The Role of Nutrition in the Pathogenesis and Treatment of Autoimmune Bullous Diseases—A Narrative Review
Abstract
:1. Introduction
2. Characteristics of Autoimmune Bullous Diseases
2.1. Pemphigus
2.2. Bullous Pemphigoid and Mucous Membrane Pemphigoid
2.3. Dermatitis Herpetiformis (Duhring’s Disease)
2.4. Epidermolysis Bullosa Acquisita
3. The Role of Nutrition in Autoimmune Bullous Diseases
3.1. Nutrients
3.1.1. Thiols and Bulb Vegetables (Allium)
3.1.2. Phenols
3.1.3. Tannic Acid
3.1.4. Tannins
3.1.5. Phycocyanin and Isothiocyanates
3.1.6. All Trans-Retinoic Acids and Cinnamic Acid
3.1.7. Walnut Antigens
3.2. Vitamins and Minerals
3.2.1. Vitamins D and B3
3.2.2. Calcium, Potassium, Selenium, Zinc, and Copper
3.3. Diets
3.3.1. Soft Diet
3.3.2. High-Protein Diet and High-Calcium Diet
3.3.3. The DASH Diet and the Mediterranean Diet
3.3.4. Gluten-Free Diet
3.4. Herbal Supplements
3.5. Fast Foods
4. Dietary Management in Autoimmune Bullous Diseases and the Role of Dieticians
4.1. Dietary Management in Autoimmune Bullous Diseases Treated with Chronic Glucocorticosteroid Therapy
4.2. Dietary Management and the Risk of Cardiovascular Diseases in Autoimmune Bullous Diseases
4.3. The Role of Dieticians in Autoimmune Bullous Diseases
4.4. Support Groups
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choudhary, R.; Gupta, V.; Khandpur, S. Updates on the management of autoimmune bullous diseases. Indian Dermatol. Online J. 2024, 15, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, S.; Özbagvican, Ö.; Dolas, N.; Aktan, Ş. Possible triggering factors and comorbidities in newly diagnosed autoimmune bullous diseases. Turk. J. Med. Sci. 2017, 47, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Qian, H.; Ishii, N.; Nakama, T.; Tateishi, C.; Tsuruta, D.; Li, X. Classification and antigen molecules of autoimmune bullous diseases. Biomolecules 2023, 13, 703. [Google Scholar] [CrossRef] [PubMed]
- Spałek, M.M.; Jałowska, M.; Bowszyc-Dmochowska, M.; Dmochowski, M. Rituximab in the management of autoimmune bullous diseases: A treatment-resistant case series from a single Central European Referral Center. Medicina 2024, 60, 270. [Google Scholar] [CrossRef]
- D’Astolto, R.; Quintarelli, L.; Corrà, A.; Caproni, M.; Fania, L.; Di Zenzo, G.; Didona, B.; Gasparini, G.; Cozzani, E.; Feliciani, C. Environmental factors in autoimmune bullous diseases with focusing on seasonality: New insights. Dermatol. Rep. 2023, 15, 9641. [Google Scholar] [CrossRef]
- Saschenbrecker, S.; Karl, I.; Komorowski, L.; Probst, C.; Dähnrich, C.; Fechner, K.; Stöcker, W.; Schlumberger, W. Serological diagnosis of autoimmune bullous skin diseases. Front. Immunol. 2019, 10, 1974. [Google Scholar] [CrossRef]
- Kridin, K.; Schmidt, E. Epidemiology of pemphigus. JID Innov. 2021, 1, 100004. [Google Scholar] [CrossRef]
- Martin, L.K.; Agero, A.L.; Werth, V.; Villanueva, E.; Segall, J.; Murrell, D.F. Interventions for pemphigus vulgaris and pemphigus foliaceus: A summarised Cochrane Review. Clin. Exp. Dermatol. 2011, 36, 927–928. [Google Scholar] [CrossRef]
- Buonavoglia, A.; Leone, P.; Dammacco, R.; Di Lernia, G.; Petruzzi, M.; Bonamonte, D.; Vacca, A.; Racanelli, V.; Dammacco, F. Pemphigus and mucous membrane pemphigoid: An update from diagnosis to therapy. Autoimmun. Rev. 2019, 18, 349–358. [Google Scholar] [CrossRef]
- Żebrowska, A.; Waszczykowska, E.; Kowalewski, C.; Woźniak, K.; Olszewska, M.; Placek, W.; Czajkowski, R.; Szepietowski, J.; Białynicki-Birula, R.; Dmochowski, M. Diagnostic and therapeutic guidelines of dermatitis herpetiformis (Duhring’s disease)—Consensus of Polish Dermatological Society. Przegląd Dermatol. 2016, 103, 95–101. [Google Scholar] [CrossRef]
- Fine, J.-D. Epidemiology of inherited epidermolysis bullosa based on incidence and prevalence estimates from the National Epidermolysis Bullosa Registry. JAMA Dermatol. 2016, 152, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Caux, F. Diagnosis and clinical features of epidermolysis bullosa acquisita. Dermatol. Clin. 2011, 29, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, O.T.; Galloway, D.; Augustin, M.; Sinha, A. The multifactorial complexities of autoimmune development in pemphigus vulgaris: Critical evaluation of the role of environmental and lifestyle “exposome” factors. Front. Immunol. 2023, 13, 1058759. [Google Scholar] [CrossRef] [PubMed]
- Witte, M.; Zillikens, D.; Schmidt, E. Diagnosis of autoimmune blistering diseases. Front. Med. 2018, 5, 296. [Google Scholar] [CrossRef]
- Kridin, K.; Patel, P.; Jones, V.; Cordova, A.; Amber, K. Iga Pemphigus: A systematic review. J. Am. Acad. Dermatol. 2020, 82, 1386–1392. [Google Scholar] [CrossRef]
- Costan, V.-V.; Popa, C.; Hâncu, M.; Porumb-Andrese, E.; Toader, M. Comprehensive review on the pathophysiology, clinical variants and management of pemphigus (review). Exp. Ther. Med. 2021, 22, 1335. [Google Scholar] [CrossRef]
- Atarzadeh, F.; Kamalinejad, M.; Dastgheib, L.; Amin, G.; Jaladat, A. Cassia fistula in the management of cutaneous lesions of pemphigus vulgaris: A double-blind, placebo-controlled clinical trial. Eur. J. Integr. Med. 2016, 8, 6. [Google Scholar] [CrossRef]
- Kowalewski, C.; Dmochowski, M.; Placek, W.; Waszczykowska, E.; Nowicki, R.; Flisiak, I.; Czajkowski, R.; Brzezińska-Wcisło, L.; Szepietowski, J.; Kaszuba, A.; et al. Diagnosis and therapy of pemphigus—Consensus of Polish Dermatological Society. Dermatol. Rev. 2014, 2, 147–155. [Google Scholar] [CrossRef]
- Narbutt, J.; Sysa-Jędrzejowska, A.; Torzecka, J.D. Usefulness of the ELISA method in determining pemphigus antibodies in patients with pemphigus vulgaris and pemphigus foliaceus in different periods of disease activity. Przegląd Dermatol. 2002, 89, 447–452. [Google Scholar]
- Kraigher, O.; Wohl, Y.; Gat, A.; Brenner, S. A mixed immunoblistering disorder exhibiting features of bullous pemphigoid and pemphigus foliaceus associated with spirulina algae intake. Int. J. Dermatol. 2007, 47, 61–63. [Google Scholar] [CrossRef]
- Baker, J.; Seiffert-Sinha, K.; Sinha, A. ISID0502—Worldwide epidemiologic factors in pemphigus vulgaris and bullous pemphigoid. J. Investig. Dermatol. 2023, 143, S86. [Google Scholar] [CrossRef]
- Salmi, T.; Hervonen, K. Current concepts of dermatitis herpetiformis. Acta Derm. Venereol. 2020, 100, 5664. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.N.; Kim, S.-J. Dermatitis herpetiformis: An update on diagnosis, disease monitoring, and Management. Medicina 2021, 57, 843. [Google Scholar] [CrossRef] [PubMed]
- Pasternack, C.; Hervonen, K.; Mansikka, E.; Reunala, T.; Collin, P.; Kaukinen, K.; Salmi, T. Persistent skin symptoms after diagnosis and on a long-term gluten-free diet in dermatitis herpetiformis. Acta Derm. Venereol. 2021, 101, 236. [Google Scholar] [CrossRef] [PubMed]
- Muddasani, S.; Rusk, A.M.; Baquerizo Nole, K.L. Gluten and skin disease beyond dermatitis herpetiformis: A Review. Int. J. Dermatol. 2020, 60, 281–288. [Google Scholar] [CrossRef]
- Stoj, V.; Lu, J. Nutrition and bullous diseases. Clin. Dermatol. 2022, 40, 156–165. [Google Scholar] [CrossRef]
- Fallah, M.; Najafi, A.; Balighi, K.; Daneshpazhooh, M.; Ebrahimpour-Koujan, S. Association of Alternative Healthy Eating Index and severity of pemphigus vulgaris: A cross-sectional study. PLoS ONE 2023, 18, e0295026. [Google Scholar] [CrossRef]
- Verma, C.; Alrefaee, S.; Rhee, K.; Quraishi, M.A.; Ebenso, E. Thiol (-SH) substituent as functional motif for effective corrosion protection: A review on current advancements and future directions. J. Mol. Liq. 2021, 324, 115111. [Google Scholar] [CrossRef]
- Brenner, S.; Ruocco, V.; Wolf, R.; de Angelis, E.; Lombardi, M.A. Pemphigus and dietary factors. Dermatology 1995, 190, 197–202. [Google Scholar] [CrossRef]
- Ruocco, V.; Brenner, S.; Lombardi, M.L. A case of diet-related pemphigus. Dermatology 1996, 192, 373–374. [Google Scholar] [CrossRef]
- Ruocco, V.; Brenner, S.; Ruocco, E. Pemphigus and diet: Does a link exist? Int. J. Dermatol. 2001, 40, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Placek, W. Diet in Skin Diseases; Wydawnictwo Czelej: Lublin, Poland, 2022; pp. 81–129. [Google Scholar]
- Brenner, S.; Srebrnik, A.; Goldberg, I. Pemphigus can be induced by topical phenol as well as by foods and drugs that contain phenols or thiols. J. Cosmet. Dermatol. 2003, 2, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Hans-Filho, G.; Santos, V.; Katayama, J.; Aoki, V.; Rivitti, E.; Sampaio, S.; Friedman, H.; Moraes, J.; Moraes, M.; Eaton, D.; et al. An active focus of high prevalence of Fogo Selvagem on an Amerindian reservation in Brazil. J. Investig. Dermatol. 1996, 107, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, E.; Aurilia, A.; Ruocco, V. Precautions and suggestions for pemphigus patients. Dermatology 2001, 203, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Feliciani, C.; Toto, P.; Pour, S.; Coscione, G.; Amerio, P.; Amerio, P.; Shivji, G.; Wang, B.; Sauder, D. In vitro and in vivo expression of interleukin-1α and tumor necrosis factor-α mrna in pemphigus vulgaris: Interleukin-1α and tumor necrosis factor-α are involved in acantholysis. J. Investig. Dermatol. 2000, 114, 71–77. [Google Scholar] [CrossRef]
- Kneiber, D.; Kowalski, E.H.; Kridin, K.; Yale, M.L.; Grando, S.A.; Amber, K.T. Gastrointestinal symptoms, gastrointestinal bleeding and the role of diet in patients with autoimmune blistering disease: A survey of the International Pemphigus and Pemphigoid Foundation. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1935–1940. [Google Scholar] [CrossRef]
- Ruocco, V.; Ruocco, E.; Lo Schiavo, A.; Brunetti, G.; Guerrera, L.; Wolf, R. Pemphigus: Etiology, pathogenesis, and inducing or triggering factors: Facts and controversies. Clin. Dermatol. 2013, 31, 374–381. [Google Scholar] [CrossRef]
- Rocha-Alvarez, R.; Ortega-Loayza, A.G.; Friedman, H.; Campbell, I.; Aoki, V.; Rivitti, E.A.; Dasher, D.; Li, N.; Diaz, L.A. Endemic pemphigus vulgaris. Arch. Dermatol. 2007, 143, 895–899. [Google Scholar] [CrossRef]
- Brenner, S.; Mashiah, J. Autoimmune blistering diseases in children: Signposts in the process of evaluation. Clin. Dermatol. 2000, 18, 711–724. [Google Scholar] [CrossRef]
- Feliciani, C.; Ruocco, E.; Zampetti, A.; Toto, P.; Amerio, P.A.; Tulli, A.; Amerio, P.; Ruocco, V. Tannic acid induces in vitro acantholysis of keratinocytes via IL-1α and TNF-α. Int. J. Immunopathol. Pharmacol. 2007, 20, 289–299. [Google Scholar] [CrossRef]
- Tur, E.; Brenner, S. The role of the water system as an exogenous factor in pemphigus. Int. J. Dermatol. 1997, 36, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Gruss, C.; Zillikens, D.; Hashimoto, T.; Amagai, M.; Kroiss, M.; Vogt, T.; Landthaler, M.; Stolz, W. Rapid response of IGA pemphigus of subcorneal pustular dermatosis type to treatment with isotretinoin. J. Am. Acad. Dermatol. 2000, 43, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Pino-Lagos, K.; Benson, M.J.; Noelle, R.J. Retinoic acid in the immune system. Ann. N. Y. Acad. Sci. 2008, 1143, 170–187. [Google Scholar] [CrossRef] [PubMed]
- Vinall, C.; Stevens, L.; McArdle, P. Pemphigus vulgaris: A multidisciplinary approach to management. BMJ Case Rep. 2013, 2013, bcr2013200479. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, A.; Greenfield, S. Pemphigus vulgaris: A rare cause of dysphagia. BMJ Case Rep. 2015, 2015, bcr2015212661. [Google Scholar] [CrossRef]
- Lin, L.; Moran, T.; Peng, B.; Yang, J.; Culton, D.; Che, H.; Jiang, S.; Liu, Z.; Geng, S.; Zhang, Y.; et al. Walnut antigens can trigger autoantibody development in patients with pemphigus vulgaris through a “hit-and-run” mechanism. J. Allergy Clin. Immunol. 2019, 144, 720–728. [Google Scholar] [CrossRef]
- Qian, Y.; Jeong, J.; Maldonado, M.; Valenzuela, J.; Gomes, R.; Teixeira, C.; Evangelista, F.; Qaqish, B.; Aoki, V.; Hans, G.; et al. Cutting edge: Brazilian pemphigus foliaceus anti-desmoglein 1 autoantibodies cross-react with sand fly salivary LJM11 antigen. J. Immunol. 2012, 189, 1535–1539. [Google Scholar] [CrossRef]
- Yamamoto, C.; Tamai, K.; Nakano, H.; Matsuzaki, Y.; Kaneko, T.; Sawamura, D. Vitamin D3 inhibits expression of pemphigus vulgaris antigen desmoglein 3: Implication of a partial mechanism in the pharmacological effect of vitamin D3 on skin diseases. Mol. Med. Rep. 2008, 1, 581–583. [Google Scholar] [CrossRef]
- EL-Komy, M.H.M.; Samir, N.; Shaker, O.G. Estimation of vitamin D levels in patients with pemphigus vulgaris. J. Eur. Acad. Dermatol. Venereol. 2013, 28, 859–863. [Google Scholar] [CrossRef]
- Javanbakht, M.H.; Djalali, M.; Daneshpazhooh, M.; Zarei, M.; Eshraghian, M.; Derakhshanian, H.; Chams-Davatchi, C. Evaluation of antioxidant enzyme activity and antioxidant capacity in patients with newly diagnosed pemphigus vulgaris. Clin. Exp. Dermatol. 2015, 40, 313–317. [Google Scholar] [CrossRef]
- Marzano, A.V.; Trevisan, V.; Eller-Vainicher, C.; Cairoli, E.; Marchese, L.; Morelli, V.; Beck-Peccoz, P.; Crosti, C.; Chiodini, I. Evidence for vitamin D deficiency and increased prevalence of fractures in autoimmune bullous skin diseases. Br. J. Dermatol. 2012, 167, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Costa Arantes, D.A.; Guimarães, J.M.; Batista, A.C. Therapeutic success of vitamin D replacement in oral pemphigus vulgaris: A case report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, e52. [Google Scholar] [CrossRef]
- Joshi, N.; Minz, R.; Anand, S.; Parmar, N.; Kanwar, A. Vitamin D deficiency and lower TGF-β/il-17 ratio in a North Indian cohort of pemphigus vulgaris. BMC Res. Notes 2014, 7, 536. [Google Scholar] [CrossRef] [PubMed]
- Sawai, T.; Kitazawa, K.; Danno, K.; Sugie, N.; Mochizuki, T.; Sugiura, H.; Uehara, M. Pemphigus vegetans with oesophageal involvement: Successful treatment with Minocycline and nicotinamide. Br. J. Dermatol. 2006, 132, 668–670. [Google Scholar] [CrossRef] [PubMed]
- von Köckritz, A.; Ständer, S.; Zeidler, C.; Metze, D.; Luger, T.; Bonsmann, G. Successful monotherapy of pemphigus vegetans with Minocycline and nicotinamide. J. Eur. Acad. Dermatol. Venereol. 2016, 31, 85–88. [Google Scholar] [CrossRef]
- Buckley, L.; Guyatt, G.; Fink, H.; Cannon, M.; Grossman, J.; Hansen, K.; Humphrey, M.; Lane, N.; Magrey, M.; Miller, M.; et al. 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 2017, 69, 1521–1537. [Google Scholar] [CrossRef]
- Jarosz, M. Nutrition Standards for the Polish Population; Institute of Food and Nutrition: Warsaw, Poland, 2017. [Google Scholar]
- Yazdanpanah, M.J.; Ghayour-Mobarhan, M.; Taji, A.; Javidi, Z.; Pezeshkpoor, F.; Tavallaie, S.; Momenzadeh, A.; Esmaili, H.; Shojaie-Noori, S.; Khoddami, M.; et al. Serum zinc and copper status in Iranian patients with pemphigus vulgaris. Int. J. Dermatol. 2011, 50, 1343–1346. [Google Scholar] [CrossRef]
- Ciborowska, H.; Ciborowski, A. Dietetics: Nutrition of Healthy and Sick People; PZWL Medical Publishing House: Warsaw, Poland, 2022. [Google Scholar]
- Homepage—IPPF. 2024. Available online: https://www.pemphigus.org/ (accessed on 20 July 2024).
- Benson, G.; Hayes, J. An update on the Mediterranean, vegetarian, and dash eating patterns in people with type 2 diabetes. Diabetes Spectr. 2020, 33, 125–132. [Google Scholar] [CrossRef]
- Muñoz-Garach, A.; García-Fontana, B.; Muñoz-Torres, M. Nutrients and dietary patterns related to osteoporosis. Nutrients 2020, 12, 1986. [Google Scholar] [CrossRef]
- Filippou, C.; Thomopoulos, C.; Mihas, C.; Dimitriadis, K.; Sotiropoulou, L.; Siafi, E.; Zammanis, I.; Dimitriadi, M.; Chrysochoou, C.; Nihoyannopoulos, P.; et al. Dietary approaches to stop hypertension (DASH) diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Eur. Heart J. 2020, 41 (Suppl. 2), 1150–1160. [Google Scholar] [CrossRef]
- Theodoridis, X.; Chourdakis, M.; Chrysoula, L.; Chroni, V.; Tirodimos, I.; Dipla, K.; Gkaliagkousi, E.; Triantafyllou, A. Adherence to the dash diet and risk of hypertension: A systematic review and meta-analysis. Nutrients 2023, 15, 3261. [Google Scholar] [CrossRef]
- Leone, A.; Martínez-González, M.; Martin-Gorgojo, A.; Sánchez-Bayona, R.; De Amicis, R.; Bertoli, S.; Battezzati, A.; Bes-Rastrollo, M. Mediterranean diet, dietary approaches to stop hypertension, and pro-vegetarian dietary pattern in relation to the risk of basal cell carcinoma: A nested case-control study within the SEGUIMIENTO Universidad de Navarra (SUN) cohort. Am. J. Clin. Nutr. 2020, 112, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean diet as a tool to combat inflammation and chronic diseases. an overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Ventriglio, A.; Sancassiani, F.; Contu, M.; Latorre, M.; Di Slavatore, M.; Fornaro, M.; Bhugra, D. Mediterranean diet and its benefits on health and Mental Health: A Literature Review. Clin. Pract. Epidemiol. Ment. Health 2020, 16, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, Y.; Hasegawa, A.; Uchida, S.; Terao, K.; Takei, S.; Yokoyama, A.; Sato, A.; Kabata, Y.; Hayashi, R.; Fujikawa, H.; et al. Dermatitis herpetiformis triggered by iodine contrast media. J. Eur. Acad. Dermatol. Venereol. 2021, 36, e348–e350. [Google Scholar] [CrossRef]
- Botosso, M.; Damasceno, R.; Farage, P. The role of the gluten-free diet in the development of malignancies in celiac disease. In Celiac Disease and Gluten-Free Diet; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Demirkesen, I.; Ozkaya, B. Recent strategies for tackling the problems in gluten-free diet and products. Crit. Rev. Food Sci. Nutr. 2020, 62, 571–597. [Google Scholar] [CrossRef]
- Mazzola, A.M.; Zammarchi, I.; Valerii, M.; Spisni, E.; Saracino, I.; Lanzarotto, F.; Ricci, C. Gluten-free diet and other celiac disease therapies: Current understanding and emerging strategies. Nutrients 2024, 16, 1006. [Google Scholar] [CrossRef]
- Home Page Celiac Disease. 2024. Available online: https://celiakia.pl/ (accessed on 8 August 2024).
- Bax, C.E.; Chakka, S.; Concha, J.; Zeidi, M.; Werth, V. The effects of immunostimulatory herbal supplements on autoimmune skin diseases. J. Am. Acad. Dermatol. 2021, 84, 1051–1058. [Google Scholar] [CrossRef]
- Lee, A.N.; Werth, V.P. Activation of autoimmunity following use of immunostimulatory herbal supplements. Arch. Dermatol. 2004, 140, 723–727. [Google Scholar] [CrossRef]
- Forouzesh, A.; Forouzesh, F.; Samadi Foroushani, S.; Forouzesh, A. Nutrition labels of foods: Friends or foes in public health? misleading mistakes of U.S. FDA Nutrition Facts Label and invention of a reliable nutrition facts label. SSRN Electron. J. 2024. preprint. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Z.; Zhuang, X.; Ma, G. Advantages of graphical nutrition facts label: Faster attention capture and improved healthiness judgement. Ergonomics 2022, 66, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Beltran, M.; Almanza, B.; Byrd, K.; Behnke, C.; Nelson, D. Fast-food optimal defaults reduce calories ordered, as well as dietary autonomy: A scenario-based experiment. J. Acad. Nutr. Diet. 2023, 123, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.F.; Cunha, S.; Monteiro, J.; Ferreira, T.; Santos, J.; Furtado, R.; Marssaro, R.; Muniz, R.; Gomes, R. Nutritonal evaluation of pemphigus foliaceus patients on long term glucocorticoid therapy. Rev. Do Inst. De Med. Trop. São Paulo 2000, 42, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Karlińska, M.; Waszczykowska, E.; Torzecka, J.D. Bone metabolism disorders and glucocorticoid therapy in patients with pemphigus. Postępy Dermatol. I Alergol. 2010, 27, 484–489. [Google Scholar]
- Seifollahi, A.; Fazl, M.; Setayesh, L.; Javanbakht, M.; Daneshpazhooh, M.; Shab-Bidar, S.; Yaseri, M. The association between dietary diversity score and cardiovascular risk factors among patients with pemphigus vulgaris: A cross sectional study. Clin. Nutr. Res. 2022, 11, 289–301. [Google Scholar] [CrossRef]
- Yaghubi, E.; Daneshpazhooh, M.; DJalali, M.; Mohammadi, H.; Sepandar, F.; Fakhri, Z.; Ghaedi, E.; Keshavarz, S.; Balighi, K.; Mahmoudi, H.; et al. Effects of l-carnitine supplementation on cardiovascular and bone turnover markers in patients with pemphigus vulgaris under corticosteroids treatment: A randomized, double-blind, controlled trial. Dermatol. Ther. 2019, 32, e13049. [Google Scholar] [CrossRef]
- Seidu, S.; Khunti, K. The role of the multidisciplinary team across primary and secondary care. In Textbook of Diabetes; Wiley: Hoboken, NJ, USA, 2024; pp. 1095–1106. [Google Scholar] [CrossRef]
- Hassan, M.; Barajas-Gamboa, J.S.; Kanwar, O.; Lee-St John, T.; Tannous, D.; Corcelles, R.; Rodriguez, J.; Kroh, M. A087 The role of dietitian follow-ups on nutritional outcomes post bariatric surgery. Surg. Obes. Relat. Dis. 2022, 18, S2–S3. [Google Scholar] [CrossRef]
- Askari, G.; Ghavami, A.; Shahdadian, F.; Moravejolahkami, A. Effect of synbiotics and probiotics supplementation on autoimmune diseases: A systematic review and meta-analysis of clinical trials. Clin. Nutr. 2021, 40, 3221–3234. [Google Scholar] [CrossRef]
- Lerner, A.; Matthias, T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun. Rev. 2015, 14, 479–489. [Google Scholar] [CrossRef]
- Pemphigus Vulgaris Network. Available online: http://www.pemphigus.org.uk/ (accessed on 20 July 2024).
- Bienvenue: APPF. AssoConnect. Available online: https://www.pemphigus.asso.fr/page/323459-bienvenue (accessed on 20 July 2024).
- Marczewska, A. Celiac Disease and Gluten-Free Diet: A Practical Guide; Polish Association of People with Celiac Disease and on a Gluten-Free Diet: Warsaw, Poland, 2021. [Google Scholar]
- Bieber, K.; Hundt, J.; Yu, X.; Ehlers, M.; Petersen, F.; Karsten, C.; Köhl, J.; Kridin, K.; Kalies, K.; Kasprick, A.; et al. Autoimmune pre-disease. Autoimmun. Rev. 2023, 22, 103236. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.A.; Brunnhuber, K.; Ciliska, D.; Juhl, C.; Christensen, R.; Lund, H. Evidence-based research series-paper 1: What evidence-based research is and why is it important? J. Clin. Epidemiol. 2021, 129, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Aas, A.-M.; Axelse, M.; Churuangsuk, C.; Hermansen, K.; Kendall, C.; Kahleova, H.; Khan, T.; Lean, M.; Mann, J.; Pedersen, E.; et al. Evidence-based European recommendations for the Dietary Management of Diabetes. Diabetologia 2023, 66, 965–985. [Google Scholar] [CrossRef]
Definition | Incidence [per year] | Persons Affected | Diagnosis | Treatment | |
---|---|---|---|---|---|
Pemphigus | pemphigus is an autoimmune disease, potentially life-threatening, in which the immune system is dysregulated, and autoantibodies are formed against desmogleins, i.e., surface proteins of keratinocytes, namely desmoglein 3 and/or 1 | 0.5–8/ 1,000,000 | all age groups with the peak incidence around the age of 50–60, women are affected more often | clinical picture of the lesions and the results of immunological tests optionally histopathological examination of skin and/or mucous membrane sections | glucocorticoids combined with immunosuppressive Drugs, rituximab |
Bullous pemphigoid and mucous membrane pemphigoid | bullous pemphigoid is the most common autoimmune bullous disease caused by autoimmune reaction against antigen BP 180; typical lesions are subepidermal tense blisters, on erythema and urticarial skin and on normal looking skin | 0.2–4/ 100,000 | elderly people over 60 years of age, with no gender predilection | diagnose is based on the clinical picture and immunopathological test results, optionally histopathological examination | glucocorticoids (topically or systemic); methotrexate, tetracyclines, azathioprine, mycophenolate mofetil, cyclophosphamide and dapsone |
Dermatitis herpetiformis (During’s Diseases) | is a chronic, intensely itchy skin autoimmune blistering disorder connected with gluten-sensitive enteropathy characterized by clusters of small blisters and red, raised patches, typically appearing on the elbows, knees, buttocks, and scalp | 0.4–3.5/ 100,000 | slightly more often affecting men than women, 4th and 5th decade of life | clinical picture of the lesions, and immunological tests and possibly by histopathological examination | gluten free diet and in some cases small doses of dapsone |
Epidermolysis Bullosa Aqusita | an autoimmune subepidermal bullous disease in which the autoimmunity process is directed against epitopes of collagen VII, which is a protein that forms anchoring fibers connecting the basement membrane with the dermis. | 0.25/ 1,000,000 | children and adults of all ages | clinical picture and immunological tests and possibly by histopathological examination | glucocorticoids, sometimes in combination with sulfones. Other options include colchicine and in severe cases immunosuppressive drugs or immunoglobulin infusions |
Name | Source | The Role in Pathogenesis and Treatment of AIBDs |
---|---|---|
1. Nutrients | ||
Thiols and bulb vegetables (Allium) | garlic, onion, leek, chives |
|
Phenols | pistachio, cinnamon, mango, red pepper, black pepper, thymol, eugenol, aspartame, cinnamon bark oil, pea seeds, rosmarinic acid, cynarin (artichoke), allspice, fennel, curcumin, arbutin, mace, milk |
|
Tannic Acid | coffee, tea, eggplant, cassava, cherries, blackberries (leaves), cranberries, ginger, avocados, oak bark, blueberries, wild strawberries, sage, willow bark, walnuts, cashew nuts, rosemary, ground pepper (betel), cassava and mango |
|
Tannins | tree bark, plants, black pepper, cherries, blueberries, mangoes, cashews, tea, vanillin and cocoa |
|
Phycocyanin and Isosulfurcyanates | phycocyanin is a blue pigment found in cryptophytes, cyanobacteria and red algae. Isosulfurcyanates are found in mustard. |
|
All trans-retinoic acids and Cinnamic Acid | cinnamic acid is found in candied fruit, tomatoes, oranges and grapefruits |
|
Walnut Antigens | walnut antigens |
|
2. Vitamins and Minerals | ||
Vitamin D | endogenous synthesis (approx. 80%), products of animal origin (oils, fatty fish, eggs) |
|
Vitamin B3 | meat (turkey, chicken), liver, meat products, fish, nuts, whole grain products, milk, cheese and eggs |
|
Calcium | milk and its products, parsley leaves, kale or spinach |
|
Potassium | nuts, seeds, dried fruits, chocolate, cocoa, vegetables, fruits, meat and cereal products |
|
Selenium | offal (especially kidneys), seafood (fish and crustaceans) and some vegetables (mushrooms, garlic, dry legumes) |
|
Zinc | liver, meat, brown bread, rennet cheese, eggs and buckwheat | |
Cobalt | wheat bran, offal (especially liver), sunflower seeds, nuts, and cocoa | |
Name | The Role in Pathogenesis and Treatment of AIBDs | |
3. Diets | ||
Soft diet |
| |
High-protein and high- calcium diet |
| |
DASH diet |
| |
The Mediterranean diet |
| |
A gluten-free diet |
| |
4. Herbal supplements | ||
Algae (Spirulina platensis) |
| |
Echinacea | ||
St. John’s wort (Hyperitum perforatum). | ||
Cassia fistula |
| |
5. Fast-foods | ||
pizza, hamburgers, fries, etc. |
|
Naturally Gluten-Free Products—Cereals, Seeds and Other Sources of Starch | Cereals and Their Derivatives Containing Gluten |
---|---|
Amaranth (amaranth) | Wheat (including spelled, kamut, emmer, einkorn, durum wheat) |
Ararut (arrowroot) | |
Sweet potato (sweet potato, yam) | |
Carob (carob, locust bean flour) | Barley |
Chia (Spanish sage) | |
Fonio (digitaria, fingerstick) | Rye |
Buckwheat and buckwheat groats | |
Indian rice grass (montina) | Triticale (triticale) |
Cocoa | |
Koiks of Job’s tears (tearism) | Groats: bulgur, Kraków, couscous, semolina, Masurian, pearl, barley, rural, Kujawy |
Coconut | |
Konjac | |
Corn (maize, teosinie), corn flour, corn flakes | Wheat sprouts |
Cassava (cassava, tapioca, yucca) | |
Seeds and seeds: pumpkin, poppy, sunflower | |
Nuts: Brazil, chestnuts, hazelnuts, macadamia, almonds, cashews, pecans, pistachios, pine nuts, walnuts, acorns | Durum flour (durum, semolina), rye, barley, emmer, einkorn, spelled |
Oat * | |
Millet (ragi, millet) | Seitan |
Quinoa (quinoa, Peruvian rice) | |
Rice (brown, red, wild, white) | Barley malt |
Sago | |
Sesame | Wheat, rye, barley starch |
Linseed | |
Sorghum (milo) | Wheat germ oil |
Legumes: broad beans, chickpeas, peas, mesquite, lupine, peanuts, lentils, soybeans | Wheat, rye and barley bran and flakes |
Tara | |
Tef/Teff (Abyssinian grass, Abyssinian grass) Jerusalem artichoke (bush sunflower) Potato | Wheat germ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajdas, A.A.; Żebrowska, A.; Zalewska-Janowska, A.; Czerwonogrodzka-Senczyna, A. The Role of Nutrition in the Pathogenesis and Treatment of Autoimmune Bullous Diseases—A Narrative Review. Nutrients 2024, 16, 3961. https://doi.org/10.3390/nu16223961
Kajdas AA, Żebrowska A, Zalewska-Janowska A, Czerwonogrodzka-Senczyna A. The Role of Nutrition in the Pathogenesis and Treatment of Autoimmune Bullous Diseases—A Narrative Review. Nutrients. 2024; 16(22):3961. https://doi.org/10.3390/nu16223961
Chicago/Turabian StyleKajdas, Aleksandra Anna, Agnieszka Żebrowska, Anna Zalewska-Janowska, and Aneta Czerwonogrodzka-Senczyna. 2024. "The Role of Nutrition in the Pathogenesis and Treatment of Autoimmune Bullous Diseases—A Narrative Review" Nutrients 16, no. 22: 3961. https://doi.org/10.3390/nu16223961
APA StyleKajdas, A. A., Żebrowska, A., Zalewska-Janowska, A., & Czerwonogrodzka-Senczyna, A. (2024). The Role of Nutrition in the Pathogenesis and Treatment of Autoimmune Bullous Diseases—A Narrative Review. Nutrients, 16(22), 3961. https://doi.org/10.3390/nu16223961