elite | S; DB | Seasonal | BC; FFM; Gl; PhC; Erc; ErA; VO2max | FFM; VO2max; OpGl; Cff | sNr fRp |
Nt | Med. Sci. Sports Exerc. | Q1 | VanHeest et al. (2014) [44] | 10 ♀ Elite | DB | 12 weeks | Bv; AnthrC; s; EI; EA | BH; BW; BC; MS; EI; EA; H; P | Dp is crucial H r with P |
Nt | J. Exerc. Nutr. Biochem. | Q3 | Domínguez et al. (2017) [7] | ♂ and ♀ | S; DB | Seasonal | CHOI; PI; FI; Hc; ErA | CHO; Pt; F; Hr; Cff; Cr; B; β-a; N; vD; Bc; HMB | P with Hs and Erg |
B | Eur. J. Appl. Physiol. | Q1 | Zamparo et al. (2020) [45] | ♂ and ♀ | S; DB | Seasonal | Eff sw; Hd; Er; Ep; s and Em; dPbGSl; Ept; BfaaPw | cEff and Ecsswpt; iHr; EC; dPbGSl; tv; BfaaPw | Eff y Ec by iPsa EC varies AS; dPbGSl tv Eff and P Importance mBMch |
Nt | Nutrients | Q1 | Jiménez-Alfageme et al. (2022) [25] | 103 ♂ and 29 ♀ | S; DB | Seasonal | Sf; Ms; ErA | Sf; Ms; ErA | Sf; Ms; ErA to P |
G | Biol. Sport | Q1 | Ben-Zaken et al. (2022) [1] | ♂ and ♀ | DB | - | Gp | Ra-s; A-ce; AIIp; K-ks; Br; Amd; Rα; Vegf; hACTN3g; Ltg; M; SNPIL6–174G/C | Importance Gp on environmental and physiological demands to P |
Studies | Energy Requirement |
---|---|
Medbø and Tabata, 1989 [50] | 40% |
Withers et al., 1991 [51] | 28% |
Ring et al., 1996 [52] | 29% |
Bogdanis et al., 1996 [53] | 34% |
Study | Methods for Measuring EI or EE | n | EI MJ/day (kcal/day) | EE MJ/day (kcal/day) |
---|---|---|---|---|
Vallieres et al., 1989 [54] | EI: 3 day food diary Weeks 1 and 4 EE: Activity records, RMR and swimming EE via indirect calorimetry | 6 ♀ | Week one 10.4 ± 3.2 (2500 ± 800) Week four 10.2 ± 2.9 (2400 ± 700) | Week one 12 ± 2.4 (2900 ± 600) Week four 10.5 ± 1.5 (2500 ± 400) |
Jones and Leitch 1993 [55] | EE: Doubly labelled water EI: Standardised diet provided and correlated, to detailed weighed food records | 5 ♂ 3 ♀ | 16.3 ± 2.6 (3895 ± 621) | 14.6 ± 3.7 (3556 ± 1025) |
Almeras et al., 1997 [56] | EE: Physical activity record (3 days) and HR-VO2 method (2 day, 24 h HR measurement) EI: 3 day food diary | 11 ♀ | Baseline 11.0 ± 3.3 (2600 ± 800) Part 1 10.5 ± 3.4 (2500 ± 800) Part 2 11.1 ± 3.0 (2600 ± 700) Part 3 9.2 ± 3.0 (2200 ± 700) | PAR 12.0 ± 3.1 (2900 ± 700) PAR 12.0 ± 2.7 (2900 ± 600) HR-VO2 12.7 ± 6.4 (3000 ± 1500) PAR 13.2 ± 2.4 (3100 ± 600) HR-VO2 12.4 ± 3.6 (2900 ± 900) PAR 12.7 ± 2.2 (3000 ± 500) HR-VO2 13.1 ± 4.0 (3100 ± 1000) |
Trappe et al. 1997 [57] | EE: Doubly labelled water EI: 2 day food diary | 5 ♀ | 13.1 ± 0.9 (3136 ± 227) | 23.4 ± 2.1 (5593 ± 495) |
Ousley-Pahnke et al., 2001 [58] | EE: Activity diary and equations EI: 4 day food diary | 15 ♀ | 9.5 ± 2.8 (2275 ± 665) | 9.8 ± 0.7 (2342 ± 158) |
Hassapidou and Manstrantoni 2001 [59] | EE: 7 day activity records and equations EI: 7 day weighed dietary records | 9 ♀ | Training: 8.4 ± 2.3 (2015 ± 542) Competition: 7.9 ± 3 (1890 ± 709) | Training: 10.5 ± 1.3 (2520 ± 304) Competition: 10.7 ± 0.9 (2550 ± 210) |
Sato et al., 2011 [60] | EE: RMR, activity factor, and VO2 estimations EI: 3 day food records | 6 ♂ 13 ♀ | Preparation: ♂: 13.1 ± 3.1 (3158 ± 733) ♀: 11.3 ± 1.8 (2710 ± 431) Intense ♂: 13.9 ± 1.6 (3322 ± 378) ♀: 12.0 ± 1.7 (2880 ± 408) | Preparation: ♂: 11.1 ± 0.4 (2646 ± 146) ♀: 8.7 ± 1.4 (2085 ± 326) Intense ♂: 12.3 ± 1.4 (2932 ± 335) ♀: 11.3 ± 1.8 (2562 ± 372) |
Slattery et al. 2012 [61] | EI: 4 × 24 h recall EE: HR calculation | 4 ♂ 2 ♀ | 16.6 ± 3.4 (3995 ± 789) | 16.7 ± 3.3 (3969 ± 821) |
Research | Intake |
---|---|
Burke, 2007 [62] | + than 1.2–1.6 g/kg body weight/day |
Moore et al., 2009 [63] | ~20–25 g high quality protein |
Witard et al., 2014 [64] |
Research | Observed Performance Parameters |
---|---|
Stager et al., 1984 [65] | BH, BM, FFM, and rLV showed statistically significant correlations |
Chatard, et al., 1990 [66] | A larger body and a larger surface area will increase drag, associated with a lower running s for a given amount of MP |
Siders et al., 1993 [67] | Statistically significant relationship between P and BH, % FM, and FFM only in ♀ swimmers. They found higher correlations for the same variables of P and BH, FFM, BW, and ectomorphic and mesomorphic BT |
Lowensteyn et al., 1994 [68] | Body resistance characteristics could explain the effect of FM variables on ♀ performance |
Pelayo et al., 1996 [69] | Longitudinal AnthrC, such as BH and length of the UL (arm span) and LL are of paramount importance to achieve high results |
Strass et al., 1998 [70] | Increased FFM allows more MS to be produced during the sp movement |
The Bs is influenced by the SMM, the FFM, and the strct relationships between the MTI and ATI | |
It has been suggested that S parameters are one of the most crucial sp factors that positively influence sw P by increasing the pull force of the stk and improving stk efficiency | |
Dopsaj et al., 1999 [71] | Significant improvement in BS or sBS (arms/legs/trunk) results in greater max force per stk |
Nevill, 2000 [72] | Swimmers benefit from having less FM, a longer (but shorter) arm span and a larger forearm circumference with a smaller relaxed arm circumference |
Mameletzi et al., 2003 [73] | Lower FM probably translates into lower aerodynamic drag (frontal area) and frictional drag. Body contractile BC provides better propulsive force potential |
Geladas et al., 2005 [74] | Only % FM was the single most important “whole body” size characteristic |
Barbosa et al., 2006 [75] | An increase in FFM allows more MS to be produced during sp movement efforts |
Pyne et al., 2006 [76] | MM appears to correlate with a high level of S and propulsion |
FFM and TBW as absolute indicators of BC as predictors of best P | |
Brauer et al., 2007 [77] | Current swimmers tend to be taller than in the past |
Jürimäe et al., 2007 [78] | FM and FFM appear to contribute to swimmers’ performance |
Barbosa et al., 2010 [79] | The Bs is influenced by the SMM, the FFM, and the strct relationships between the MTI and ATI |
It has been suggested that S parameters are one of the most crucial sp factors that positively influence sw P by increasing the pull force of the stk and improving stk efficiency | |
Saavedra et al., 2010 [80] | FM and FFM appear to contribute to swimmers’ P |
Lätt et al., 2010 [81] | FM and FFM appear to contribute to the P of swimmers |
Saavedra et al., 2010 [80] | |
West et al., 2011 [82] | Increased FFM allows more MS to be produced during sp movement efforts |
Kjendle et al., 2011 [83] | AnthrC, such as BH and length of the UPL (arm span) and LL are of primary importance to achieve high results |
Pérez et al., 2011 [84] | P was apparently not helped by the large MM values |
West, et al., 2011 [82] | Increasing muscle or FFM allows more MS to be produced during sp movement efforts |
Zuniga et al., 2011 [85] | AnthrC, including FM (%), as important predictors of P |
The %BF was the most important size characteristic | |
Morouço et al., 2011 [86] | Significant improvement in sBS (arms, legs, or trunk) results in greater max force per stk |
Morouço et al., 2011 [86] Morouço et al., 2012 [87] | The Bs is influenced by the SMM, the FFM, and the strct relationships between the MTI and ATI |
It has been suggested that S parameters are one of the most significant sp factors that positively influence sw P by increasing the pulling force of the stk and improving stk efficiency | |
Morouço et al., 2012 [87] | Significant improvement in segmental BS (arms/legs/trunk) results in greater max force per stk |
Ratamess et al., 2012 [88] | Reducing FM contributes to muscular and CE, as well as to the development of s and agility |
Santos et al., 2014 [89] | International swimmers, both ♂ and ♀, are taller, with less FM, lower BMI, but with a higher level of MM than national level swimmers |
Copic et al., 2014 [90] | Increased FFM produces more MS, which improves s, quickness, acceleration, and agility |
Moura et al., 2014 [91] | sw P was apparently not helped by large MM values because they were likely to reduce buoyancy and impair P |
Gatta et al., 2015 [92] | The effect of FM variables on swimmers’ performance could be explained by body resistance |
Bond et al., 2015 [93] | AnthrC, including FM (%), as important predictors of sw P, although only FM% was the most important |
Nasirzade et al., 2015 [94] | Significant relationship between muscle architectural characteristics; muscle thickness, and triceps brachii fascicle length |
Nevill et al., 2015 [95] | FFM was the single most important characteristic associated with sw s |
sw P is associated with changes in size, proportions and BC, as well as biological maturation | |
Increased MM improves s P | |
Gatta et al., 2016 [96] | The Bs is influenced by the SMM, the FFM, and the strct relationships between the MTI and ATI |
It has been proposed that through mechanisms of increased stk pull and stk efficiency mechanisms, sw P is positively influenced | |
Roelofs et al., 2017 [97] | Identifying the optimal balance between body characteristics: FFM and FM parameters are likely to be beneficial and of some importance in maximising sw P |
The Bs is influenced by the SMM, the FFM, and the strct relationships between the MTI and ATI | |
It has been suggested that S parameters are one of the key factors that positively influence sw P by increasing the pull force of the stk and improving stk efficiency | |
Reducing FM contributes to muscular and CE, as well as to the development of s and agility | |
FFM appears to be logically correlated with a high level of S and propulsion | |
Morais et al., 2017 [98] | AnthrC play a crucial role in talent identification and development, as well as in sw P |
Sammoud et al., 2019 [99] | AnthrC are important factors in identifying developing talent, as well as an influence on sw P |
Morales et al., 2019 [100] | AnthrC, such as BH and length of the UL (arm span) and LL are of primary importance to achieve high results |
The importance of AnthrC in sw, the increase in swimmers’ s, the result of the increase in stk length and stk rate | |
Cortesi et al., 2020 [101] | The max sw s will be reached by the swimmer who can achieve the highest max metabolic power with the lowest energy consumption during the swim |
Dopsaj et al., 2020 [102] | Today’s elite, both ♂ and ♀ swimmers are taller, heavier, and bigger than in the past |
Cortesi et al., 2020 [101] | The reduction of FM contributes to muscular and CE |
The effect of FM on performance in female swimmers could be explained by body resistance | |
Dos Santos et al., 2021 [103] | Height and BM did not contribute significantly to the study of variation in anatomical and physiological dimensions in swimmers |
Espada et al., 2023 [104] | The body segments (LL, UL, and trunk) and the corresponding tissue content (TM, FM, and FFM+BMC) reinforce the importance of BC assessment in sw |
S7P ♂ mm | S7P ♀ mm | ♂ %FM | ♀ %FM |
---|---|---|---|
51.9 | 80.4 | 8.1 | 20.5 |
Event | Length | Physiological Difficulties | Dietary Emphasis | Feeding Approach |
---|---|---|---|---|
5 km | ~0 m–1 h | TH |
| Minimal |
10 km | ~1 h 40 m –2 h 10 m | TH GD FO |
| Floating platforms and on body |
25 km | ~4–5 h | TH GD FO GI |
| Floating platforms mainly |
>25 km | >5 h | TH GD FO GI |
| Floating platforms, assisting vessels (accessible at intervals of 2.5 km) |
Research | Athletes | Supplementation (Type/Dose) | Side Effects | Effects of NaHCO3 | |
---|---|---|---|---|---|
McClung et al., 2007 [196] | Endurance athletes | Fluid solution; 0.3 g/kg BM | Mild | YES | NaHCO3 resulted in performance improvement and lowered blood lactate (F(1,15) = 51.4; p < 0.001; η2 = 0.774) |
Lindh et al., 2008 [197] | Elite swimmers | Capsule; 0.3 g/kg BM | None | YES | NaHCO3 improved performance in eight out of nine athletes by 1.6% (p = 0.04) |
Pruscino et al., 2008 [198] | High elite swimmers | Capsule; 0.3 g/kg BM | N/A | NO | No significant improvement in time after ingestion of NaHCO3 (ES = 0.25 ± 0.26; p = 0.052) |
Zajac et al., 2009 [199] | Well-trained swimmers | Fluid solution; 0.3 g/kg BM | None | YES | NaHCO3 ingestion improves performance by 1.5 s compared to controls (F(2,28) = 5.63; p < 0.05) |
Siegler et al., 2010 [200] | University swimmers | Fluid solution; 0.3 g/kg BM | None | YES | NaHCO3 improved total swim time by 2%. Mean difference overall was 4.4 s (d = 0.15; p = 0.04) |
Kilding et al., 2012 [201] | Well-trained cyclists | Capsule; 0.3 g/kg BM | Mild | YES | Caffeine and NaHCO3 consumed separately led to performance enhancements (ES = 0.21; p = 0.01) |
Joyce et al., 2012 * [202] | Competitive swimmers | Capsule; 0.1 g/kg BM | Mild | NO | Chronic supplementation of NaHCO3 had no effect on swimming performance (F = 0.48; p = 0.8) |
Joyce et al., 2012 * [202] | Competitive swimmers | Capsule; 0.3 g/kg BM | Mild | NO | Acute supplementation of NaHCO3 had no effect on swimming performance (F = 0.48; p = 0.08). |
Kupcis et al., 2012 [203] | Lightweight rowers | Capsule; 0.3 g/kg BM | None | NO | NaHCO3 provides no benefit for rowing performance (p = 0.41; ES: 0.05) |
Tobias et al., 2013 [204] | Competitive swimmers | Capsule; 0.3 g/kg BM | Mild | YES/NO | Combined with BA, NaHCO3 improved 200 m time (F = 1.36; p = 0.28), but not 100 m (F = 5.17; p = 0.024). |
Mero et al., 2013 [205] | Competitive swimmers | Capsule; 0.3 g/kg BM | None | YES | NaHCO3 improves swimming performance by 2.4%/1.5 s (p < 0.05) |
Mueller et al., 2013 [206] | Cyclists/triathletes | Tablet; 0.3 g/kg BM | N/A | YES | NaHCO3 improved time to exhaustion compared to a placebo (+23.5%) (F(1,7) = 35.45; p = 0.001 η2 = 0.84). |
Driller et al., 2013 [207] | National team rowers | Capsule; 0.3 g/kg BM | Mild | NO | Serial supplementation of NaHCO3 before HIT provides no benefits to performance (p > 0.05) |
Hobson et al., 2013 [208] | Well-trained rowers | Capsule; 0.3 g/kg BM | None to Severe | NO | Neither NaHCO3 or Beta alanine (or combined) have an effect on performance (p < 0.05) |
Hobson et al., 2014 [209] | Well-trained rowers | Capsule; 0.3 g/kg BM | None to Severe | NO | Ingestion of NaHCO3 has no effect on rowing performance (p < 0.09) |
Stöggl et al., 2014 [210] | Endurance athletes | Fluid solution; 0.3 g/kg BM | Mild | NO | Improvements in lactate, blood pH, and HCO3− were found while supplementing NaHCO3 (p < 0.01) |
Christensen et al., 2014 [211] | Lightweight rowers | Capsule; 0.3 g/kg BM | None | YES/NO | Solely, NaHCO3 has no effect, but combined with caffeine (ES: 0.6; p < 0.01) |
Egger et al., 2014 [212] | Trained cyclists | Fluid solution; 0.3 g/kg BM | None | YES | Cycling time to exhaustion was improved under NaHCO3 compared to a placebo (ES: 0.6; p < 0.05) |
Thomas et al., 2016 [213] | Trained cyclists | Capsule; 0.3 g/kg BM | N/A | YES | Lesser VO2 and VE decrease during trial while supplementing NaHCO3 (r = 0.74; p < 0.01) |
Freis et al., 2017 [214] | Endurance ath- letes | Fluid Solution; 0.3 g/kg BM | Severe | YES/NO | NaHCO3 led to no change in time to exhaustion but higher maximum running speed (p = 0.009) |
n | ST | SS | Stroke | |||
---|---|---|---|---|---|---|
L | R | I | ||||
Gao et al., 1988 [215] | 10 ♂ | + | ||||
Pierce et al., 1992 [216] | 7 ♂ | ? | ||||
Zajac et al., 2009 [199] | 8 ♂ | − | + | |||
Lindh et al., 2008 [197] | 9 ♂ | − | ||||
Siegler et al., 2010 [200] | 8 ♀ and 6 ♂ | − | ||||
Campos et al., 2012 [217] | 3 ♀ and 7♂ | ? | ? | ? | ? | |
Joyce et al., 2012 [202] | 8 ♂ | ? | ||||
Kumstát et al., 2018 [218] | 6 ♂ | ? | ||||
Yong et al., 2018 [195] | 8 ♂ | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miguel-Ortega, Á.; Calleja-González, J.; Mielgo-Ayuso, J. Endurance in Long-Distance Swimming and the Use of Nutritional Aids. Nutrients 2024, 16, 3949. https://doi.org/10.3390/nu16223949
Miguel-Ortega Á, Calleja-González J, Mielgo-Ayuso J. Endurance in Long-Distance Swimming and the Use of Nutritional Aids. Nutrients. 2024; 16(22):3949. https://doi.org/10.3390/nu16223949
Chicago/Turabian StyleMiguel-Ortega, Álvaro, Julio Calleja-González, and Juan Mielgo-Ayuso. 2024. "Endurance in Long-Distance Swimming and the Use of Nutritional Aids" Nutrients 16, no. 22: 3949. https://doi.org/10.3390/nu16223949
APA StyleMiguel-Ortega, Á., Calleja-González, J., & Mielgo-Ayuso, J. (2024). Endurance in Long-Distance Swimming and the Use of Nutritional Aids. Nutrients, 16(22), 3949. https://doi.org/10.3390/nu16223949