Nutritional Strategies for the Treatment and Prevention of Sepsis Outside the Intensive Care Unit
Abstract
:1. Introduction
2. Methods
3. Metabolic Alterations in Sepsis
4. Nutritional Assessment and Treatment
4.1. Feeding Route
4.2. Micronutrients and Electrolytes
4.3. Other Disease-Specific Nutrients
4.4. Controversies Surrounding Non-Caloric Non-Protein Nutritional Supplements
5. Sepsis Prevention: Role of Nutritional Status, Diet, and Gut Microbiota
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
BMI | body mass index |
CI | confidence interval |
CONUT | Controlling Nutritional Status |
EN | enteral nutrition |
ICU | Intensive Care Unit |
LBM | lean body mass |
LOS | length of stay |
LPSs | lipopolysaccharides |
NRS-2002 | Nutritional Risk Score-2002 |
NUTRIC | Nutrition Risk in Critically ill |
ONS | oral nutrition supplement |
OR | odds ratio |
PE | predicting equation |
PN | parenteral nutrition |
PNI | Prognostic Nutritional Index |
PUFAs | polyunsaturated fatty acids |
RCT | randomized controlled trial |
REE | resting energy expenditure |
RR | relative risk |
RRT | renal replacement therapy |
RS | refeeding syndrome |
TTR | transthyretin |
WD | Western diet |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, H.; Wu, G.; Huang, P.; Wang, H.; An, H.; Liu, S.; Zhang, W. The Pathogenesis and Potential Therapeutic Targets in Sepsis. MedComm 2023, 4, e418. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- De La Rica, A.S.; Gilsanz, F.; Maseda, E. Epidemiologic Trends of Sepsis in Western Countries. Ann. Transl. Med. 2016, 4, 325. [Google Scholar] [CrossRef] [PubMed]
- Ibarz, M.; Haas, L.E.M.; Ceccato, A.; Artigas, A. The Critically Ill Older Patient with Sepsis: A Narrative Review. Ann. Intensive Care 2024, 14, 6. [Google Scholar] [CrossRef]
- Bauer, M.; Gerlach, H.; Vogelmann, T.; Preissing, F.; Stiefel, J.; Adam, D. Mortality in Sepsis and Septic Shock in Europe, North America and Australia between 2009 and 2019—Results from a Systematic Review and Meta-Analysis. Crit. Care 2020, 24, 239. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S. GRADE Guidelines: 3. Rating the Quality of Evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Dyck, B.; Unterberg, M.; Adamzik, M.; Koos, B. The Impact of Pathogens on Sepsis Prevalence and Outcome. Pathogens 2024, 13, 89. [Google Scholar] [CrossRef]
- Denning, D.W. Global Incidence and Mortality of Severe Fungal Disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef] [PubMed]
- Muskett, H.; Shahin, J.; Eyres, G.; Harvey, S.; Rowan, K.; Harrison, D. Risk Factors for Invasive Fungal Disease in Critically Ill Adult Patients: A Systematic Review. Crit. Care 2011, 15, R287. [Google Scholar] [CrossRef] [PubMed]
- Shappell, C.; Rhee, C.; Klompas, M. Update on Sepsis Epidemiology in the Era of COVID-19. Semin. Respir. Crit. Care Med. 2023, 44, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, Y.; Li, H.; Yin, Y.; Zhang, Y. Research Progress of Viral Sepsis: Etiology, Pathophysiology, Diagnosis, and Treatment. Emerg. Crit. Care Med. 2023, 4, 74–81. [Google Scholar] [CrossRef]
- Wasyluk, W.; Zwolak, A. Metabolic Alterations in Sepsis. J. Clin. Med. 2021, 10, 2412. [Google Scholar] [CrossRef]
- Sobotka, L.; Soeters, P.B. Basics in Clinical Nutrition: Metabolic Response to Injury and Sepsis. e-SPEN Eur. e-J. Clin. Nutr. Metab. 2009, 4, e1–e3. [Google Scholar] [CrossRef]
- Preau, S.; Vodovar, D.; Jung, B.; Lancel, S.; Zafrani, L.; Flatres, A.; Oualha, M.; Voiriot, G.; Jouan, Y.; Joffre, J.; et al. Energetic Dysfunction in Sepsis: A Narrative Review. Ann. Intensive Care 2021, 11, 104. [Google Scholar] [CrossRef]
- De Waele, E.; Malbrain, M.L.N.G.; Spapen, H. Nutrition in Sepsis: A Bench-to-Bedside Review. Nutrients 2020, 12, 395. [Google Scholar] [CrossRef]
- Wischmeyer, P.E. Nutrition Therapy in Sepsis. Crit. Care Clin. 2018, 34, 107–125. [Google Scholar] [CrossRef]
- Harris, R.A. Energy Metabolism|Gluconeogenesis. In Encyclopedia of Biological Chemistry III; Elsevier: Amsterdam, The Netherlands, 2021; pp. 170–186. [Google Scholar] [CrossRef]
- Garcia-Alvarez, M.; Marik, P.; Bellomo, R. Sepsis-Associated Hyperlactatemia. Crit. Care 2014, 18, 503. [Google Scholar] [CrossRef]
- Muniz-Santos, R.; Lucieri-Costa, G.; Almeida, M.A.P.D.; Moraes-de-Souza, I.; Brito, M.A.D.S.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Lipid Oxidation Dysregulation: An Emerging Player in the Pathophysiology of Sepsis. Front. Immunol. 2023, 14, 1224335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Y.; Chen, Y.; Shen, X.; Pan, H.; Yu, W. Impact of Muscle Mass on Survival in Patients with Sepsis: A Systematic Review and Meta-Analysis. Ann. Nutr. Metab. 2021, 77, 330–336. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I. Malnutrition in Adults. N. Engl. J. Med. 2024, 391, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Dellière, S.; Cynober, L. Is Transthyretin a Good Marker of Nutritional Status? Clin. Nutr. 2017, 36, 364–370. [Google Scholar] [CrossRef]
- Moghaddam, O.M.; Emam, M.H.; Irandoost, P.; Hejazi, M.; Iraji, Z.; Yazdanpanah, L.; Mirhosseini, S.F.; Mollajan, A.; Lahiji, M.N. Relation between Nutritional Status on Clinical Outcomes of Critically Ill Patients: Emphasizing Nutritional Screening Tools in a Prospective Cohort Investigation. BMC Nutr. 2024, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Wełna, M.; Adamik, B.; Kübler, A.; Goździk, W. The NUTRIC Score as a Tool to Predict Mortality and Increased Resource Utilization in Intensive Care Patients with Sepsis. Nutrients 2023, 15, 1648. [Google Scholar] [CrossRef] [PubMed]
- Wasyluk, W.; Zwolak, A.; Jonckheer, J.; De Waele, E.; Dąbrowski, W. Methodological Aspects of Indirect Calorimetry in Patients with Sepsis—Possibilities and Limitations. Nutrients 2022, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- De Man, A.M.E.; Gunst, J.; Reintam Blaser, A. Nutrition in the Intensive Care Unit: From the Acute Phase to Beyond. Intensive Care Med. 2024, 50, 1035–1048. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.-C.; et al. ESPEN Practical and Partially Revised Guideline: Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef]
- Van Niekerk, G.; Meaker, C.; Engelbrecht, A.-M. Nutritional Support in Sepsis: When Less May Be More. Crit. Care 2020, 24, 53. [Google Scholar] [CrossRef]
- Kreymann, G.; Grosser, S.; Buggisch, P.; Gottschall, C.; Matthaei, S.; Greten, H. Oxygen Consumption and Resting Metabolic Rate in Sepsis, Sepsis Syndrome, and Septic Shock. Crit. Care Med. 1993, 21, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Aldawood, A.S.; Haddad, S.H.; Al-Dorzi, H.M.; Tamim, H.M.; Jones, G.; Mehta, S.; McIntyre, L.; Solaiman, O.; Sakkijha, M.H.; et al. Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults. N. Engl. J. Med. 2015, 372, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Wang, X.; Gao, X.; Wan, X.; Wu, C.; Zhang, L.; Li, N.; Li, J. Effect of Initial Calorie Intake via Enteral Nutrition in Critical Illness: A Meta-Analysis of Randomised Controlled Trials. Crit. Care 2015, 19, 180. [Google Scholar] [CrossRef]
- Zhu, Y.-B.; Yao, Y.; Xu, Y.; Huang, H.-B. Nitrogen Balance and Outcomes in Critically Ill Patients: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 961207. [Google Scholar] [CrossRef] [PubMed]
- McNelly, A.; Langan, A.; Bear, D.E.; Page, A.; Martin, T.; Seidu, F.; Santos, F.; Rooney, K.; Liang, K.; Heales, S.J.; et al. A Pilot Study of Alternative Substrates in the Critically Ill Subject Using a Ketogenic Feed. Nat. Commun. 2023, 14, 8345. [Google Scholar] [CrossRef]
- Rahmel, T.; Effinger, D.; Bracht, T.; Griep, L.; Koos, B.; Sitek, B.; Hübner, M.; Hirschberger, S.; Basten, J.; Timmesfeld, N.; et al. An Open-Label, Randomized Controlled Trial to Assess a Ketogenic Diet in Critically Ill Patients with Sepsis. Sci. Transl. Med. 2024, 16, eadn9285. [Google Scholar] [CrossRef]
- Cawood, A.L.; Elia, M.; Stratton, R.J. Systematic Review and Meta-Analysis of the Effects of High Protein Oral Nutritional Supplements. Ageing Res. Rev. 2012, 11, 278–296. [Google Scholar] [CrossRef]
- Reignier, J.; Boisramé-Helms, J.; Brisard, L.; Lascarrou, J.-B.; Ait Hssain, A.; Anguel, N.; Argaud, L.; Asehnoune, K.; Asfar, P.; Bellec, F.; et al. Enteral versus Parenteral Early Nutrition in Ventilated Adults with Shock: A Randomised, Controlled, Multicentre, Open-Label, Parallel-Group Study (NUTRIREA-2). Lancet 2018, 391, 133–143. [Google Scholar] [CrossRef]
- Reignier, J.; Plantefeve, G.; Mira, J.-P.; Argaud, L.; Asfar, P.; Aissaoui, N.; Badie, J.; Botoc, N.-V.; Brisard, L.; Bui, H.-N.; et al. Low versus Standard Calorie and Protein Feeding in Ventilated Adults with Shock: A Randomised, Controlled, Multicentre, Open-Label, Parallel-Group Trial (NUTRIREA-3). Lancet Respir. Med. 2023, 11, 602–612. [Google Scholar] [CrossRef]
- Grillo-Ardila, C.F.; Tibavizco-Palacios, D.; Triana, L.C.; Rugeles, S.J.; Vallejo-Ortega, M.T.; Calderón-Franco, C.H.; Ramírez-Mosquera, J.J. Early Enteral Nutrition (within 48 h) for Patients with Sepsis or Septic Shock: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1560. [Google Scholar] [CrossRef]
- Mancl, E.E.; Muzevich, K.M. Tolerability and Safety of Enteral Nutrition in Critically Ill Patients Receiving Intravenous Vasopressor Therapy. J. Parenter. Enter. Nutr. 2013, 37, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Belsky, J.B.; Wira, C.R.; Jacob, V.; Sather, J.E.; Lee, P.J. A Review of Micronutrients in Sepsis: The Role of Thiamine, l -Carnitine, Vitamin C, Selenium and Vitamin D. Nutr. Res. Rev. 2018, 31, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Bulloch, M.N.; Cardinale-King, M.; Cogle, S.; Radparvar, S.; Effendi, M.; Jagpal, S.; Dixit, D. Correction of Electrolyte Abnormalities in Critically Ill Patients. Intensive Care Res. 2024, 4, 19–37. [Google Scholar] [CrossRef]
- Li, W.; Zhao, R.; Liu, S.; Ma, C.; Wan, X. High-Dose Vitamin C Improves Norepinephrine Level in Patients with Septic Shock: A Single-Center, Prospective, Randomized Controlled Trial. Medicine 2024, 103, e37838. [Google Scholar] [CrossRef]
- Costa, N.A.; Pereira, A.G.; Sugizaki, C.S.A.; Vieira, N.M.; Garcia, L.R.; Paiva, S.A.R.D.; Zornoff, L.A.M.; Azevedo, P.S.; Polegato, B.F.; Minicucci, M.F. Insights Into Thiamine Supplementation in Patients With Septic Shock. Front. Med. 2022, 8, 805199. [Google Scholar] [CrossRef]
- Doig, G.S.; Simpson, F.; Heighes, P.T.; Bellomo, R.; Chesher, D.; Caterson, I.D.; Reade, M.C.; Harrigan, P.W.J. Restricted versus Continued Standard Caloric Intake during the Management of Refeeding Syndrome in Critically Ill Adults: A Randomised, Parallel-Group, Multicentre, Single-Blind Controlled Trial. Lancet Respir. Med. 2015, 3, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Shenkin, A.; Dizdar, O.S.; Amrein, K.; Augsburger, M.; Biesalski, H.-K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.-L.; et al. ESPEN Practical Short Micronutrient Guideline. Clin. Nutr. 2024, 43, 825–857. [Google Scholar] [CrossRef]
- Wen, C.; Li, Y.; Hu, Q.; Liu, H.; Xu, X.; Lü, M. IV Vitamin C in Sepsis: A Latest Systematic Review and Meta-Analysis. Int. J. Clin. Pract. 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Marik, P.E.; Khangoora, V.; Rivera, R.; Hooper, M.H.; Catravas, J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock. Chest 2017, 151, 1229–1238. [Google Scholar] [CrossRef]
- Safabakhsh, M.; Imani, H.; Shahinfar, H.; Mohammadpour, M.; Rohani, P.; Shab-Bidar, S. Efficacy of Dietary Supplements on Mortality and Clinical Outcomes in Adults with Sepsis and Septic Shock: A Systematic Review and Network Meta-Analysis. Clin. Nutr. 2024, 43, 1299–1307. [Google Scholar] [CrossRef]
- Li, S.; Tang, T.; Guo, P.; Zou, Q.; Ao, X.; Hu, L.; Tan, L. A Meta-Analysis of Randomized Controlled Trials: Efficacy of Selenium Treatment for Sepsis. Medicine 2019, 98, e14733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, F.; Li, S.; Xu, F.; Zheng, X.; Huang, T.; Lyu, J.; Yin, H. Thiamine Supplementation May Be Associated with Improved Prognosis in Patients with Sepsis. Br. J. Nutr. 2023, 130, 239–248. [Google Scholar] [CrossRef]
- Vine, J.; Lee, J.H.; Kravitz, M.S.; Grossestreuer, A.V.; Balaji, L.; Leland, S.B.; Berlin, N.; Moskowitz, A.; Donnino, M.W. Thiamine Administration in Septic Shock: A Post Hoc Analysis of Two Randomized Trials. Crit. Care 2024, 28, 41. [Google Scholar] [CrossRef] [PubMed]
- Ashoor, T.M.; Abd Elazim, A.E.H.; Mustafa, Z.A.E.; Anwar, M.A.; Gad, I.A.; Mamdouh Esmat, I. Outcomes of High-Dose Versus Low-Dose Vitamin D on Prognosis of Sepsis Requiring Mechanical Ventilation: A Randomized Controlled Trial. J. Intensive Care Med. 2024, 39, 1012–1022. [Google Scholar] [CrossRef]
- Wang, H.; Su, S.; Wang, C.; Hu, J.; Dan, W.; Peng, X. Effects of Fish Oil-Containing Nutrition Supplementation in Adult Sepsis Patients: A Systematic Review and Meta-Analysis. Burn. Trauma 2022, 10, tkac012. [Google Scholar] [CrossRef]
- Tseng, P.-T.; Zeng, B.-Y.; Zeng, B.-S.; Yeh, P.-Y.; Stubbs, B.; Kuo, J.S.; Sun, C.-K.; Cheng, Y.-S.; Chen, Y.-W.; Chen, T.-Y.; et al. The Efficacy and Acceptability of Anti-Inflammatory Omega-3 Polyunsaturated Fatty Acid Supplements in Sepsis Management: A Network Meta-Analysis of Randomized Controlled Trials. Prostaglandins Leukot. Essent. Fat. Acids 2024, 202, 102633. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Su, J.; Chen, J.; Shao, H.; Shen, L.; Xie, B. Glutamine Enteral Therapy for Critically Ill Adult Patients: An Updated Meta-Analysis of Randomized Controlled Trials and Trial Sequential Analysis. Clin. Nutr. 2024, 43, 124–133. [Google Scholar] [CrossRef]
- Davis, J.S.; Anstey, N.M. Is Plasma Arginine Concentration Decreased in Patients with Sepsis? A Systematic Review and Meta-Analysis. Crit. Care Med. 2011, 39, 380–385. [Google Scholar] [CrossRef]
- Luiking, Y.C.; Poeze, M.; Deutz, N.E. A Randomized-Controlled Trial of Arginine Infusion in Severe Sepsis on Microcirculation and Metabolism. Clin. Nutr. 2020, 39, 1764–1773. [Google Scholar] [CrossRef]
- Noormandi, A.; Khalili, H.; Mohammadi, M.; Abdollahi, A. Effect of Magnesium Supplementation on Lactate Clearance in Critically Ill Patients with Severe Sepsis: A Randomized Clinical Trial. Eur. J. Clin. Pharmacol. 2020, 76, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Maruhashi, T.; Asari, Y. Effectiveness of Zinc Supplementation for Sepsis Treatment: A Single-Center Retrospective Observational Study. Nutrients 2024, 16, 2841. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yang, Y.; Zeng, L.; Chen, Y.; Zeng, G. Nutrition Metabolism and Infections. Infect. Microbes Dis. 2021, 3, 134–141. [Google Scholar] [CrossRef]
- Wang, H.E.; Griffin, R.; Judd, S.; Shapiro, N.I.; Safford, M.M. Obesity and Risk of Sepsis: A Population-based Cohort Study. Obesity 2013, 21, E762–E769. [Google Scholar] [CrossRef]
- Kaspersen, K.A.; Pedersen, O.B.; Petersen, M.S.; Hjalgrim, H.; Rostgaard, K.; Møller, B.K.; Juul-Sørensen, C.; Kotzé, S.; Dinh, K.M.; Erikstrup, L.T.; et al. Obesity and Risk of Infection: Results from the Danish Blood Donor Study. Epidemiology 2015, 26, 580–589. [Google Scholar] [CrossRef]
- Gutiérrez, O.M.; Judd, S.E.; Voeks, J.H.; Carson, A.P.; Safford, M.M.; Shikany, J.M.; Wang, H.E. Diet Patterns and Risk of Sepsis in Community-Dwelling Adults: A Cohort Study. BMC Infect. Dis. 2015, 15, 231. [Google Scholar] [CrossRef]
- Napier, B.A.; Andres-Terre, M.; Massis, L.M.; Hryckowian, A.J.; Higginbottom, S.K.; Cumnock, K.; Casey, K.M.; Haileselassie, B.; Lugo, K.A.; Schneider, D.S.; et al. Western Diet Regulates Immune Status and the Response to LPS-Driven Sepsis Independent of Diet-Associated Microbiome. Proc. Natl. Acad. Sci. USA 2019, 116, 3688–3694. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The Interplay between Diet and the Gut Microbiome: Implications for Health and Disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef]
- Rinninella, E.; Tohumcu, E.; Raoul, P.; Fiorani, M.; Cintoni, M.; Mele, M.C.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The Role of Diet in Shaping Human Gut Microbiota. Best Pract. Res. Clin. Gastroenterol. 2023, 62–63, 101828. [Google Scholar] [CrossRef]
- Dasriya, V.L.; Samtiya, M.; Ranveer, S.; Dhillon, H.S.; Devi, N.; Sharma, V.; Nikam, P.; Puniya, M.; Chaudhary, P.; Chaudhary, V.; et al. Modulation of Gut-microbiota through Probiotics and Dietary Interventions to Improve Host Health. J. Sci. Food Agric. 2024, 104, 6359–6375. [Google Scholar] [CrossRef] [PubMed]
Nutritional Intervention | Rationale | Results of Clinical Studies | Dose and Duration | Quality of Evidence |
---|---|---|---|---|
Magnesium Noormandi et al., 2020 [62] |
|
| IV to maintain serum level around 3 mg/dL for 3 days | Very low (one RCT on severe sepsis) |
Selenium Li et al., 2019 [52] Safabakhsh et al., 2024 [51] |
|
| IV, different dose/scheme, mean duration 14 days | Low (meta-analysis of eight studies, five RCTs) |
Zinc Kim et al., 2024 [63] |
|
| EN, three doses: <15 mg, 15–50 mg, ≥50 mg, during ICU stay | Very low (one retrospective study) |
Vitamin C Wen et al., 2023 [49] Safabakhsh et al. 2024 [51] |
|
| IV, mean dose 6 g/day, mean duration 4 days Used alone [51] (eight studies) or combined with thiamine and/or corticosteroids [49] | Moderate (meta-analysis of 24 RCTs) |
Vitamin D Safabakhsh et al., 2024 [51] Ashoor et al., 2024 [55] |
|
| Enteral route, single dose of vitamin D3 (high or low) or cholecalciferol IV, high single dose of calcitriol | Low (four RCTs) |
Thiamine Safabakhsh et al., 2024 [51] |
|
| IV, 400 mg, mean duration 5 days | Low (five RCTs, all on septic shock) |
Omega-3 PUFA Tseng et al., 2024 [57] |
|
| IV, PN containing fish oil (high dose when ≥0.5 g/kg/day IV), mean duration 7 days | Moderate (meta-analysis of 28 RCTs) |
Glutamine Liang et al., 2024 [59] |
|
| EN containing glutamine 0.3–0.5 g/Kg/day, mean duration 7 days | Low (meta-analysis of RCTs in ICU pts with different acute diseases) |
l-arginine Luiking et al., 2020 [61] |
|
| IV, 1.2 μmol·kg−1·min−1, 3 days | Very low (one RCT on septic shock) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrielli, M.; Zaccaria, R.; Impagnatiello, M.; Zileri Dal Verme, L.; Gasbarrini, A. Nutritional Strategies for the Treatment and Prevention of Sepsis Outside the Intensive Care Unit. Nutrients 2024, 16, 3985. https://doi.org/10.3390/nu16233985
Gabrielli M, Zaccaria R, Impagnatiello M, Zileri Dal Verme L, Gasbarrini A. Nutritional Strategies for the Treatment and Prevention of Sepsis Outside the Intensive Care Unit. Nutrients. 2024; 16(23):3985. https://doi.org/10.3390/nu16233985
Chicago/Turabian StyleGabrielli, Maurizio, Raffaella Zaccaria, Michele Impagnatiello, Lorenzo Zileri Dal Verme, and Antonio Gasbarrini. 2024. "Nutritional Strategies for the Treatment and Prevention of Sepsis Outside the Intensive Care Unit" Nutrients 16, no. 23: 3985. https://doi.org/10.3390/nu16233985
APA StyleGabrielli, M., Zaccaria, R., Impagnatiello, M., Zileri Dal Verme, L., & Gasbarrini, A. (2024). Nutritional Strategies for the Treatment and Prevention of Sepsis Outside the Intensive Care Unit. Nutrients, 16(23), 3985. https://doi.org/10.3390/nu16233985