Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics
Abstract
:1. Introduction
2. Health Benefits
2.1. Benefits of Prebiotics
2.2. Benefits of Probiotics
2.3. Benefits of Postbiotics and Synbiotics
2.3.1. Antimicrobial Properties
2.3.2. Antioxidant Properties
2.3.3. Anti-Inflammatory Properties
2.3.4. Quality Properties of Food
3. Impact of Fecal Microbiota Transplantation
3.1. Clostridium Difficile Infection
3.2. Helicobacter pylori
4. Advantages and Disadvantages of Fecal Microbiota Transplantation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.-Y.; Zhou, D.-D.; Gan, R.-Y.; Huang, S.-Y.; Zhao, C.-N.; Shang, A.O.; Xu, X.-Y.; Li, H.-B. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021, 13, 3211. [Google Scholar] [CrossRef] [PubMed]
- Thorakkattu, P.; Khanashyam, A.C.; Shah, K.; Babu, K.S.; Mundanat, A.S.; Deliephan, A.; Deokar, G.S.; Santivarangkna, C.; Nirmal, N.P. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022, 11, 3094. [Google Scholar] [CrossRef] [PubMed]
- Fiore, W.; Arioli, S.; Guglielmetti, S. The Neglected Microbial Components of Commercial Probiotic Formulations. Microorganisms 2020, 8, 1177. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Lockyer, S.; Stanner, S. Prebiotics—An Added Benefit of Some Fibre Types. Nutr. Bull. 2019, 44, 74–91. [Google Scholar] [CrossRef]
- Rastall, R.A.; Diez-Municio, M.; Forssten, S.D.; Hamaker, B.; Meynier, A.; Moreno, F.J.; Respondek, F.; Stahl, B.; Venema, K.; Wiese, M. Structure and Function of Non-Digestible Carbohydrates in the Gut Microbiome. Benef. Microbes 2022, 13, 95–168. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef]
- Chauhan, S.V.; Chorawala, M.R. Probiotics, Prebiotics and Synbiotics. Int. J. Pharm. Sci. Res. 2012, 3, 711. [Google Scholar]
- Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, Prebiotics and Synbiotics—A Review. J. Food Sci. Technol. 2015, 52, 7577–7587. [Google Scholar] [CrossRef]
- Sekhon, B.S.; Jairath, S. Prebiotics, Probiotics and Synbiotics: An Overview. J. Pharm. Educ. Res. 2010, 1, 13–36. [Google Scholar]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Vinderola, G.; Salminen, S. Postbiotics: Facts and Open Questions. A Position Paper on the Need for a Consensus Definition. Benef. Microbes 2019, 10, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yılmaz, N.; Lotfi, A. Postbiotics Produced by Lactic Acid Bacteria: The next Frontier in Food Safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef] [PubMed]
- Rafique, N.; Jan, S.Y.; Dar, A.H.; Dash, K.K.; Sarkar, A.; Shams, R.; Pandey, V.K.; Khan, S.A.; Amin, Q.A.; Hussain, S.Z. Promising Bioactivities of Postbiotics: A Comprehensive Review. J. Agric. Food Res. 2023, 14, 100708. [Google Scholar] [CrossRef]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step beyond Pre-and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Watson, R.R.; Preedy, V.R. Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Khare, A.; Gaur, S. Cholesterol-Lowering Effects of Lactobacillus Species. Curr. Microbiol. 2020, 77, 638–644. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Li, Y. Production of Volatile Compounds in Reconstituted Milk Reduced-Fat Cheese and the Physicochemical Properties as Affected by Exopolysaccharide-Producing Strain. Molecules 2012, 17, 14393–14408. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Moro, G.E.; Boehm, G.; Wienz, F.; Stahl, B.; Bertino, E. Early Neutral Prebiotic Oligosaccharide Supplentation Reduces the Incidence of Some Allergic Manifestations in the First 5 Years of Life. J. Biol. Regul. Homeost Agents 2012, 26, 49–59. [Google Scholar]
- Vaillant, A.A.J.; Modi, P.; Jan, A. Atopy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Jones, M.L.; Martoni, C.J.; Parent, M.; Prakash, S. Cholesterol-Lowering Efficacy of a Microencapsulated Bile Salt Hydrolase-Active Lactobacillus Reuteri NCIMB 30242 Yoghurt Formulation in Hypercholesterolaemic Adults. Br. J. Nutr. 2012, 107, 1505–1513. [Google Scholar] [CrossRef]
- Cardoso Umbelino Cavallini, D.; Jovenasso Manzoni, M.S.; Bedani, R.; Roselino, M.N.; Celiberto, L.S.; Vendramini, R.C.; De Valdez, G.F.; Saes Parra Abdalla, D.; Aparecida Pinto, R.; Rosetto, D. Probiotic Soy Product Supplemented with Isoflavones Improves the Lipid Profile of Moderately Hypercholesterolemic Men: A Randomized Controlled Trial. Nutrients 2016, 8, 52. [Google Scholar] [CrossRef]
- Yoon, B.J.; Oh, H.; Lee, J.; Cho, J.R.; Kim, M.J.; Kim, D.; Kang, S. Effects of Probiotics on Bowel Function Restoration Following Ileostomy Closure in Rectal Cancer Patients: A Randomized Controlled Trial. Colorectal Dis. 2021, 23, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yun, J.M.; Kim, M.K.; Kwon, O.; Cho, B. Lactobacillus gasseri BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Med. Food 2018, 21, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Versalovic, J. Probiotics-Host Communication: Modulation of Signaling Pathways in the Intestine. Gut Microbes 2010, 1, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Tarik, M.; Ramakrishnan, L.; Bhatia, N.; Goswami, R.; Kandasamy, D.; Roy, A.; Chandran, D.S.; Singh, A.; Upadhyay, A.D.; Kalaivani, M. The Effect of Bacillus Coagulans Unique IS-2 Supplementation on Plasma Amino Acid Levels and Muscle Strength in Resistance Trained Males Consuming Whey Protein: A Double-Blind, Placebo-Controlled Study. Eur. J. Nutr. 2022, 61, 2673–2685. [Google Scholar] [CrossRef]
- Vulevic, J.; Juric, A.; Tzortzis, G.; Gibson, G.R. A Mixture of Trans-Galactooligosaccharides Reduces Markers of Metabolic Syndrome and Modulates the Fecal Microbiota and Immune Function of Overweight Adults. J. Nutr. 2013, 143, 324–331. [Google Scholar] [CrossRef]
- Alfa, M.J.; Strang, D.; Tappia, P.S.; Graham, M.; Van Domselaar, G.; Forbes, J.D.; Laminman, V.; Olson, N.; DeGagne, P.; Bray, D. A Randomized Trial to Determine the Impact of a Digestion Resistant Starch Composition on the Gut Microbiome in Older and Mid-Age Adults. Clin. Nutr. 2018, 37, 797–807. [Google Scholar] [CrossRef]
- Grimaldi, R.; Gibson, G.R.; Vulevic, J.; Giallourou, N.; Castro-Mejía, J.L.; Hansen, L.H.; Leigh Gibson, E.; Nielsen, D.S.; Costabile, A. A Prebiotic Intervention Study in Children with Autism Spectrum Disorders (ASDs). Microbiome 2018, 6, 133. [Google Scholar] [CrossRef]
- Soldi, S.; Vasileiadis, S.; Lohner, S.; Uggeri, F.; Puglisi, E.; Molinari, P.; Donner, E.; Sieland, C.; Decsi, T.; Sailer, M.; et al. Prebiotic Supplementation over a Cold Season and during Antibiotic Treatment Specifically Modulates the Gut Microbiota Composition of 3–6 Year-Old Children. Benef. Microbes 2019, 10, 253–264. [Google Scholar] [CrossRef]
- Rahat-Rozenbloom, S.; Fernandes, J.; Cheng, J.; Wolever, T.M. Acute Increases in Serum Colonic Short-Chain Fatty Acids Elicited by Inulin Do Not Increase GLP-1 or PYY Responses but May Reduce Ghrelin in Lean and Overweight Humans. Eur. J. Clin. Nutr. 2017, 71, 953–958. [Google Scholar] [CrossRef]
- Gupta, T.; Kaur, H.; Kapila, S.; Kapila, R. Potential Probiotic Lacticaseibacillus rhamnosus MTCC-5897 Attenuates Escherichia coli Induced Inflammatory Response in Intestinal Cells. Arch. Microbiol. 2021, 203, 5703–5713. [Google Scholar] [CrossRef]
- Izuddin, W.I.; Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A. Dietary Postbiotic Lactobacillus plantarum Improves Serum and Ruminal Antioxidant Activity and Upregulates Hepatic Antioxidant Enzymes and Ruminal Barrier Function in Post-Weaning Lambs. Antioxidants 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, E.; Zlotkowska, D.; Wroblewska, B. Yogurt Starter Cultures of Streptococcus Thermophilus and Lactobacillus Bulgaricus Ameliorate Symptoms and Modulate the Immune Response in a Mouse Model of Dextran Sulfate Sodium-Induced Colitis. J. Dairy Sci. 2019, 102, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Del Carmen Beristain-Bauza, S.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial Activity of Whey Protein Films Supplemented with Lactobacillus sakei Cell-Free Supernatant on Fresh Beef. Food Microbiol. 2017, 62, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Nabhani, Z.; Clark, C.C.T.; Goudarzi, N.; Hariri Far, A.; Razmpoosh, E. The Effect of Synbiotic Supplementation on Atherogenic Indices, Hs-CRP, and Malondialdehyde, as Major CVD-Related Parameters, in Women with Gestational Diabetes Mellitus: A Secondary Data-Analysis of a Randomized Double-Blind, Placebo-Controlled Study. Diabetol. Metab. Syndr. 2022, 14, 87. [Google Scholar] [CrossRef]
- Mirmiranpour, H.; Huseini, H.F.; Derakhshanian, H.; Khodaii, Z.; Tavakoli-Far, B. Effects of Probiotic, Cinnamon, and Synbiotic Supplementation on Glycemic Control and Antioxidant Status in People with Type 2 Diabetes; a Randomized, Double-Blind, Placebo-Controlled Study. J. Diabetes Metab. Disord. 2020, 19, 53–60. [Google Scholar] [CrossRef]
- Soleimani, A.; Motamedzadeh, A.; Zarrati Mojarrad, M.; Bahmani, F.; Amirani, E.; Ostadmohammadi, V.; Tajabadi-Ebrahimi, M.; Asemi, Z. The Effects of Synbiotic Supplementation on Metabolic Status in Diabetic Patients Undergoing Hemodialysis: A Randomized, Double-Blinded, Placebo-Controlled Trial. Probiotics Antimicrob. Proteins 2019, 11, 1248–1256. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Abd-Allah, S.M.; Hassanein, K.M. The Effects of Prebiotic, Probiotic and Synbiotic Supplementation on Intestinal Microbial Ecology and Histomorphology of Broiler Chickens. Int. J. Agro Vet. Med. Sci. 2012, 6, 277–289. [Google Scholar]
- Jonova, S.; Ilgaza, A.; Zolovs, M. The Impact of Inulin and a Novel Synbiotic (Yeast Saccharomyces Cerevisiae Strain 1026 and Inulin) on the Development and Functional State of the Gastrointestinal Canal of Calves. Vet. Med. Int. 2021, 2021, 8848441. [Google Scholar] [CrossRef]
- Ebrahimi, Z.S.; Nasli-Esfahani, E.; Nadjarzade, A.; Mozaffari-khosravi, H. Effect of Symbiotic Supplementation on Glycemic Control, Lipid Profiles and Microalbuminuria in Patients with Non-Obese Type 2 Diabetes: A Randomized, Double-Blind, Clinical Trial. J. Diabetes Metab. Disord. 2017, 16, 23. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Rodriguez, J.; Taminiau, B.; Amadieu, C.; Herpin, F.; Allaert, F.-A.; Cani, P.D.; Daube, G.; Bindels, L.B.; Delzenne, N.M. Improvement of Gastrointestinal Discomfort and Inflammatory Status by a Synbiotic in Middle-Aged Adults: A Double-Blind Randomized Placebo-Controlled Trial. Sci. Rep. 2021, 11, 2627. [Google Scholar] [CrossRef]
- Shokryazdan, P.; Faseleh Jahromi, M.; Navidshad, B.; Liang, J.B. Effects of Prebiotics on Immune System and Cytokine Expression. Med. Microbiol. Immunol. 2017, 206, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pujari, R.; Banerjee, G. Impact of Prebiotics on Immune Response: From the Bench to the Clinic. Immunol. Cell Biol. 2021, 99, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Ashaolu, T.J. Immune Boosting Functional Foods and Their Mechanisms: A Critical Evaluation of Probiotics and Prebiotics. Biomed. Pharmacother. 2020, 130, 110625. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.A.; Kim, W.K. Overview of Prebiotics and Probiotics: Focus on Performance, Gut Health and Immunity—A Review. Ann. Anim. Sci. 2017, 17, 949–966. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, L.; Shang, Q.H.; Ma, X.K.; Long, S.F.; Xu, Y.T.; Piao, X.S. Effects of Isomalto-Oligosaccharides as Potential Prebiotics on Performance, Immune Function and Gut Microbiota in Weaned Pigs. Anim. Feed Sci. Technol. 2017, 230, 126–135. [Google Scholar] [CrossRef]
- Nawaz, A.; Irshad, S.; Hoseinifar, S.H.; Xiong, H. The Functionality of Prebiotics as Immunostimulant: Evidences from Trials on Terrestrial and Aquatic Animals. Fish Shellfish Immunol. 2018, 76, 272–278. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wu, C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-Biotics, and Post-Biotics. Front. Nutr. 2022, 8, 634897. [Google Scholar] [CrossRef]
- Ratajczak, W.; Rył, A.; Mizerski, A.; Walczakiewicz, K.; Sipak, O.; Laszczyńska, M. Immunomodulatory Potential of Gut Microbiome-Derived Short-Chain Fatty Acids (SCFAs). Acta Biochim. Pol. 2019, 66, 1–12. [Google Scholar] [CrossRef]
- Vieira, A.T.; Teixeira, M.M.; Martins, F.S. The Role of Probiotics and Prebiotics in Inducing Gut Immunity. Front. Immunol. 2013, 4, 445. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Mallet, J.F.; Graham, E.; Matar, C. Role of Probiotics and Prebiotics in Immunomodulation. Curr. Opin. Food Sci. 2018, 20, 82–91. [Google Scholar] [CrossRef]
- Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M. Changes in Gut Microbiota Control Inflammation in Obese Mice through a Mechanism Involving GLP-2-Driven Improvement of Gut Permeability. Gut 2009, 58, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Han, T.-S.; Son, M.-Y. Intestinal Morphogenesis in Development, Regeneration, and Disease: The Potential Utility of Intestinal Organoids for Studying Compartmentalization of the Crypt-Villus Structure. Front. Cell Dev. Biol. 2020, 8, 593969. [Google Scholar] [CrossRef] [PubMed]
- Leen, J.L.; Izzo, A.; Upadhyay, C.; Rowland, K.J.; Dubé, P.E.; Gu, S.; Heximer, S.P.; Rhodes, C.J.; Storm, D.R.; Lund, P.K. Mechanism of Action of Glucagon-like Peptide-2 to Increase IGF-I mRNA in Intestinal Subepithelial Fibroblasts. Endocrinology 2011, 152, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Demehri, F.R.; Xiao, W.; Tsai, Y.-H.; Jones, J.C.; Brindley, C.D.; Threadgill, D.W.; Holst, J.J.; Hartmann, B.; Barrett, T.A. Interdependency of EGF and GLP-2 Signaling in Attenuating Mucosal Atrophy in a Mouse Model of Parenteral Nutrition. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 447–468. [Google Scholar] [CrossRef]
- Kim, S.; Kang, B.-G.; Sa, S.; Park, S.Y.; Ryu, K.; Lee, J.; Park, B.; Kwon, M.; Kim, Y.; Kim, J. Advanced Fructo-Oligosaccharides Improve Itching and Aberrant Epidermal Lipid Composition in Children with Atopic Dermatitis. Front. Microbiol. 2024, 15, 1383779. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Sarker, M.; Li, T.; Yin, J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Res. Int. 2018, 2018, 9478630. [Google Scholar] [CrossRef]
- Bagarolli, R.A.; Tobar, N.; Oliveira, A.G.; Araújo, T.G.; Carvalho, B.M.; Rocha, G.Z.; Vecina, J.F.; Calisto, K.; Guadagnini, D.; Prada, P.O. Probiotics Modulate Gut Microbiota and Improve Insulin Sensitivity in DIO Mice. J. Nutr. Biochem. 2017, 50, 16–25. [Google Scholar] [CrossRef]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a More Comprehensive Concept for Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef]
- Dahiya, D.K.; Renuka; Puniya, M.; Shandilya, U.K.; Dhewa, T.; Kumar, N.; Kumar, S.; Puniya, A.K.; Shukla, P. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front. Microbiol. 2017, 8, 563. [Google Scholar] [CrossRef]
- Druart, C.; Alligier, M.; Salazar, N.; Neyrinck, A.M.; Delzenne, N.M. Modulation of the Gut Microbiota by Nutrients with Prebiotic and Probiotic Properties. Adv. Nutr. 2014, 5, 624S–633S. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J.; Michel, C. How to Manipulate the Microbiota: Prebiotics. In Microbiota of the Human Body; Advances in Experimental Medicine and Biology; Schwiertz, A., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 902, pp. 119–142. ISBN 978-3-319-31246-0. [Google Scholar]
- Kellow, N.J.; Coughlan, M.T.; Savige, G.S.; Reid, C.M. Effect of Dietary Prebiotic Supplementation on Advanced Glycation, Insulin Resistance and Inflammatory Biomarkers in Adults with Pre-Diabetes: A Study Protocol for a Double-Blind Placebo-Controlled Randomised Crossover Clinical Trial. BMC Endocr. Disord. 2014, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Gourbeyre, P.; Denery, S.; Bodinier, M. Probiotics, Prebiotics, and Synbiotics: Impact on the Gut Immune System and Allergic Reactions. J. Leukoc. Biol. 2011, 89, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.Y.; Määttänen, P.; Napper, S.; Scruten, E.; Li, B.; Koike, Y.; Johnson-Henry, K.C.; Pierro, A.; Rossi, L.; Botts, S.R.; et al. Non-Digestible Oligosaccharides Directly Regulate Host Kinome to Modulate Host Inflammatory Responses without Alterations in the Gut Microbiota. Microbiome 2017, 5, 135. [Google Scholar] [CrossRef] [PubMed]
- Peters, V.B.M.; Van De Steeg, E.; Van Bilsen, J.; Meijerink, M. Mechanisms and Immunomodulatory Properties of Pre- and Probiotics. Benef. Microbes 2019, 10, 225–236. [Google Scholar] [CrossRef]
- Wu, T.; Wang, G.; Xiong, Z.; Xia, Y.; Song, X.; Zhang, H.; Wu, Y.; Ai, L. Probiotics Interact with Lipids Metabolism and Affect Gut Health. Front. Nutr. 2022, 9, 917043. [Google Scholar] [CrossRef]
- Chen, D.; Yang, Z.; Chen, X.; Huang, Y.; Yin, B.; Guo, F.; Zhao, H.; Zhao, T.; Qu, H.; Huang, J.; et al. The Effect of Lactobacillus rhamnosus Hsryfm 1301 on the Intestinal Microbiota of a Hyperlipidemic Rat Model. BMC Complement. Altern. Med. 2014, 14, 386. [Google Scholar] [CrossRef]
- Farhad, N.; Shahsavari, S. Probiotics and Their Effects in Reduction Hyperlipidemia. Plant Biotechnol. Persa 2020, 2, 21–23. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, X.M.; Zhang, Q.X.; Shen, Z.; Tian, F.W.; Zhang, H.; Sun, Z.H.; Zhang, H.P.; Chen, W. Influence of Consumption of Probiotics on the Plasma Lipid Profile: A Meta-Analysis of Randomised Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 844–850. [Google Scholar] [CrossRef]
- Kumar, M.; Nagpal, R.; Kumar, R.; Hemalatha, R.; Verma, V.; Kumar, A.; Chakraborty, C.; Singh, B.; Marotta, F.; Jain, S.; et al. Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases. Exp. Diabetes Res. 2012, 2012, 902917. [Google Scholar] [CrossRef]
- Wang, L.; Guo, M.-J.; Gao, Q.; Yang, J.-F.; Yang, L.; Pang, X.-L.; Jiang, X.-J. The Effects of Probiotics on Total Cholesterol: A Meta-Analysis of Randomized Controlled Trials. Medicine 2018, 97, e9679. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A Mini-Review of Human Studies on Cholesterol-Lowering Properties of Probiotics. Sci. Pharm. 2019, 87, 26. [Google Scholar] [CrossRef]
- Zhuang, G.; Liu, X.-M.; Zhang, Q.-X.; Tian, F.-W.; Zhang, H.; Zhang, H.-P.; Chen, W. Research Advances with Regards to Clinical Outcome and Potential Mechanisms of the Cholesterol-Lowering Effects of Probiotics. Clin. Lipidol. 2012, 7, 501–507. [Google Scholar] [CrossRef]
- Ishimwe, N.; Daliri, E.B.; Lee, B.H.; Fang, F.; Du, G. The Perspective on Cholesterol-lowering Mechanisms of Probiotics. Mol. Nutr. Food Res. 2015, 59, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kang, J.; Choi, S.; Park, H.; Hwang, E.; Kang, Y.; Kim, A.; Holzapfel, W.; Ji, Y. Cholesterol-Lowering Effect of Lactobacillus rhamnosus BFE5264 and Its Influence on the Gut Microbiome and Propionate Level in a Murine Model. PLoS ONE 2018, 13, e0203150. [Google Scholar] [CrossRef]
- Yoon, G. Ectoparasite Fauna of Imported Ornamental Fishes in Oman. J. Agric. Mar. Sci. JAMS 2024, 29, 6–16. [Google Scholar]
- Guardamagna, O.; Amaretti, A.; Puddu, P.E.; Raimondi, S.; Abello, F.; Cagliero, P.; Rossi, M. Bifidobacteria Supplementation: Effects on Plasma Lipid Profiles in Dyslipidemic Children. Nutrition 2014, 30, 831–836. [Google Scholar] [CrossRef]
- Dilzer, A.; Park, Y. Implication of Conjugated Linoleic Acid (CLA) in Human Health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513. [Google Scholar] [CrossRef]
- Senizza, A.; Callegari, M.L.; Senizza, B.; Minuti, A.; Rocchetti, G.; Morelli, L.; Patrone, V. Effects of Linoleic Acid on Gut-Derived Bifidobacterium Breve DSM 20213: A Transcriptomic Approach. Microorganisms 2019, 7, 710. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Sabico, S.; Al-Mashharawi, A.; Al-Daghri, N.M.; Wani, K.; Amer, O.E.; Hussain, D.S.; Ansari, M.G.A.; Masoud, M.S.; Alokail, M.S.; McTernan, P.G. Effects of a 6-Month Multi-Strain Probiotics Supplementation in Endotoxemic, Inflammatory and Cardiometabolic Status of T2DM Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2019, 38, 1561–1569. [Google Scholar] [CrossRef]
- Ballan, R.; Saad, S.M.I. Characteristics of the Gut Microbiota and Potential Effects of Probiotic Supplements in Individuals with Type 2 Diabetes Mellitus. Foods 2021, 10, 2528. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Singh, B.P.; Sandhu, N.; Singh, N.; Kaur, R.; Rokana, N.; Singh, K.S.; Chaudhary, V.; Panwar, H. Probiotic Mediated NF-κB Regulation for Prospective Management of Type 2 Diabetes. Mol. Biol. Rep. 2020, 47, 2301–2313. [Google Scholar] [CrossRef] [PubMed]
- Kocsis, T.; Molnár, B.; Németh, D.; Hegyi, P.; Szakács, Z.; Bálint, A.; Garami, A.; Soós, A.; Márta, K.; Solymár, M. Probiotics Have Beneficial Metabolic Effects in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Clinical Trials. Sci. Rep. 2020, 10, 11787. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, B.; Eslami, M.; Ghasemian, A.; Kokhaei, P.; Salek Farrokhi, A.; Darabi, N. Probiotics Importance and Their Immunomodulatory Properties. J. Cell. Physiol. 2019, 234, 8008–8018. [Google Scholar] [CrossRef] [PubMed]
- Sohn, M.; Na, G.Y.; Chu, J.; Joung, H.; Kim, B.-K.; Lim, S. Efficacy and Safety of Lactobacillus Plantarum K50 on Lipids in Koreans with Obesity: A Randomized, Double-Blind Controlled Clinical Trial. Front. Endocrinol. 2022, 12, 790046. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G. Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef]
- May, K.S.; den Hartigh, L.J. Gut Microbial-Derived Short Chain Fatty Acids: Impact on Adipose Tissue Physiology. Nutrients 2023, 15, 272. [Google Scholar] [CrossRef]
- Abbasi, B.; Mirlohi, M.; Daniali, M.; Ghiasvand, R. Effects of Probiotic Soy Milk on Lipid Panel in Type 2 Diabetic Patients with Nephropathy: A Double-Blind Randomized Clinical Trial. Prog. Nutr. 2018, 20, 70–78. [Google Scholar]
- Mahboobi, S.; Iraj, B.; Maghsoudi, Z.; Feizi, A.; Ghiasvand, R.; Askari, G.; Maayeshi, N. The Effects of Probiotic Supplementation on Markers of Blood Lipids, and Blood Pressure in Patients with Prediabetes: A Randomized Clinical Trial. Int. J. Prev. Med. 2014, 5, 1239. [Google Scholar]
- Abd El-Ghany, W.A. Paraprobiotics and Postbiotics: Contemporary and Promising Natural Antibiotics Alternatives and Their Applications in the Poultry Field. Open Vet. J. 2020, 10, 323–330. [Google Scholar] [CrossRef]
- Mehta, J.P.; Ayakar, S.; Singhal, R.S. The Potential of Paraprobiotics and Postbiotics to Modulate the Immune System: A Review. Microbiol. Res. 2023, 275, 127449. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-Parabiotics: The New Horizons in Microbial Biotherapy and Functional Foods. Microb. Cell Factor. 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Polk, D.B. Disruption of NF-κB Signalling by Ancient Microbial Molecules: Novel Therapies of the Future? Gut 2010, 59, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Cirat, R.; Capozzi, V.; Benmechernene, Z.; Spano, G.; Grieco, F.; Fragasso, M. LAB Antagonistic Activities and Their Significance in Food Biotechnology: Molecular Mechanisms, Food Targets, and Other Related Traits of Interest. Fermentation 2024, 10, 222. [Google Scholar] [CrossRef]
- Pan, Z.; Mao, B.; Zhang, Q.; Tang, X.; Yang, B.; Zhao, J.; Cui, S.; Zhang, H. Postbiotics Prepared Using Lactobacillus Paracasei CCFM1224 Prevent Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota and Liver Metabolism. Int. J. Mol. Sci. 2022, 23, 13522. [Google Scholar] [CrossRef]
- Blazheva, D.; Mihaylova, D.; Averina, O.V.; Slavchev, A.; Brazkova, M.; Poluektova, E.U.; Danilenko, V.N.; Krastanov, A. Antioxidant Potential of Probiotics and Postbiotics: A Biotechnological Approach to Improving Their Stability. Russ. J. Genet. 2022, 58, 1036–1050. [Google Scholar] [CrossRef]
- Gomaa, A. A Study of the Antimicrobial & Selected Health Promotive Effects of Synbiotics. Ph.D. Thesis, Alabama Agricultural and Mechanical University, Huntsville, AL, USA, 2021. [Google Scholar]
- Ibrahim, G.A.; Mabrouk, A.M.; El-Ssayad, M.F.; Mehaya, F.M.; Sharaf, O.M.; Ibrahim, M.I. Properties of Postbiotics Produced by Probiotics: Antimicrobial, Antioxidant Activities and Production of Vitamins, Organic Acids. Res. Square 2024, in press. [Google Scholar] [CrossRef]
- Mounir, M.; Ibijbijen, A.; Farih, K.; Rabetafika, H.N.; Razafindralambo, H.L. Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022, 12, 1443. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Zhang, L.; Zhang, X.; Huang, L.; Li, D.; Niu, C.; Yang, Z.; Wang, Q. Antioxidant Activity of Lactobacillus Plantarum Strains Isolated from Traditional Chinese Fermented Foods. Food Chem. 2012, 135, 1914–1919. [Google Scholar] [CrossRef]
- Liu, R.; Li, S.; Yang, B.; Chen, L.; Ge, Q.; Xiong, G.; Yu, H.; Wu, M.; Zhang, W. Investigation of the Antioxidant Capacity of Cell-Free Extracts from Lactobacillus plantarum NJAU-01 Obtained by Different Cell Disruption Methods. LWT 2021, 152, 112393. [Google Scholar] [CrossRef]
- Lee, E.; Jung, S.-R.; Lee, S.-Y.; Lee, N.-K.; Paik, H.-D.; Lim, S.-I. Lactobacillus Plantarum Strain Ln4 Attenuates Diet-Induced Obesity, Insulin Resistance, and Changes in Hepatic mRNA Levels Associated with Glucose and Lipid Metabolism. Nutrients 2018, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Javanmard, A.; Ashtari, S.; Sabet, B.; Davoodi, S.H.; Rostami-Nejad, M.; Akbari, M.E.; Niaz, A.; Mortazavian, A.M. Probiotics and Their Role in Gastrointestinal Cancers Prevention and Treatment; an Overview. Gastroenterol. Hepatol. Bed Bench 2018, 11, 284. [Google Scholar] [PubMed]
- Singhal, B.; Mukherjee, A.; Srivastav, S. Role of Probiotics in Pancreatic Cancer Prevention: The Prospects and Challenges. Adv. Biosci. Biotechnol. 2016, 7, 468–500. [Google Scholar] [CrossRef]
- Liao, J.-C.; Deng, J.-S.; Chiu, C.-S.; Hou, W.-C.; Huang, S.-S.; Shie, P.-H.; Huang, G.-J. Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo. Evid. Based Complement. Alternat. Med. 2012, 2012, 429320. [Google Scholar] [CrossRef]
- Miraghajani, M.; Dehsoukhteh, S.S.; Rafie, N.; Hamedani, S.G.; Sabihi, S.; Ghiasvand, R. Potential Mechanisms Linking Probiotics to Diabetes: A Narrative Review of the Literature. Sao Paulo Med. J. 2017, 135, 169–178. [Google Scholar] [CrossRef]
- Bourebaba, Y.; Marycz, K.; Mularczyk, M.; Bourebaba, L. Postbiotics as Potential New Therapeutic Agents for Metabolic Disorders Management. Biomed. Pharmacother. 2022, 153, 113138. [Google Scholar] [CrossRef]
- Gurunathan, S.; Thangaraj, P.; Kim, J.-H. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023, 13, 89. [Google Scholar] [CrossRef]
- Lê, A.; Mantel, M.; Marchix, J.; Bodinier, M.; Jan, G.; Rolli-Derkinderen, M. Inflammatory Bowel Disease Therapeutic Strategies by Modulation of the Microbiota: How and When to Introduce Pre-, pro-, Syn-, or Postbiotics? Am. J. Physiol.-Gastrointest. Liver Physiol. 2022, 323, G523–G553. [Google Scholar] [CrossRef]
- Martyniak, A.; Medyńska-Przęczek, A.; Wędrychowicz, A.; Skoczeń, S.; Tomasik, P.J. Prebiotics, Probiotics, Synbiotics, Paraprobiotics and Postbiotic Compounds in IBD. Biomolecules 2021, 11, 1903. [Google Scholar] [CrossRef]
- Mori, P.; Chauhan, M.; Modasiya, I.; Kumar, V. Dietary Modulation of the Nervous and Immune System: Role of Probiotics/Prebiotics/Synbiotics/Postbiotics. In Probiotics, Prebiotics, Synbiotics, and Postbiotics; Kothari, V., Kumar, P., Ray, S., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 307–328. ISBN 978-981-9914-62-3. [Google Scholar]
- Huang, Y.; Zhao, S.; Yao, K.; Liu, D.; Peng, X.; Huang, J.; Huang, Y.; Li, L. Physicochemical, Microbiological, Rheological, and Sensory Properties of Yoghurts with New Polysaccharide Extracts from Lactarius volemus Fr. Using Three Probiotics. Int. J. Dairy Technol. 2020, 73, 168–181. [Google Scholar] [CrossRef]
- Rather, I.A.; Seo, B.J.; Kumar, V.J.R.; Choi, U.-H.; Choi, K.-H.; Lim, J.; Park, Y.-H. Biopreservative Potential of Lactobacillus plantarum YML007 and Efficacy as a Replacement for Chemical Preservatives in Animal Feed. Food Sci. Biotechnol. 2014, 23, 195–200. [Google Scholar] [CrossRef]
- Boicean, A.; Birlutiu, V.; Ichim, C.; Brusnic, O.; Onișor, D.M. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023, 11, 2930. [Google Scholar] [CrossRef] [PubMed]
- Boicean, A.; Ichim, C.; Todor, S.B.; Anderco, P.; Popa, M.L. The Importance of Microbiota and Fecal Microbiota Transplantation in Pancreatic Disorders. Diagnostics 2024, 14, 861. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Athamneh, A.I.M.; Deshpande, R.; Ramirez, J.A.R.; Adu, K.T.; Muthuirulan, P.; Pawar, S.; Biazzo, M.; Apidianakis, Y.; Sundekilde, U.K.; et al. Probiotics: Insights and New Opportunities for Clostridioides difficile Intervention. Crit. Rev. Microbiol. 2023, 49, 414–434. [Google Scholar] [CrossRef]
- Slimings, C.; Riley, T.V. Antibiotics and Healthcare Facility-Associated Clostridioides difficile Infection: Systematic Review and Meta-Analysis 2020 Update. J. Antimicrob. Chemother. 2021, 76, 1676–1688. [Google Scholar] [CrossRef]
- D’Haese, J.G.; Ceyhan, G.O.; Demir, I.E.; Layer, P.; Uhl, W.; Löhr, M.; Rychlik, R.; Pirilis, K.; Zöllner, Y.; Gradl, B. Pancreatic Enzyme Replacement Therapy in Patients with Exocrine Pancreatic Insufficiency Due to Chronic Pancreatitis: A 1-Year Disease Management Study on Symptom Control and Quality of Life. Pancreas 2014, 43, 834–841. [Google Scholar] [CrossRef]
- Kassam, Z.; Lee, C.H.; Yuan, Y.; Hunt, R.H. Fecal Microbiota Transplantation forClostridium difficileInfection: Systematic Review and Meta-Analysis. Off. J. Am. Coll. Gastroenterol. ACG 2013, 108, 500–508. [Google Scholar] [CrossRef]
- Terveer, E.M.; Vendrik, K.E.; Ooijevaar, R.E.; Van Lingen, E.; Boeije-Koppenol, E.; Van Nood, E.; Goorhuis, A.; Bauer, M.P.; Van Beurden, Y.H.; Dijkgraaf, M.G.; et al. Faecal Microbiota Transplantation for Clostridioides difficile Infection: Four Years’ Experience of the Netherlands Donor Feces Bank. United Eur. Gastroenterol. J. 2020, 8, 1236–1247. [Google Scholar] [CrossRef]
- Khoruts, A.; Staley, C.; Sadowsky, M.J. Faecal Microbiota Transplantation for Clostridioides difficile: Mechanisms and Pharmacology. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 67–80. [Google Scholar] [CrossRef]
- Zhang, Z.; Tanaka, I.; Pan, Z.; Ernst, P.B.; Kiyono, H.; Kurashima, Y. Intestinal Homeostasis and Inflammation: Gut Microbiota at the Crossroads of Pancreas–Intestinal Barrier Axis. Eur. J. Immunol. 2022, 52, 1035–1046. [Google Scholar] [CrossRef]
- Tyszka, M.; Biliński, J.; Basak, G.W. Advances in Intestinal Barrier Preservation and Restoration in the Allogeneic Hematopoietic Cell Transplantation Setting. J. Clin. Med. 2021, 10, 2508. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar]
- Kleiner, M.; Kouris, A.; Violette, M.; D’Angelo, G.; Liu, Y.; Korenek, A.; Tolić, N.; Sachsenberg, T.; McCalder, J.; Lipton, M.S.; et al. Ultra-Sensitive Isotope Probing to Quantify Activity and Substrate Assimilation in Microbiomes. Microbiome 2023, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Senchukova, M.A.; Tomchuk, O.; Shurygina, E.I. Helicobacter Pylori in Gastric Cancer: Features of Infection and Their Correlations with Long-Term Results of Treatment. World J. Gastroenterol. 2021, 27, 6290. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.N.; Arif, A.; Shahzad, M.S.; Ibrahim, M.; Rahman, H.A.; Razaq, M.A.; Ahmed, R. Global Prevalence of Helicobacter Pylori and Its Effect on Human Health. Pure Appl. Biol. 2020, 9, 936–948. [Google Scholar] [CrossRef]
- Choi, I.J.; Kim, C.G.; Lee, J.Y.; Kim, Y.-I.; Kook, M.-C.; Park, B.; Joo, J. Family History of Gastric Cancer and Helicobacter pylori Treatment. N. Engl. J. Med. 2020, 382, 427–436. [Google Scholar] [CrossRef]
- Xue, L.; Deng, Z.; Luo, W.; He, X.; Chen, Y. Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front. Cell. Infect. Microbiol. 2022, 12, 759306. [Google Scholar] [CrossRef]
- Merali, N.; Chouari, T.; Kayani, K.; Rayner, C.J.; Jimenez, J.I.; Krell, J.; Giovannetti, E.; Bagwan, I.; Relph, K.; Rockall, T.A. A Comprehensive Review of the Current and Future Role of the Microbiome in Pancreatic Ductal Adenocarcinoma. Cancers 2022, 14, 1020. [Google Scholar] [CrossRef]
- Snethlage, C.M.F.; Nieuwdorp, M.; van Raalte, D.H.; Rampanelli, E.; Verchere, B.C.; Hanssen, N.M. Auto-Immunity and the Gut Microbiome in Type 1 Diabetes: Lessons from Rodent and Human Studies. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101544. [Google Scholar] [CrossRef]
- Perez-Muñoz, M.E.; Arrieta, M.-C.; Ramer-Tait, A.E.; Walter, J. A Critical Assessment of the “Sterile Womb” and “in Utero Colonization” Hypotheses: Implications for Research on the Pioneer Infant Microbiome. Microbiome 2017, 5, 48. [Google Scholar] [CrossRef]
- Snethlage, C.M.F.; Nieuwdorp, M.; Hanssen, N.M. Faecal Microbiota Transplantation in Endocrine Diseases and Obesity. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101483. [Google Scholar] [CrossRef] [PubMed]
- Sholeh, M.; Krutova, M.; Forouzesh, M.; Mironov, S.; Sadeghifard, N.; Molaeipour, L.; Maleki, A.; Kouhsari, E. Antimicrobial Resistance in Clostridioides (Clostridium) Difficile Derived from Humans: A Systematic Review and Meta-Analysis. Antimicrob. Resist. Infect. Control 2020, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Hanretty, A.M.; Gallagher, J.C. Shortened Courses of Antibiotics for Bacterial Infections: A Systematic Review of Randomized Controlled Trials. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Burrello, C.; Giuffrè, M.R.; Macandog, A.D.; Diaz-Basabe, A.; Cribiù, F.M.; Lopez, G.; Borgo, F.; Nezi, L.; Caprioli, F.; Vecchi, M. Fecal Microbiota Transplantation Controls Murine Chronic Intestinal Inflammation by Modulating Immune Cell Functions and Gut Microbiota Composition. Cells 2019, 8, 517. [Google Scholar] [CrossRef]
- Xie, L.; Xu, C.; Fan, Y.; Li, Y.; Wang, Y.; Zhang, X.; Yu, S.; Wang, J.; Chai, R.; Zhao, Z.; et al. Effect of Fecal Microbiota Transplantation in Patients with Slow Transit Constipation and the Relative Mechanisms Based on the Protein Digestion and Absorption Pathway. J. Transl. Med. 2021, 19, 490. [Google Scholar] [CrossRef]
- Zhang, Z.; Mocanu, V.; Cai, C.; Dang, J.; Slater, L.; Deehan, E.C.; Walter, J.; Madsen, K.L. Impact of Fecal Microbiota Transplantation on Obesity and Metabolic Syndrome—A Systematic Review. Nutrients 2019, 11, 2291. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Zhang, N.; Dong, X.-T.; Wang, X.-R.; Ma, H.-W.; Liu, Y.-D.; Li, M.-R. Efficacy and Safety of Fecal Microbiota Transplantation for Treatment of Ulcerative Colitis: A Post-Consensus Systematic Review and Meta-Analysis. World J. Clin. Cases 2024, 12, 4691. [Google Scholar] [CrossRef]
- Lee, S.T.M.; Kahn, S.A.; Delmont, T.O.; Shaiber, A.; Esen, Ö.C.; Hubert, N.A.; Morrison, H.G.; Antonopoulos, D.A.; Rubin, D.T.; Eren, A.M. Tracking Microbial Colonization in Fecal Microbiota Transplantation Experiments via Genome-Resolved Metagenomics. Microbiome 2017, 5, 50. [Google Scholar] [CrossRef]
- Duvallet, C.; Zellmer, C.; Panchal, P.; Budree, S.; Osman, M.; Alm, E.J. Framework for Rational Donor Selection in Fecal Microbiota Transplant Clinical Trials. PLoS ONE 2019, 14, e0222881. [Google Scholar] [CrossRef]
- Park, S.-Y.; Seo, G.S. Fecal Microbiota Transplantation: Is It Safe? Clin. Endosc. 2021, 54, 157–160. [Google Scholar] [CrossRef]
- Merrick, B.; Allen, L.; Zain, N.M.M.; Forbes, B.; Shawcross, D.L.; Goldenberg, S.D. Regulation, Risk and Safety of Faecal Microbiota Transplant. Infect. Prev. Pract. 2020, 2, 100069. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Yacyshyn, B.R.; Yacyshyn, M.B. Gut Microbiota and Obesity: An Opportunity to Alter Obesity through Faecal Microbiota Transplant (FMT). Diabetes Obes. Metab. 2019, 21, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Khanna, S. Safety of Fecal Microbiota Transplantation for Clostridioides difficile Infection Focusing on Pathobionts and SARS-CoV-2. Ther. Adv. Gastroenterol. 2021, 14, 17562848211009694. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; He, C.; Li, X.; Huang, X.; Lei, Y.; Ke, H.; Chen, H.; Yang, Q.; Cai, Y.; Liao, Y. Efficacy and Safety of Faecal Microbiota Transplantation for Acute Pancreatitis: A Randomised, Controlled Study. Front. Med. 2022, 8, 772454. [Google Scholar] [CrossRef]
Functional Food | Sample | Study Design | Dose and Treatment | Duration | Study Outcomes | References |
---|---|---|---|---|---|---|
Probiotic strain and food source | Hypercholesterolaemic (n = 114) | Double-blind RCT | Probiotic capsule: 115 g yoghurt + 10 BSH-active L. reuteri NCIMB 30242 (g 5 × 109(CFU/g) twice per day | 6 weeks | - LDL-C, TC, non-HDL-C, apoB-100 - TAG and HDL-C | [21] |
Lactobacillus reuteri NCIMB 30242 (Cardiovivae) Yoghurt | ||||||
Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 Fermented soy | Healthy man with (TC) > 5.17 mmol/L and < 6.21 mmol/L (n = 49) | Double-blind RCT | Group SP (n = 17), 200 mL of the fermented soy product, containing (SP-1010 CFU) daily Group ISP (n = 17), 50 mg of total isoflavones/100 g of the fermented soy product with isoflavones daily | 42 days | - Reduces risk of CVD - Antioxidant properties - Anti-inflammatory action | [22] |
Lactobacillus plantarum CJLP243 Kimchi | Patients with rectal cancer undergoing ileostomy reversal | Double-blind RCT | Probiotic treatment once per day preoperative | 21 days | - No significant evidence of restoring bowel function - Improvements in some subscale bowel function measures | [23,24] |
Lactobacillus plantarum K50 Kimchi | Healthy adults, BMI (25–30 kg/m2) | Double-blind RCT | LPK isolated from kimchi | 12 weeks | - Body weight, fat mass, abdominal fat - Cholesterol and triglyceride - Changes in gut microbiota: L. plantarum ↑, Actinobacteria - Changes in visceral adiposity | [25] |
Bacillus coagulans Whey protein powder | Resistance-trained males | Double-blind RCT | Treatment 1: 20 g whey protein powder + Bacillus coagulans Unique IS-2, once per day | 2 months | - Protein absorption - Branched chain amino acids (BCAA) - Isoleucine, leucine, valine - Lower body muscle power strength | [26] |
Prebiotic strain and food source | Overweight adults predisposed to metabolic syndrome (n = 45) | Double-blind RCT | 5.5 g of Bi2 muno and B-GOS | 12 weeks | - Enhanced immune response - TC, TG, and TC HDL (CPR), insulin | [27] |
Trans-galactooligosaccharide mixture [Bi2 muno (B-GOS)] | ||||||
MSPrebiotic® | Elderly and middle-aged Canadians (n = 84) | Double-blind RCT | MSPrebiotic® | 3 months | - Bifidobacterium in both elderly and middle-aged populations - SCFA (elderly) - Proteobacteria (elderly) | [28] |
Bimuno® galactooligosaccharide (B-GOS®) | Autistic children (n = 30) | Double-blind RCT | B-GOS® mixture (Bimuno®; 1.8 g: 80% GOS content) | 6 weeks | - Improvement in gut microbiota composition: Bifidobacterium spp. and Veillonellaceae family Lachnospiraceae family Faecalibacterium prausnitzii and Bacteroides spp. - Lower abdominal pain and bowel movement - Improvements in anti-social behaviors - Significant changes in fecal and urine metabolites | [29] |
Orafti® inulin-type fructans | Healthy children (n = 209) | Double-blind RCT | 6 g/day prebiotic inulin-type fructans | 24 weeks | - Induced positive changes in the composition of the gut microbiota - Enhanced immune-modulating effects of prebiotics - Inhibited antibiotic-induced disturbances | [30] |
Inulin and resistant starch | Lean and overweight/obese adults (n = 26) with (BMI) ≥20 and ≤35 kg/m2 | Double-blind RCT | 75 g GLU or 75 g GLU + 24 g oliggo-fiber instant IN or 75 g GLU + 28 g RS dissolved in 300 mL water | - No effect on GLP-1 or PYY responses - Reduction in ghrelin | [31] | |
Postbiotic strain and food source | In vivo mice | Double-blind RCT | Bacterial pellets 109 CFU Aerobic incubation at 37 °C Lactobacillus rhamnoses 1 × 109 CFU or Escherichia coli 1 × 108 CFU at 37 °C in 5% CO2 | 24–48 h 3 h | Escherichia coli’s overall activity and infectivity is decreased, which stops the intestinal inflammation of the mice. | [32] |
Nutraceuticals products Lactobacillus rhamnosus | In vivo n = 12 post weaning lambs | Double-blind RCT | Washing the active cultures with 0.85%NaCl adjusted to 109 CFU/mL. Then, 10%, incubated at 30 °C, collection of supernatants by centrifugation, at 10,000× g at 4 °C | 10 h 15 min | Dietary postbiotics decreased serum lipid peroxidation, increased hepatic antioxidant enzyme activity, improved ruminal barrier integrity, and increased antioxidant activity. | [33] |
Postbiotic of Lactobacillus plantarum | ||||||
Postbiotic of L. bulgaricus and S. thermophilus | In vivo mouse model | Double-blind RCT | S. thermophilus and L. bulgaricus cultured at 37 °C the growth about 5 × 108 CFU and 1 × 109 CFU | 15 min | Effective at slowing the progression of colitis in mice | [34] |
Exopolysaccharide-producing strain S. thermophilus | In vitro Food: Cheddar cheese | Double-blind RCT | Physicochemical analysis of CRMP Three replicate cheese-making trials Samples: - Direct-acidified cheese - Cheese with Streptococcus thermophilus TM11 24.8 ± 0.4 - Cheese with Streptococcus thermophilus SP1.1 23.5 ± 0.3 | 45 days | Increased moisture content and high yield Improved cheese yield and texture Improved product performance | [18] |
Supernatant of L. sakei | In vitro Food: Grilled beef | Double-blind RCT | 103 CFU/g E. coli or Listeria monocytogenes | 120 h | Decreased E. coli and Listeria monocytogenes | [35] |
Synbiotic strain and food source | In vivo n = 115 pregnant women | Double-blind RCT | Two groups to receive a daily synbiotic capsule 500 mg of L. acidophilus 5 × 1010 CFU/g L. plantarum 1.5 × 1010 CFU/g L. fermentum 7 × 109 CFU/g, L. Gasseri (2 × 1010 CFU/g), 38.5 mg of fructo-oligo-saccharides or placebo | 6 weeks | A significant decrease in logTG/HDL-C ratio with a medium–low effect size | [36] |
Synbiotic capsule Lactobacillus acidophilus Lactobacillus plantarum Lactobacillus fermentum, Lactobacillus Gasseri and fructo-oligo-saccharides | ||||||
L. acidophilus+ cinnamon powder | In vivo n = 136 T2DM patients | Double-blind RCT | G1: Lactobacillus acidophilus 108 CFU and 0.5 g of cinnamon powder (synbiotic) G2: Probiotic Lactobacillus acidophilus G3: cinnamon powder G4: a placebo | 3 months | Increase of antioxidant enzymes | [37] |
Synbiotic capsule containing L. acidophilus, L. casei, and B. bifidum + inulin | In vivo n = 60 diabetic HD patients | Double-blind RCT | (2 × 109 CFU/g each), plus 0.8 g/day of inulin (n = 30) or placebo (n = 30) | 12 weeks | A considerable boost in overall antioxidant capacity and favorable benefits on glycemic management, inflammatory biomarkers, and oxidative stress in diabetic patients receiving HD | [38] |
S. cerevisiae+ Mannanoligosaccharides (MOS) | In vivo n = 100 chicks | Double-blind RCT | 1. Control base diet 2. Base diet + mannan-oligosaccharide 2 g/kg + 0.5 g/kg of grower diets 3. Base diet + probiotic 3 g/kg diet, saccharomyces cerevisiae 4. Base diet + mixture of pre- and probiotics-synbiotic | 6 weeks | Weight gain, less E. coli in SI and cecum | [39] |
S. cerevisiae+ Inulin | In vivo n = 15 calves | Double-blind RCT | Synbiotic inulin 6 g + S. cerevisiae strain 1026, 5 g | 56 days | Positively influenced by increased pH in the rumen, abomasum, and intestines. | [40] |
Bifidobacterium, Lactobacillus, and S. thermophilus + fructo-oligosaccharide | In vivo n = 70 | Double-blind RCT | 500 mg/day | 9 weeks | Improved HbA1c, BMI, and microalbuminuria. | [41] |
Bifidobacterium lactis+ fructo-oligosaccharides | In vivo n = 27 | Double-blind RCT | 5 × 109 CFU/bag + 4.95 g/bag | 30 days | Enhanced intestinal performance Lowered levels of IL-6, IL-8, IL-17, and interferon-gamma (IFNγ) | [42] |
Category | Definition | Health Role | Key Benefits | Mechanisms of Action | Sources |
---|---|---|---|---|---|
Prebiotics | Non-digestible food ingredients that promote beneficial gut bacteria | Enhance gut health, improve digestion, and reduce inflammation | Prebiotics show improved immune function, balanced gut microbiota, increased lactobacilli and bifidobacteria, and decreased infections. | Promote the growth of beneficial bacteria and alter gut microbiota composition. | Chicory root, garlic, onions, bananas |
Probiotics | Live microorganisms that confer health benefits when consumed in adequate amounts | Improve gut microbiota, enhance immunity, prevent diarrhea | Significant improvement in fasting blood sugar levels from 177.3 ± 23.02 mg/dL to 147.70 ± 3.71 mg/dL in T2DM patients. | Enhance gut barrier function, produce antimicrobial substances, modulate immune responses. | Yogurt, kefir, sauerkraut |
Postbiotics | Metabolic byproducts of probiotic bacteria | Modulate gut health, improve immune response, and provide antioxidant effects | E. coli count in the small intestine decreased from 9.79 log CFU/g (control) to 7.49 log CFU/g (synbiotic group). | Influence gut microbiota composition, reduce intestinal inflammation, enhance antioxidant enzyme activity. | Fermented foods, dairy products |
Synbiotics | Combination of probiotics and prebiotics | Support and enhance the survival of probiotics, improve gut health | Average body weight in broilers was 2299.19 g for the synbiotic group compared with 2058.1 g for the placebo group. | Improve gut microbiota diversity, enhance the absorption of nutrients, synergistic effects between probiotics and prebiotics. | Supplements, functional foods |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Habsi, N.; Al-Khalili, M.; Haque, S.A.; Elias, M.; Olqi, N.A.; Al Uraimi, T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024, 16, 3955. https://doi.org/10.3390/nu16223955
Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients. 2024; 16(22):3955. https://doi.org/10.3390/nu16223955
Chicago/Turabian StyleAl-Habsi, Nasser, Maha Al-Khalili, Syed Ariful Haque, Moussa Elias, Nada Al Olqi, and Tasnim Al Uraimi. 2024. "Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics" Nutrients 16, no. 22: 3955. https://doi.org/10.3390/nu16223955
APA StyleAl-Habsi, N., Al-Khalili, M., Haque, S. A., Elias, M., Olqi, N. A., & Al Uraimi, T. (2024). Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients, 16(22), 3955. https://doi.org/10.3390/nu16223955