The Effectiveness and Safety of a Nutraceutical Combination in Overweight Patients with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guzman-Vilca, W.C.; Carrillo-Larco, R.M. Number of People with Type 2 Diabetes Mellitus in 2035 and 2050: A Modelling Study in 188 Countries. Curr. Diabetes Rev. 2024, 21, e120124225603. [Google Scholar] [CrossRef]
- Liu, W.; Yang, X.; Zhan, T.; Huang, M.; Tian, X.; Tian, X.; Huang, X. Weight-adjusted waist index is positively and linearly associated with all-cause and cardiovascular mortality in metabolic dysfunction-associated steatotic liver disease: Findings from NHANES 1999–2018. Front. Endocrinol. 2024, 15, 1457869. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Murphy, M.; Kim, A.; Lingwall, M.; Barr, E.A. The relationship between natural environments and obesity: A systematic review. Int. J. Environ. Health Res. 2024, 13, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Bohler, H., Jr. Obesity Management in Women. Nurs. Clin. N. Am. 2024, 59, 593–609. [Google Scholar] [CrossRef] [PubMed]
- Dinicola, S.; Unfer, V.; Facchinetti, F.; Soulage, C.O.; Greene, N.D.; Bizzarri, M.; Laganà, A.S.; Chan, S.Y.; Bevilacqua, A.; Pkhaladze, L.; et al. Inositols: From Established Knowledge to Novel Approaches. Int. J. Mol. Sci. 2021, 22, 10575–10605. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Battipaglia, C.; Rusce, L.; Prampolini, G.; Aio, C.; Ricciardiello, F.; Foschi, M.; Sponzilli, A.; Semprini, E.; Petrillo, T. Alpha lipoic acid administration improved both peripheral sensitivity to insulin and liver clearance of insulin reducing potential risk of diabetes and nonalcoholic fatty liver disease in overweight/obese PCOS patients. Gynecol. Endocrinol. 2024, 40, 2341701. [Google Scholar] [CrossRef]
- Abu-Zaid, A.; Baradwan, S.; Bukhari, I.A.; Alyousef, A.; Abuzaid, M.; Saleh, S.A.K.; Adly, H.M.; Alomar, O.; Abdulrahman Al-Badawi, I. The effect of alpha-lipoic acid supplementation on anthropometric, glycemic, lipid, oxidative stress, and hormonal parameters in individuals with polycystic ovary syndrome: A systematic review and meta-analysis of randomized clinical trials. Obstet. Gynecol. Sci. 2024, 67, 17–29. [Google Scholar] [CrossRef]
- Fruzzetti, F.; Fidecicchi, T.; Palla, G.; Gambacciani, M. Long-term treatment with α-lipoic acid and myo-inositol positively affects clinical and metabolic features of polycystic ovary syndrome. Gynecol. Endocrinol. 2020, 36, 152–155. [Google Scholar] [CrossRef]
- Helvacı, Ö.; Helvacı, B. A Story of Serendipities: From Phlorizin to Gliflozins. Exp. Clin. Transplant 2023, 21 (Suppl. S2), 105–108. [Google Scholar] [CrossRef]
- Blaschek, W. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors. Planta Med. 2017, 83, 985–993. [Google Scholar] [CrossRef]
- Nowakowski, P.; Naliwajko, S.K.; Markiewicz-Żukowska, R.; Borawska, M.H.; Socha, K. The two faces of Coprinus comatus–Functional properties and potential hazards. Phytother. Res. 2020, 34, 2932–2944. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, Y.; Wan, Y.; Liang, Y.; Tan, Y.; Wei, M.; Hou, T. Selenium- and/or Zinc-Enriched Egg Diet Improves Oxidative Damage and Regulates Gut Microbiota in D-Gal-Induced Aging Mice. Nutrients 2024, 16, 512. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.; Dargahi, N.; Fraser, S.; Apostolopoulos, V. High-Dose Vitamin B6 (Pyridoxine) Displays Strong Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated Monocytes. Biomedicines 2023, 11, 2578. [Google Scholar] [CrossRef] [PubMed]
- Alesi, S.; Ee, C.; Moran, L.J.; Rao, V.; Mousa, A. Nutritional Supplements and Complementary Therapies in Polycystic Ovary Syndrome. Adv. Nutr. 2022, 13, 1243–1266. [Google Scholar] [CrossRef]
- Kiani, A.K.; Paolacci, S.; Calogero, A.E.; Cannarella, R.; Di Renzo, G.C.; Gerli, S.; Della Morte, C.; Busetto, G.M.; De Berardinis, E.; Del Giudice, F.; et al. From Myo-inositol to D-chiro-inositol molecular pathways. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2390–2402. [Google Scholar]
- Gudović, A.; Bukumirić, Z.; Milincic, M.; Pupovac, M.; Andjić, M.; Ivanovic, K.; Spremović-Rađenović, S. The Comparative Effects of Myo-Inositol and Metformin Therapy on the Clinical and Biochemical Parameters of Women of Normal Weight Suffering from Polycystic Ovary Syndrome. Biomedicines 2024, 12, 349. [Google Scholar] [CrossRef]
- Min-Seon, K.; Joong-Yeol, P.; Cherl, N.; Pil-Geum, J.; Je-Won, R.; Hai-Sun, S.; Ji-Young, Y.; Il-Seong, N.; Joohun, H.; In-Sun, P.; et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat. Med. 2004, 10, 727–733. [Google Scholar]
- Huang, S.C.; Wei, J.C.C.; Wu, D.J.; Huang, Y.C. Vitamin B6 supplementation improves pro-inflammatory responses in patients with rheumatoid arthritis. Eur. J. Clin. Nutr. 2010, 64, 1007–1013. [Google Scholar] [CrossRef]
- Dinicola, S.; Unfer, V.; Soulage, C.O.; Yap-Garcia, M.Y.M.; Bevilacqua, A.; Benvenga, S.; Barbaro, D.; Wdowiak, A.; Nordio, M.; Dewailly, D.; et al. D-chiro-inositol in clinical practice: A perspective from The Experts Group on Inositol in Basic and Clinical Research (EGOI). Gynecol. Obstet. Invest. 2024, 89, 284–294. [Google Scholar] [CrossRef]
- Laganà, A.S.; Myers, S.H.; Forte, G.; Naem, A.; Krentel, H.; Allahqoli, L.; Alkatout, I.; Unfer, V. Inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: Now and the future. Expert. Opin. Drug Metab. Toxicol. 2024, 1–2, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yang, F.; Zhong, H.; Hong, J.; Lin, H.; Zong, M.; Ren, H.; Zhao, S.; Chen, Y.; Shi, Z.; et al. Obesity-enriched gut microbe degrades myo-inositol and promotes lipid absorption. Cell Host Microbe 2024, 9, S1931–S3128. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, M.P.A.; Di Tomo, P.; Centorame, G.; Pandolfi, A.; Di Pietro, N.; Consoli, A.; Formoso, G. Myoinositol Reduces Inflammation and Oxidative Stress in Human Endothelial Cells Exposed In Vivo to Chronic Hyperglycemia. Nutrients 2021, 13, 2210–2223. [Google Scholar] [CrossRef] [PubMed]
- Minthami, S.P.; Mellonie, P.; Anu, M.; Priyanka, T.; Logeswari, B.M. The Effectiveness of Myo-Inositol in Women with Polycystic Ovary Syndrome: A Prospective Clinical Study. Cureus 2024, 16, e53951. [Google Scholar]
- Hidalgo-Lozada, G.M.; Villarruel-López, A.; Nuño, K.; García-García, A.; Sánchez-Nuño, Y.A.; Ramos-García, C.O. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int. J. Mol. Sci. 2024, 25, 2671. [Google Scholar] [CrossRef]
- Kucukgoncu, S.; Zhou, E.; Lucas, K.B.; Tek, C. Alpha-lipoic acid (ALA) as a supplementation for weight loss: Results from a meta-analysis of randomized controlled trials. Obes. Rev. 2017, 18, 594–601. [Google Scholar] [CrossRef]
- Ni, T.; Zhang, S.; Rao, J.; Zhao, J.; Huang, H.; Liu, Y.; Ding, Y.; Liu, Y.; Ma, Y.; Zhang, Y.; et al. Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism. Molecules 2024, 29, 741. [Google Scholar] [CrossRef]
- Cao, H.; Qin, D.; Guo, H.; Cui, X.; Wang, S.; Wu, Y.; Zheng, W.; Zhong, X.; Wang, H.; Yu, J.; et al. The Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Agaricomycetes), a Versatile Functional Species: A Review. Int. J. Med. Mushrooms 2020, 22, 245–255. [Google Scholar] [CrossRef]
- Shamim, M.Z.; Mishra, A.K.; Kausar, T.; Mahanta, S.; Sarma, B.; Kumar, V.; Mishra, P.K.; Panda, J.; Baek, K.H.; Mohanta, Y.K. Exploring Edible Mushrooms for Diabetes: Unveiling Their Role in Prevention and Treatment. Molecules 2023, 28, 2837. [Google Scholar] [CrossRef]
- Lindequist, U.; Haertel, B. Medicinal Mushrooms for Treatment of Type 2 Diabetes: An Update on Clinical Trials. Int. J. Med. Mushrooms 2020, 22, 845–854. [Google Scholar] [CrossRef]
- Ding, Z.; Lu, Y.; Lu, Z.; Lv, F.; Wang, Y.; Bie, X.; Wang, F.; Zhang, K. Hypoglycaemic effect of comatin, an anti-diabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem. 2010, 121, 39–43. [Google Scholar] [CrossRef]
- Ratnaningtyas, N.I.; Hernayanti, H.; Ekowati, N.; Husen, F. Ethanol extract of the mushroom Coprinus comatus exhibits antidiabetic and antioxidant activities in streptozotocin-induced diabetic rats. Pharmaceutical Biol. 2022, 60, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, M.; Yu, J.; Ma, X.; Han, C. Relationship between Components, Intestinal Microbiota, and Mechanism of Hypoglycemic Effect of the Saggy Ink Cap Medicinal Mushroom (Coprinus comatus, Agaricomycetes): A Review. Int. J. Med. Mushrooms 2023, 25, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, H.; Lai, Q.; Yang, Q.; Dong, Y.; Liu, X.; Wang, W.; Zhang, J.; Jia, L. Antioxidant and hepatoprotective activities of modified polysaccharides from Coprinus comatus in mice with alcohol-induced liver injury. Int. J. Biol. Macromol. 2019, 127, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Popović, M.; Vukmirović, S.; Stilinović, N.; Capo, I.; Jakovljević, V. Anti-oxidative activity of an aqueous suspension of commercial preparation of the mushroom Coprinus comatus. Molecules 2010, 15, 4564–4571. [Google Scholar] [CrossRef]
- Ozalp, F.O.; Canbek, M.; Yamac, M.; Kanbak, G.; Van Griensven, L.J.L.D.; Uyanoglu, M.; Senturk, H.; Kartkaya, K.; Oglakci, A. Consumption of Coprinus comatus polysaccharide extract causes recovery of alcoholic liver damage in rats. Pharm. Biol. 2014, 52, 994–1002. [Google Scholar] [CrossRef]
- Zhu, L.R.; Li, S.S.; Zheng, W.Q.; Ni, W.J.; Cai, M.; Liu, H.P. Targeted modulation of gut microbiota by traditional Chinese medicine and natural products for liver disease therapy. Front. Immunol. 2023, 14, 1086078. [Google Scholar] [CrossRef]
- Pingarrón Santofímia, C.; Poyo Torcal, S.; López Verdú, H.; Henríquez Linares, A.; Calvente Aguilar, V.; Terol Sánchez, P.; Martínez García, M.S.; Lafuente González, P. Evaluation of the efficacy of an antioxidant combination for the modulation of metabolic, endocrine, and clinical parameters in patients with polycystic ovary syndrome. Gynecol. Endocrinol. 2023, 39, 2227277. [Google Scholar] [CrossRef]
- Dawood, M.H.; Abdulridha, M.K.; Qasim, H.S. Assessing pyridoxine adjuvant therapy effects on blood glucose levels in type 2 diabetes: A randomized clinical trial. J. Med. Life 2023, 16, 1474–1481. [Google Scholar] [CrossRef]
- Willoughby, D.; Hewlings, S.; Kalman, D. Body Composition Changes in Weight Loss: Strategies and Supplementation for Maintaining Lean Body Mass, a Brief Review. Nutrients 2018, 10, 1876. [Google Scholar] [CrossRef]
- Vajdi, M.; Khajeh, M.; Safaei, E.; Moeinolsadat, S.; Mousavi, S.; Seyedhosseini-Ghaheh, H.; Abbasalizad-Farhangi, M.; Askari, G. Effects of chromium supplementation on body composition in patients with type 2 diabetes: A dose-response systematic review and meta-analysis of randomized controlled trials. J. Trace Elem. Med. Biol. 2024, 81, 127338. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.R.; Sheikhhossein, F.; Djafari, F.; Jafari, A.; Djafarian, K.; Shab-Bidar, S. Effects of chromium supplementation on oxidative stress biomarkers. Int. J. Vitam. Nutr. Res. 2023, 93, 241–251. [Google Scholar] [CrossRef] [PubMed]
Time | Insulin (μIU/mL) | Glucose (mg/dL) | ||
---|---|---|---|---|
Baseline | 120’ | Baseline | 120’ | |
T0 | 18.1 ± 7.1 | 58.2 ± 20.1 | 112.5 ± 8.4 | 107.6 ± 14.7 |
T3 | 12.4 ± 4.9 | 41.5 ± 17 | 103.4 ± 8.6 | 100.8 ± 11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricottini, L.; Basciani, S.; Spizzichini, M.L.; de Mattia, D.; Coniglio-Iannuzzi delle Noci, M.; Sorrentino, S.; Nordio, M. The Effectiveness and Safety of a Nutraceutical Combination in Overweight Patients with Metabolic Syndrome. Nutrients 2024, 16, 3977. https://doi.org/10.3390/nu16233977
Ricottini L, Basciani S, Spizzichini ML, de Mattia D, Coniglio-Iannuzzi delle Noci M, Sorrentino S, Nordio M. The Effectiveness and Safety of a Nutraceutical Combination in Overweight Patients with Metabolic Syndrome. Nutrients. 2024; 16(23):3977. https://doi.org/10.3390/nu16233977
Chicago/Turabian StyleRicottini, Lucilla, Sabrina Basciani, Maria Letizia Spizzichini, Domenico de Mattia, Manuela Coniglio-Iannuzzi delle Noci, Sasha Sorrentino, and Maurizio Nordio. 2024. "The Effectiveness and Safety of a Nutraceutical Combination in Overweight Patients with Metabolic Syndrome" Nutrients 16, no. 23: 3977. https://doi.org/10.3390/nu16233977
APA StyleRicottini, L., Basciani, S., Spizzichini, M. L., de Mattia, D., Coniglio-Iannuzzi delle Noci, M., Sorrentino, S., & Nordio, M. (2024). The Effectiveness and Safety of a Nutraceutical Combination in Overweight Patients with Metabolic Syndrome. Nutrients, 16(23), 3977. https://doi.org/10.3390/nu16233977