Outcomes for Patients Receiving Multi-Chamber Bags for the Delivery of Parenteral Nutrition: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reporting Guidelines and Protocol Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Strategy
2.5. Selection Process
2.6. Data Collection
2.7. Data Outcomes
2.7.1. Outcomes
- If participants met their nutritional requirements from PN, plus any additional feeding and oral intake;
- Participants’ nutritional status and if this was maintained/decreased/increased;
- Patient experience: Any qualitative reports of experience or QoL questionnaires;
- Complications: Overall infections/sepsis, metabolic disturbances, mortality, length of hospital stay, readmission, PN modification.
- Cost of PN. (When reported in different currencies, the cost was extracted into the extraction table in its original currency and then later converted to Euros, for ease of comparison, using the online XE currency converter [22]. At the time of conversion, 1 US dollar = 0.918 Euros and 1 Chinese Yuan Renminbi = 0.126 Euros);
- Preparation time;
- Number of modifications to PN prescription.
2.7.2. Other Variables
- Background information: Author, year, journal, language, title, funding, country;
- Study characteristics: Study design, inclusion/exclusion criteria, setting, sample size;
- Participant characteristics: Mean age, gender, ethnicity, medical/surgical condition or reason for PN, comorbidities;
- Exposure characteristics: MCBs/COMs, nutritional content of the bags, duration of PN and duration of follow-up, any additional feeding or oral intake.
2.8. Study Risk of Bias Assessment
2.9. Effect Measures and Synthesis of Data
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Population and Study Design
3.2.2. Exposure Characteristics
3.3. Risk of Bias in Studies
3.4. Results of Individual Studies
3.4.1. Nutrition, Weight, and Patient Experience
3.4.2. Clinical Outcomes
3.4.3. Cost and Preparation Time
4. Discussion and Limitations of the Evidence and Review Process
5. Implications for Practice, Policy, and Future Research
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pironi, L.; Boeykens, K.; Bozzetti, F.; Joly, F.; Klek, S.; Lal, S.; Lichota, M.; Mühlebach, S.; Van Gossum, A.; Wanten, G.; et al. ESPEN guideline on home parenteral nutrition. Clin. Nutr. 2020, 39, 1645–1666. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L. Definitions of intestinal failure and the short bowel syndrome. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 173–185. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, S.J.; Buchman, A.L.; Fishbein, T.M.; Jeejeebhoy, K.N.; Jeppesen, P.B.; Shaffer, J. Short bowel syndrome and intestinal failure: Consensus definitions and overview. Clin. Gastroenterol. Hepatol. 2006, 4, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Pelaez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. 2015, 34, 171–180. [Google Scholar] [CrossRef]
- Staun, M.; Pironi, L.; Bozzetti, F.; Baxter, J.; Forbes, A.; Joly, F.; Jeppesen, P.; Moreno, J.; Hebuterne, X.; Pertkiewicz, M.; et al. ESPEN Guidelines on Parenteral Nutrition: Home parenteral nutrition (HPN) in adult patients. Clin. Nutr. 2009, 28, 467–479. [Google Scholar] [CrossRef]
- Berlana, D. Parenteral Nutrition Overview. Nutrients 2022, 14, 4480. [Google Scholar] [CrossRef]
- Wischmeyer, P.E.; Klek, S.; Berger, M.M.; Berlana, D.; Gray, B.; Ybarra, J.; Ayers, P. Parenteral nutrition in clinical practice: International challenges and strategies. Am. J. Health Syst. Pharm. 2024, 81, S89–S101. [Google Scholar] [CrossRef]
- Harrison, S.; Farrer, K.; Meade, U.; Zewraschi, S.; The BIFA Committee. Prescribing Multi-Chamber Bags for Parenteral Support Regimens 2023. Available online: https://www.bapen.org.uk/pdfs/bifa/bifa-top-tips-series-21.pdf (accessed on 23 September 2024).
- Miller, S.J. Commercial premixed parenteral nutrition: Is it right for your institution? Nutr. Clin. Pract. 2009, 24, 459–469. [Google Scholar] [CrossRef]
- Hakeam, H.; Alsemari, M.; Mohamed, G.; Alshahrani, A.; Islami, M. The Rate of Discontinuing Ready-to-Use Multi-Chamber Bag Parenteral Nutrition Secondary to High Serum Electrolyte Levels. Hosp. Pharm. 2023, 58, 263–271. [Google Scholar] [CrossRef]
- Kumpf, V.J.; Gray, B.; Monczka, J.; Zeraschi, S.; Klek, S. Parenteral nutrition at home/long-term parenteral nutrition. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health Syst. Pharm. 2024, 8, S112–S120. [Google Scholar] [CrossRef]
- Crooks, B.; Harrison, S.; Millward, G.; Hall, K.; Taylor, M.; Farrer, K.; Abraham, A.; Teubner, A.; Lal, S. Catheter-related infection rates in patients receiving customized home parenteral nutrition compared with multichamber bags. J. Parenter. Enter. Nutr. 2022, 46, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Pontes-Arruda, A.; Dos Santos, M.C.; Martins, L.F.; Gonzalez, E.R.; Kliger, R.G.; Maia, M.; Magnan, G.B.; Group, E.S. Influence of parenteral nutrition delivery system on the development of bloodstream infections in critically ill patients: An international, multicenter, prospective, open-label, controlled study—EPICOS study. JPEN J. Parenter. Enter. Nutr. 2012, 36, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Turpin, R.S.; Canada, T.; Rosenthal, V.; Nitzki-George, D.; Liu, F.X.; Mercaldi, C.J.; Pontes-Arruda, A.; Group, I.S. Bloodstream infections associated with parenteral nutrition preparation methods in the United States: A retrospective, large database analysis. JPEN J. Parenter. Enter. Nutr. 2012, 36, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Bozat, E.; Korubuk, G.; Onar, P.; Abbasoglu, O. Cost analysis of premixed multichamber bags versus compounded parenteral nutrition: Breakeven point. Hosp. Pharm. 2014, 49, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Bielawska, B.; Allard, J.P. Parenteral Nutrition and Intestinal Failure. Nutrients 2017, 9, 466. [Google Scholar] [CrossRef]
- Schonenberger, K.A.; Reber, E.; Huwiler, V.V.; Durig, C.; Muri, R.; Leuenberger, M.; Muhlebach, S.; Stanga, Z. Quality of Life in the Management of Home Parenteral Nutrition. Ann. Nutr. Metab. 2023, 79, 326–333. [Google Scholar] [CrossRef]
- Sowerbutts, A.M.; Lal, S.; Pironi, L.; Jones, D.; French, C.; Riis, M.; Clamp, A.; McCracken, J.; Williamson, L.; Wheatley, C.; et al. Patients, family members and healthcare professionals’ top ten research priorities for adults receiving home parenteral nutrition for malignant or benign disease. Clin. Nutr. ESPEN 2023, 53, 151–158. [Google Scholar] [CrossRef]
- Kirk, C.; Pearce, M.S.; Mathers, J.C.; Thompson, N.P.; Gemmell, L.; Jones, D.E. Quality of life and home parenteral nutrition: A survey of UK healthcare professionals’ knowledge, practice and opinions. J. Hum. Nutr. Diet. 2023, 36, 687–696. [Google Scholar] [CrossRef]
- Alfonso, J.E.; Berlana, D.; Ukleja, A.; Boullata, J. Clinical, Ergonomic, and Economic Outcomes With Multichamber Bags Compared With (Hospital) Pharmacy Compounded Bags and Multibottle Systems: A Systematic Literature Review. JPEN. J. Parenter. Enter. Nutr. 2017, 41, 1162–1177. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- XE. Online Currency Converter. Available online: https://www.xe.com/en-gb/ (accessed on 22 July 2024).
- Aromataris, E.; Lockwood, C.; Porritt, K.; Pilla, B.; Jordan, Z. (Eds.) JBI Manual for Evidence Synthesis; Joanna Briggs Institute (JBI): Adelaide, Australia, 2024. [Google Scholar] [CrossRef]
- Banko, D.; Rosenthal, N.; Chung, J.; Lomax, C.; Washesky, P.F. Comparing the risk of bloodstream infections by type of parenteral nutrition preparation method: A large retrospective, observational study. Clin. Nutr. ESPEN 2019, 30, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Argueso, M.; Gomez-Bayona, E.; Ugalde, B.; Vega-Pinero, B.; Gil-Diaz, M.; Longo, F.; Pintor, R.; Botella-Carretero, J.I. Ready-to-Use Multichamber Bags in Home Parenteral Nutrition for Patients with Advanced Cancer: A Single-Center Prospective Study. Nutrients 2024, 16, 457. [Google Scholar] [CrossRef] [PubMed]
- Goh, R.J.L.; Li, H.; Cheah, M.C.C.; Salazar, E. The use of standardized commercially available parenteral nutrition as a bridge to customized compounded bag in the acute hospital setting is safe and feasible. Clin. Nutr. ESPEN 2022, 47, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.Y.; Yang, J.; Xia, Y.; Tong, D.N.; Zaloga, G.P.; Qin, H.L.; OliClinomel, N.S.G. Safety and efficacy of an olive oil-based triple-chamber bag for parenteral nutrition: A prospective, randomized, multi-center clinical trial in China. Nutr. J. 2015, 14, 119. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, J.T.; Chung, J.E.; Yang, J.A.; Bae, H.J.; Sung, Y.W.; Park, J.E.; Kim, S.H.; Cho, J.Y.; Jung, K.M.; et al. Practice of parenteral nutrition in hospitalized adult patients in Korea: A retrospective multicenter cross-sectional study. PLoS ONE 2020, 15, e0230922. [Google Scholar] [CrossRef]
- Xi, Q.L.; Qin, L.X.; Tao, G.Q.; Qiu, Z.J.; Yu, J.R.; Wu, G.H. Comparison of the clinical application of Medium and Long Chain Fat Emulsion/Amino Acids/Glucose Injection with hospital-prepared all-in-one parenteral nutrient solution. Zhongguo Xin Yao Zazhi 2021, 30, 1692–1697. [Google Scholar]
- Xie, L.N.; Yu, L.; Wang, D.X.; Zhang, X.R. Cost-effectiveness analysis on nutrition therapy of perioperative patients with gastrointestinal tumors receiving parenteral nutrition:compounded parenteral vs pre-mixed multi-chamber bag. Zhonghua Zhongliu Fangzhi Zazhi 2018, 25, 1729–1732. [Google Scholar]
- Yu, J.; Wu, G.; Tang, Y.; Ye, Y.; Zhang, Z. Efficacy, Safety, and Preparation of Standardized Parenteral Nutrition Regimens: Three-Chamber Bags vs Compounded Monobags-A Prospective, Multicenter, Randomized, Single-Blind Clinical Trial. Nutr. Clin. Pract. 2017, 32, 545–551. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.X.; Liu, X.Y.; Li, H.L.; Mei, D. Comparison of effectiveness, safety, and costs of standardized and customized parenteral nutrition support among gastric cancer patients after gastrectomy: A retrospective cohort study. Asia Pac. J. Clin. Nutr. 2018, 27, 818–822. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kopczynska, M.; Harrison, S.; Farrer, K.; Leahy, G.; Ollerenshaw-Ward, C.; Lal, S. Multi-chamber parenteral nutrition (PN) bags are safe and cost-effective in replacing compounded PN regimens in hospitalised patients. Clin. Nutr. ESPEN 2024, 64, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Sowerbutts, A.M.; Jones, D.; Lal, S.; Burden, S. Quality of life in patients and in family members of those receiving home parenteral support with intestinal failure: A systematic review. Clin. Nutr. 2021, 40, 3210–3220. [Google Scholar] [CrossRef] [PubMed]
- Baxter, J.; Fayers, P.M.; McKinlay, A.W. The development and translation of a treatment specific quality of life questionnaire for adult patients on home parenteral nutrition. Eur. E J. Clin. Nutr. Metab. 2008, 3, e22–e28. [Google Scholar] [CrossRef]
- Jones, D.; Lal, S.; French, C.; Sowerbutts, A.M.; Gittins, M.; Gabe, S.; Brundrett, D.; Culkin, A.; Calvert, C.; Thompson, B.; et al. Investigating the Relationship between Home Parenteral Support and Needs-Based Quality of Life in Patients with Chronic Intestinal Failure: A National Multi-Centre Longitudinal Cohort Study. Nutrients 2023, 15, 622. [Google Scholar] [CrossRef]
- Baxter, J.P.; Fayers, P.M.; Bozzetti, F.; Kelly, D.; Joly, F.; Wanten, G.; Jonkers, C.; Cuerda, C.; van Gossum, A.; Klek, S.; et al. An international study of the quality of life of adult patients treated with home parenteral nutrition. Clin. Nutr. 2019, 38, 1788–1796. [Google Scholar] [CrossRef]
- Hall, J.W. Safety, cost, and clinical considerations for the use of premixed parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 325–330. [Google Scholar] [CrossRef]
Author, Year (Country) Language | Study Design and Setting | Sample Size (n) | Format of PN Administration n (%) | Female n (%) | Mean Age (SD) Years | Ethnicity n (%) | |
---|---|---|---|---|---|---|---|
Hospital | Banko, 2019 [24] (USA) English | Retrospective cross-sectional in hospital | 84,564 | MCB: 17,892 (21.2) COM: 66,672 (78.9) | 47,246 (55.9) | Age range n (%): MCB: 18–44: 2376 (13.3) 45–64: 5439 (30.4) 65–74: 3986 (22.3) 75–84: 3829 (21.4) 85+: 2262 (12.6) COM: 18–44: 12,635 (19.0) 45–64: 22,710 (34.1) 65–74: 14,056 (21.1) 75–84: 11,858 (17.8) 85+: 5413 (8.1) | MCB: Hispanic 990 (5.5) NH White 7377 (41.2) NH Black 1324 (7.4) NH other 895 (5.0) Unknown 7306 (40.8) COM: Hispanic 2841 (4.3) NH White 15,868 (23.5) NH Black 2732 (4.1%) NH other 2909 (4.4) Unknown 42,532 (63.7) |
Goh, 2022 [26] (Singapore) English | Retrospective cross-sectional in hospital | 172 | MCB: 135 (78.5%) COM: 37 (21.5%) | MCB: 52 (38.5) COM: 16 (43.2) | MCB: 63 (15.41) COM: 66 (13.20) | NR | |
Jia, 2015 [27] (China) English | Randomised controlled parallel group trial in hospital | 458 | MCB: 226 (49.3) COM: 232 (50.7) | MCB: 92 (40.7) COM: 87 (37.5) | MCB: 55.8 (13.1) COM: 56.3 (11.7) | MCB: Chinese Han 216 (96) Other Chinese 8 (3.5) Other 2 (0.5) COM: Chinese Han 220 (94.8) Other Chinese 11 (4.7) Other 1 (0.4) | |
Park, 2020 [28] (Korea) English | Retrospective cross-sectional in hospital | 1493 | Commercial: 1443 (96.5) 86.2% = MCB COM: 50 (3.5) | 625 (43.4) | 62.5 (15.4) | NR | |
Xi, 2021 [29] (China) Chinese | Randomised controlled trial in hospital | 235 | MCB: 122 (51.9) COM: 118 (50.2) | MCB: 42 (35.0) All in one: 47 (40.9) | MCB: 58.96 (10.65) All in one: 57.07 (11.63) | NR | |
Xie, 2018 [30] (China) Chinese | Retrospective cohort in hospital | 249 | MCB: 122 (49.0) COM: 127 (51.0) | MCB: 50 (41.0) COM: 50 (39.4) | MCB: 57.7 (12.7) COM: 57.3 (10.3) | NR | |
Yu, 2017 [31] (China) English | Randomised controlled trial in hospital | 239 | MCB: 121 (50.6) COM: 118 (49.4) | MCB: 54 (45.0) COM: 56 (47.0) | MCB: 59.83 (12.42) COM: 59.75 (12.56) | NR | |
Zhao, 2018 [32] (China) English | Retrospective cohort in hospital | 64 | MCB: 30 (46.9) COM: 34 (53.1) | MCB: 5 (17.0) COM: 13 (38.0) | MCB: 59 (15.0) COM: 59 (10.0) | NR | |
Home | Crooks, 2022 [12] (UK) English | Retrospective cohort in the home | 123 | New grp: MCB 45 (42.9) COM 60 (57.1) Switch grp: 18 (100.0) | New grp: 76 (72.4) Switch grp: 8 (44.4) | New grp: MCB 53 (17.1) COM 59 (13.3) Switch grp: 55.6 (14.1) | NR |
Fernández- Argüeso [25] (Spain) 2024 | Prospective cohort at home | 130 | MCB: 43 (33.1) COM: 87 (66.9) | MCB: 30 (69.0) COM: 57 (66.0) | MCB: 59 (13.0) COM: 58 (11.0) | NR |
Author, Year | Main Indication for PN n (%) | Nutritional Content of PN Bags | Tube Feeding/Oral Intake | Mean Duration of PN | Duration of Follow-Up | |
---|---|---|---|---|---|---|
Hospital | Banko, 2019 [24] | Nutritional deficiency 84,564 (100.0) | NR | NR | n (%) MCB: 1–2 days, 3059 (17.1) 3–4 days, 4595 (25.7) 5–9 days, 6739 (37.7) 10+ days, 3499 (19.6) COM: 1–2 days 24,920 (37.4) 3–4 days 12,491 (18.7) 5–9 days 17,681 (26.5) 10+ days 11,580 (17.4) | No follow-up. Cross- sectional Outcomes, 30- and 90-days all-cause readmissions |
Goh, 2022 [26] | MCB: GI obstruction 46 (34.1) Post-op comp 58 (43.0) Severely maln 15 (11.1) GI haemorrhage 3 (2.2) Others 13 (9.6) COM: GI obstruction 8 (21.6) Post-op comp 18 (48.6) Severely maln 5 (13.5) Others 6 (16.2) | MCB: SmofKabiven 1206 mL, 800 kcal, 38 g Protein, 85 g glu, 34 g lipid In mmol: Na 30, K 23, Ca 1.9, Mg 3.8, PO4 9.9, Zn 0.03 COM: Individualised | NR | 13–15 h between initiation of PN and subsequent blood test | 13–15 h post initiation of PN on Day 1 | |
Jia, 2015 [27] | Underwent surgery: 397 (86.7) High-complexity surgery: 283 (62.0) | MCB: Oliclinomel N4 1.5 L with electrtolytes (80% olive oil, 20% soybean oil) COM: soybean oil-based lipid PN regimen using Intralipid | Nil from days 0–5. From day 6 onward, liquid oral or enteral nutrition could be added to the study treatment | MCB: 8.4 (SD 3.7) days COM: 8.2 (SD 3.7) days Max duration 14 days. Could be initiated 3 days pre-surgery | Study treatment of HPN was between 5 and 14 days | |
Park, 2020 [28] | Neoplasms: 761 (53.0) Surgery: 410 (28.0) Organ systems Digestive: 186 (13.0) Respiratory: 87 (6.0) Circulatory: 74 (5.0) Blood/blood-forming organs/immune: 54 (4.0) Others: 277 (19.0) | Where the bags provided lipid, this could be either soybean, MCT, olive oil, or fish oil | NR | NR. The average hospital PN duration was 17.8 ± 52.6 days | N/A | |
Xi, 2021 [29] | Elective moderate or major abdominal surgery | MCB: MCT/LCT fat emulsion/aa (16)/glu (36%) electrolyte injection COM: MCT/LCT fat emulsion 250 mL:50 g, compound aa injection (18AA-II) 250 mL:28.5 g, glu injection 100 mL:50 g, concentrated Cl2 NaCl injection 10 mL:1 g, KCl for injection 1 g, MgSO4 injection 10 mL:2.5 g, Ca gluconate injection was 10 mL:1 g, and sodium glycerophosphate injection 10 mL:2.16 g | Patients receiving “other nutritional therapy” concurrently were excluded | 5 d starting on first day after the surgery and continued for 5 days | Treatment period 1–6 days after operation | |
Xie, 2018 [30] | Gastric, colon cancer, benign gastric, colon tumour, GI tumours, rectal malignant tumours, duodenal secondary malignant tumour, and other GI surgery | MCB: fat emulsion, AA (17%), glucose 11% injection (Carvin) COM: glucose and MCT/LCT fat, AA, all vitamins/minerals and electrolytes | NR | NR | NR | |
Yu, 2017 [31] | Elective open abdominal surgery for post-op PN | MCB: 1875 mL, 1435 kcal, 60 g AA, 120 g glucose, 37.5 g LCT, 37.5 g MCT COM: 1886.5 mL, 1439 kcal, 61 g AA, 120 g glucose, 75 g LCT, 0 g MCT | Oral and/or enteral nutrition covered up to 20% of daily caloric intake | Up to post-op day 6 | Bloods monitored post-op days 1–7. Mortality checked at day 30 by phone call | |
Zhao, 2018 [32] | Gastric cancer patients after gastrectomy | MCB: AA 60.38 ± 6.35; fat 63.97 ± 6.26; dextrose 200.51 ± 36.26 COM: AA 60.38 ± 6.35; fat 59.76 ± 5.11; dextrose 200.51 ± 36.26 | NR | MCB 8 ± 3 days COM 7 ± 5 days | Followed up from the first day of post-op PN to discharge | |
Home | Crooks, 2022 [12] | New group All chronic IF MCB: Cancer 48 (80.0), Non- cancer 12 (20.0) COM: Cancer 11 (24.0), Non- cancer 34 (76.0) Switch grp: Cancer 2 (11), Non-cancer 16 (89) | NR | NR | New grp: MCB: 99 days COM: 170 days Switch grp: MCB: 269 days COM: 411 days | (Catheter days) New grp: MCB 5914 COM 7641 Switch grp: MCBs 4834 MCB 7401 |
Fernández-Argüeso, 2024 [25] | Advanced cancer and intestinal occlusion or sub-occlusion | Mean (SD) MCB: energy 28.7(7.6) COM: energy 29.4 (7.9) glucose 3–6 g/kg/day AA1.0 g/kg/day Lipid < 1.0 g/kg/day/7–10 g/day EFA Vitamins/trace elements added where required | NR | Median days (IQR) MCB: 64 (126) COM: 64 (113) | 2007 to 2022. Followed up every 2 weeks in the first 2 months, and every 1–3 months thereafter |
Author, Year | Met Nutritional Requirements | Weight (kg)/BMI (kg/m2) | Patient Experience or Quality of Life | |
---|---|---|---|---|
Hospital | Goh, 2022 [26] | Mean (95% CI) after 1 day of PN MCB: Calories, kcal/kg of body wt: 14.2 (13.8–14.7) protein, g/kg of body wt: 0.7 (0.6–0.7) COM: Calories, kcal/kg of body wt: 18.2 (17.0–19.5) protein, g/kg of body wt: 1.3 (1.2–1.3) No significant electrolyte derangements nor increased electrolyte replacement peripherally in the following day for both groups | Mean BMI (95% CI) MCB: 23.0 (22.3–23.7) COM: 20.6 (19.0–22.2); p = 0.0041 | NR |
Jia, 2015 [27] | No difference in time to achieve adequate enteral intake (following 5 days of PN) (median time: olive 2.0 days versus soybean 2.0 days; log rank p = 0.786) Mean prealbumin (ITT) (mg/dL) (SD) MCB baseline 15.08 (4.64) n = 213 COM baseline 15.15 (5.01) n = 219 MCB day 5 15.66 (5.12), n = 217 COM day 5 13.95 (5.05), n = 218, LSGM ratio [95% CI] 1.12 [1.06, 1.19]; p = 0.0002 MCB day 14 EOT 17.24 (6.82) n = 210 COM day 14 EOT 15.15 (6.37) n = 219, LSGM ratio [95% CI] 1.16 [1.08, 1.24]; p = 0.001 | Mean (SD) BMI MCB: 21.7 (3.9), n = 217 COM: 21.8 (3.9), n = 226; p = 0.667 | NR | |
Xi, 2021 [29] | Prealbumin trends comparable in both groups. Post-op nutritional index and retinol-binding protein not statistically different | NR | NR | |
Yu, 2017 [31] | Prealbumin levels increased in MCB group by 2.70 ± 5.69 mg/dL and 2.59 ± 5.61 mg/dL in PPS and FAS (p < 0.001), respectively, while they remained stable in the control group (Prealb PPS = 0.36 ± 4.69 mg/dL, p = 0.465 and Prealb FAS = 0.29 ± 4.95 mg/dL, p = 0.606) | Mean Height: MCB 165.58 cm COM163.85 cm, p = 0.066 Weight: MCB 61.39 kg COM 60.8 kg, p = 0.557 | NR | |
Zhao, 2018 [32] | Mean nutritional risk screening 2002 (SD) at baseline MCB: 3.0 (1.0) COM: 4.0 (1.0) | Mean BMI (SD) Difference pre/post-TPN: MCB: −1.11 ± 1.06 COM: −0.90 ± 0.98 Difference between MCB and COM: 0.21, p = 0.416 | NR | |
Fernández-Argüeso, 2024 [25] | Mean (SD) MCB: Total cholesterol (mg/dL) 163.0 (47.0) CONUT index (score) 8.2 (2.8) MUST index (score) 1.9 (0.3) COM: Total cholesterol (mg/dL) 205.0 (205.0) CONUT index (score) 7.2 (2.4) MUST index (score) 1.9 (0.3) When nutritional data (body weight, BMI, and CONUT index both at baseline and at follow-up) were compared in those patients with and without CRBSIs, no significant results were obtained (p > 0.05 for all comparisons) | MCB: Mean (SD) weight 55.0 (14.0) Mean (SD) BMI 21.1 (5.5) COM: Mean (SD) weight 53.0 (13.0) Mean (SD) BMI 20.2 (4.4) | NR |
Author, Year | Infections/Sepsis | Metabolic Disturbances | Mortality | Length of Stay | Readmission All Cause | PN Modification | |
---|---|---|---|---|---|---|---|
Hospital | Banko, 2019 [24] | Mean BSI % risk (95% CI) MCB only: 2.1 (2.0–2.2) MCB adds: 7.0 (6.8–7.2) MCB overall: 5.5 (5.4–5.7) COM: 6.8 (6.7–6.9) | NR | NR | Mean LoS, days (95% CI) MCB: 12.4 (12.0–12.9) COM: 12.3 (11.9–12.7) | Mean 30 day % (95% CI) MCB only:18.5 (18.3–18.6) MCB adds: 22.0 (22.0–22.3) MCB total: 21.0 (20.9–21.1) COM: 20.5(20.4–20.6) Mean 90 day % (95% CI) MCB only: 26.8 (26.6–27.0) MCB adds: 31.7 (31.5–31.8) MCB total: 30.2 (30.1–30.3) COM: 29.4 (29.4–29.5) | NR |
Goh, 2022 [26] | NR | NR | NR | NR | NR | MCB was unmodified on the studies day (day 1). Both MCB and COM received top-up K, PO4, and Mg | |
Jia, 2015 [27] | Number of patients with infections n (%): MCB 8.0 (3.6) COM 24 (10.4) p < 0.01 | All biochemistry measures remained NORMAL Mild cholestasis was observed in all | Deaths (n) MCB 1 COM 4 | Mean LoS, days (SD) MCB 16.92 (4.99) COM 18.1 (8.65) p = 0.7823 | NR | NR | |
Park, 2020 [28] | NR-MCB and COM not compared. | NR | NR-MCB and COM not compared | NR-MCB and COM not compared | NR-MCB and COM not compared | NR-MCB and COM not compared | |
Xi, 2021 [29] | NR | Post-op inflammatory indicators in each group were not statistically different | NR | NR | NR | NR | |
Xie, 2018 [30] | Post-op infections n (%) MCB 13 (10.6) COM 33 (26.0) p = 0.003 | NR | No deaths in either group | Mean LoS, days: MCB 17.6 COM 18.5 p = 0.408 | NR | NR | |
Yu, 2017 [31] | NR | At post-op day 7, all bloods were comparable between groups | No differences at 30 days 30-day mortality rate in both groups was 0%. | No differences at 30 days | NR | Vitamins and trace elements were added to the infusion bag as required | |
Zhao, 2018 [32] | NR | No significant difference except total bilirubin and direct bilirubin were significantly higher in the MCB group | NR | MCBs had shorter overall LoS (19 ± 12 days) versus COMs (24 ± 13 days) | NR | NR | |
Home | Crooks, 2022 [12] | CRBSIs per catheter days MCB: 0.51/1000 COM: 0.39/1000 Incident rate ratio 1.29 (95% CI 0.17–9.65) Subgroup MCB: 0.21/1000 COM: 0.27/1000 Incident rate ratio 1.31 (95% CI 0.12–14.30) | NR | NR | NR | NR | NR |
Fernández-Argüeso, 2024 [25] | CRBSIs per catheter days MCB: 0.21/1000 COM: 0.28/1000 p > 0.05 | Severe metabolic complications n (%) MCB: 0 (0) COM: 1.0 (1.2) | Median days survival (95% CI) MCB: 88 (43–133) COM: 98 (49–147) (χ2 log rank test = 0.012, p = 0.913) | NR | NR | NR |
Author, Year | Cost of PN | Preparation Time | Number of Modifications to a PN Prescription | |
---|---|---|---|---|
Hospital | Banko, 2019 [24] | Mean PN-related cost (2015 US dollars) (95% CI): MCB only 549 (501–603) * MCB with additions 1135 (1040–1240) * MCB overall 997 (912–1088) * COM 1031 (945–1124) Mean total hospitalisation cost (2015 US dollars) (95% CI): MCB only 25,594 (24,540–26,692) * MCB with additions 28,072 (26,975–29,213) * MCB overall 27,479 (26,412–28,590) * COM 28,861 (27,759–30,007) | NR | NR |
Jia, 2015 [27] | NR | “The preparation time for study treatment was significantly less for MCB compared with COM on all days assessed (p < 0.001 for all values)” | NR | |
Park, 2020 [28] | NR | The time spent for preparing the nutrient solution in the MCB group was significantly shorter than that in the COM group (p < 0.0001) | NR | |
Xi, 2021 [29] | NR | MCB prep time was 13 min shorter than that of COM | NR | |
Xie, 2018 [30] | PN cost (thousand yuan): MCB 1.7, COM 6.3, p < 0.000 Total hospital expenses (thousand yuan): MCB 63.3, COM 75.0, p = 0.158 Medicine cost (thousand yuan): MCB: 21.3, COM 30.0, p = 0.027 Total hospitalisation cost (yuan) MCB: 57,619, COM 77,476, p < 0.001 Cost-effectiveness ratio (yuan) Without re-operation: MCB 586, COM 793 Without infection MCB 645, COM 1047. p < 0.05 Post-op infection rate and the overall costs in the MCB group [(10.6%, (63.3 ± 28.4) × 103 RMB)] was decreased compared to COM group [(26.0%, (75.0 ± 28.8) × 103 RMB)], p < 0.05. | NR | NR | |
Yu, 2017 [31] | NR | Mean prep time mins (SD) Post-op day 1: MCB: 4.9 (4.41) COM: 12.13 (5.62) p < 0.001 Post-op day 5: MCB: 4.56 (3.15) COM: 11.77 (4.79), p < 0.001 | NR | |
Zhao, 2018 [32] | Mean total cost (RMB) (SD) MCB: 47,961.31 (21,059.16) COM: 50,916.42 (18,857.46), p = 0.216 | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, D.; Allsopp, K.; Sowerbutts, A.M.; Lal, S.; Farrer, K.; Harrison, S.; Burden, S. Outcomes for Patients Receiving Multi-Chamber Bags for the Delivery of Parenteral Nutrition: A Systematic Review. Nutrients 2024, 16, 3964. https://doi.org/10.3390/nu16223964
Jones D, Allsopp K, Sowerbutts AM, Lal S, Farrer K, Harrison S, Burden S. Outcomes for Patients Receiving Multi-Chamber Bags for the Delivery of Parenteral Nutrition: A Systematic Review. Nutrients. 2024; 16(22):3964. https://doi.org/10.3390/nu16223964
Chicago/Turabian StyleJones, Debra, Karen Allsopp, Anne Marie Sowerbutts, Simon Lal, Kirstine Farrer, Simon Harrison, and Sorrel Burden. 2024. "Outcomes for Patients Receiving Multi-Chamber Bags for the Delivery of Parenteral Nutrition: A Systematic Review" Nutrients 16, no. 22: 3964. https://doi.org/10.3390/nu16223964
APA StyleJones, D., Allsopp, K., Sowerbutts, A. M., Lal, S., Farrer, K., Harrison, S., & Burden, S. (2024). Outcomes for Patients Receiving Multi-Chamber Bags for the Delivery of Parenteral Nutrition: A Systematic Review. Nutrients, 16(22), 3964. https://doi.org/10.3390/nu16223964