Weizmannia coagulans BC99 Improves Strength Performance by Enhancing Protein Digestion and Regulating Skeletal Muscle Quality in College Students of Physical Education Major
Abstract
:1. Introduction
2. Materials and Method
2.1. Ethics Approval and Consent to Participate
2.2. Participant Characteristics
2.3. Experimental Design
2.4. Strength Performance and Body Composition
2.5. Enzyme Assays
2.6. Venous Blood Collection and Processing
2.7. Amino Acid Determination
2.8. Biochemistry Analysis
2.9. Hormone Assays
2.10. Statistical Analysis
3. Results
3.1. Effect of W. coagulans BC99 on Strength Performance
3.2. Effect of W. coagulans BC99 on Body Composition
3.3. Effect of W. coagulans BC99 on Enzymatic Activity of Stool Samples
3.4. Effect of W. coagulans BC99 on Plasma Concentration of Amino Acids
3.5. Effect of W. coagulans BC99 on Plasma Biochemical Parameters
3.6. Effect of W. coagulans BC99 on Plasma Hormone Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nonaka, K.; Murata, S.; Shiraiwa, K.; Abiko, T.; Nakano, H.; Iwase, H.; Naito, K.; Horie, J. Effect of skeletal muscle and fat mass on muscle strength in the elderly. Healthcare 2018, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; De Maria, A.; Marinaccio, L.A.; Monda, V.; Messina, A.; Monacis, D.; Toto, G.; Limone, P.; Monda, M.; Messina, G.; et al. Assessment of lifestyle, eating habits and the effect of nutritional education among undergraduate students in southern italy. Nutrients 2023, 15, 2894. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.J.; Hermans, W.J.H.; Holwerda, A.M.; Smeets, J.S.J.; Senden, J.M.; Kranenburg, J.; Gijsen, A.P.; Wodzig, W.K.H.W.; Schierbeek, H.; Verdijk, L.B.; et al. Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: A double-blind, randomized trial. Am. J. Clin. Nutr. 2019, 110, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017, 474, 1935–1963. [Google Scholar] [CrossRef]
- Lee, S.; Jo, K.; Jeong, H.G.; Yong, H.I.; Choi, Y.S.; Kim, D.J.; Jung, S. Freezing-then-aging treatment improved the protein digestibility of beef in an in vitro infant digestion model. Food Chem. 2021, 350, 129224. [Google Scholar] [CrossRef]
- Paulusma, C.C.; Lamers, W.H.; Broer, S.; Lamers, W.H.; Broer, S.; Graaf, S.F.J. Amino acid metabolism, transport and signalling in the liver revisited. Biochem. Pharmacol. 2022, 201, 115074. [Google Scholar] [CrossRef]
- Jang, L.G.; Choi, G.; Kim, S.W.; Kim, B.Y.; Lee, S.; Park, H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: An observational study. J. Int. Soc. Sports Nutr. 2019, 16, 21. [Google Scholar] [CrossRef]
- Kelley, D.E.; Goodpaster, B.; Wing, R.R.; Simoneau, J.A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 1999, 277, E1130–E1141. [Google Scholar] [CrossRef]
- Ebert, S.M.; Dyle, M.C.; Bullard, S.A.; Dierdorff, J.M.; Murry, D.J.; Fox, D.K.; Bongers, K.S.; Lira, V.A.; Meyerholz, D.K.; Talley, J.J.; et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J. Biol. Chem. 2015, 290, 25497–25511. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.E.; Jäger, R.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Townsend, J.R.; West, N.P.; Black, K.; Gleeson, M.; Pyne, D.B.; et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 2020, 17, 24. [Google Scholar] [CrossRef]
- Maughan, R.J. Nutritional ergogenic aids and exercise performance. Nutr. Res. Rev. 1999, 12, 255–280. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International society of sports nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Holwerda, A.M.; Paulussen, K.J.M.; Overkamp, M.; Goessens, J.P.B.; Kramer, I.F.; Wodzig, W.K.W.H.; Verdijk, L.B.; Loon, L.J.C. Dose-dependent increases in whole-body net protein balance and dietary protein-derived amino acid incorporation into myofibrillar protein during recovery from resistance exercise in older men. J. Nutr. 2019, 149, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Blachier, F. Amino acid-derived bacterial metabolites in the colorectal luminal fluid: Effects on microbial communication, metabolism, physiology, and growth. Microorganisms 2023, 11, 1317. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Y. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, M.; Tu, Y.; Zhang, N.F.; Deng, K.D.; Ma, T.; Diao, Q.Y. Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves. J. Anim. Physiol. Anim. Nutr. 2016, 100, 33–38. [Google Scholar] [CrossRef]
- Keller, D.; Van Dinter, R.; Cash, H.; Farmer, S.; Venema, K. Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Benef. Microbes 2017, 8, 491–496. [Google Scholar] [CrossRef]
- Grosicki, G.J.; Fielding, R.A.; Lustgarten, M.S. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: Biological basis for a gut-muscle axis. Calcif. Tissue Int. 2018, 102, 433–442. [Google Scholar] [CrossRef]
- Lustgarten, M.S. The role of the gut microbiome on skeletal muscle mass and physical function: 2019 update. Front. Physiol. 2019, 10, 1435. [Google Scholar] [CrossRef]
- Bindels, L.B.; Delzenne, N.M. Muscle wasting: The gut microbiota as a new therapeutic target? Int. J. Biochem. Cell Biol. 2013, 45, 2186–2190. [Google Scholar] [CrossRef]
- Rezaee, N.; Rahmani-Nia, F.; Delfan, M.; Ghahremani, R. Exercise training and probiotic supplementation effects on skeletal muscle apoptosis prevention in type-I diabetic rats. Life. Sci. 2021, 285, 119973. [Google Scholar] [CrossRef]
- Prokopidis, K.; Giannos, P.; Kirwan, R.; Prokopidis, K.; Giannos, P.; Kirwan, R.; Ispoglou, T.; Galli, F.; Witard, O.C.; Triantafyllidis, K.K.; et al. Impact of probiotics on muscle mass, muscle strength and lean mass: A systematic review and meta-analysis of randomized controlled trials. J. Cachexia Sarcopenia Muscle 2023, 14, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.B.; Martinez, R.C.R.; Pereira, E.P.R.; Balthazar, C.F.; Cruz, A.G.; Ranadheera, C.S.; Sant’Ana, A.S. The resistance of and strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res. Int. 2019, 125, 108542. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhu, J.; Fang, S.; Zhao, B. Complete genome sequence of Heyndrickxia (Bacillus) coagulans BC99 isolated from a fecal sample of a healthy infant. Microbiol. Resour. Ann. 2024, 13, e00449-23. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, K.; Mohan, M.; Saudagar, P.; Sable, C.; Shinde, S.; Bedade, D. In vitro and in vivo evaluation of probiotic potential and safety assessment of Bacillus coagulans SKB LAB-19 (MCC 0554) in humans and animal healthcare. Regul. Toxicol. Pharmacol. 2022, 133, 105218. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, L.K.; DuPont, W.H.; Beeler, M.K.; Post, E.M.; Barnhart, E.C.; Hardesty, V.H.; Anders, J.P.; Borden, E.C.; Volek, J.S.; Kraemer, W.J. The Effects of a korean ginseng, GINST15, on perceptual effort, psychomotor performance, and physical performance in men and women. J. Sports Sci. Med. 2018, 17, 92–100. [Google Scholar]
- Polotow, T.G.; Souza-Junior, T.P.; Sampaio, R.C.; Okuyama, A.R.; Ganini, D.; Vardaris, C.V.; Alves, R.C.; McAnulty, S.R.; Barros, M.P. Effect of 1 repetition maximum, 80% repetition maximum, and 50% repetition maximum strength exercise in trained individuals on variations in plasma redox biomarkers. J. Strength Cond. Res. 2017, 31, 2489–2497. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Dawson Hughes, B.; Scott, D.; Sanders, K.M.; Rizzoli, R. Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review. Maturitas 2020, 132, 57–64. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; D’Angelo, E.; Sisto, A.; Marzetti, E. Protein intake and muscle health in old age: From biological plausibility to clinical evidence. Nutrients 2016, 8, 295. [Google Scholar] [CrossRef]
- Cintineo, H.P.; Arent, M.A.; Antonio, J.; Arent, S.M. Effects of protein supplementation on performance andrecovery in resistance and endurance training. Front. Nutr. 2018, 5, 83. [Google Scholar] [CrossRef]
- Huang, W.C.; Chang, Y.C.; Chen, Y.M.; Hsu, Y.J.; Huang, C.C.; Kan, N.W.; Chen, S.S. Whey protein improves marathon-induced injury and exercise performance in elite track runners. Int. J. Med. Sci. 2017, 14, 648–654. [Google Scholar] [CrossRef]
- Forbes, S.C.; Bell, G.J. Whey protein isolate supplementation while endurance training does not alter cycling performance or immune responses at rest or after exercise. Front. Nutr. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.; Kato, H.; Volterman, K.A.; Suzuki, K.; Moore, D.R. The effect of dietary protein on protein metabolism and performance in endurance-trained males. Med. Sci. Sports Exerc. 2019, 51, 352–360. [Google Scholar] [CrossRef] [PubMed]
- D’Lugos, A.C.; Luden, N.D.; Faller, J.M.; Akers, J.D.; McKenzie, A.I.; Saunders, M.J. Supplemental protein during heavy cycling training and recovery impacts skeletal muscle and heart rate responses but not performance. Nutrients 2016, 8, 550. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Baumgartner, R.N.; Ross, R.; Rosenberg, I.H.; Roubenoff, R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am. J. Epidemiol. 2004, 159, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Tsekoura, M.; Kastrinis, A.; Katsoulaki, M.; Billis, E.; Gliatis, J. Sarcopenia and its impact on quality of life. Adv. Exp. Med. Biol. 2017, 987, 213–218. [Google Scholar]
- Stewart, C.; Rittweger, J. Adaptive processes in skeletal muscle: Molecular regulators and genetic influences. J. Musculoskelet. Neuronal Interact. 2006, 6, 73–86. [Google Scholar]
- Paddon-Jones, D.; Sheffield-Moore, M.; Katsanos, C.S.; Zhang, X.J.; Wolfe, R.R. Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein. Exp. Gerontol. 2005, 4, 215–219. [Google Scholar] [CrossRef]
- Devries, M.C.; Phillips, S.M. Supplemental protein in support of muscle mass and health: Advantage whey. J. Food Sci. 2015, 80, A8–A15. [Google Scholar] [CrossRef]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballevre, O.; Beaufrere, B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E340–E348. [Google Scholar] [CrossRef] [PubMed]
- Sharples, A.P.; Hughes, D.C.; Deane, C.S.; Saini, A.; Selman, C.; Stewart, C.E. Longevity and skeletal muscle mass: The role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015, 14, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Church, D.D.; Hirsch, K.R.; Park, S.; Kim, I.-Y.; Gwin, J.S.; Pasiakos, S.M.; Wolfe, R.R.; Ferrando, A.A. Essential amino acids and protein synthesis: Insights to maximizing the muscle and whole-body response to feeding. Nutrients 2020, 12, 3717. [Google Scholar] [CrossRef]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.D.; Lee, J.H.; Jeong, J.H.; Kim, J.Y.; Yee, S.T.; Park, S.K.; Lee, M.K.; Seo, K.I. Production of novel vinegar having antioxidant and anti-fatigue activities from Salicornia herbacea L. J. Sci. Food Agr. 2016, 96, 1085–1092. [Google Scholar] [CrossRef]
- Xu, C.; Lv, J.L.; Lo, Y.M.; Cui, S.W.; Hu, X.; Fan, M. Effects of oat β-glucan on endurance exercise and its anti-fatigue properties in trained rats. Carbohyd. Polym. 2013, 92, 1159–1165. [Google Scholar] [CrossRef]
- Oh, H.A.; Kim, D.E.; Choi, H.J.; Kim, N.J.; Kim, D.H. Anti-fatigue effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in mice. Biol. Pharm. Bull. 2015, 38, 1415–1419. [Google Scholar] [CrossRef]
- Kruse, R.; Petersson, S.J.; Christensen, L.L.; Kristensen, J.M.; Sabaratnam, R.; Ørtenblad, N.; Andersen, M.; Højlund, K. Effect of long-term testosterone therapy on molecular regulators of skeletal muscle mass and fibre-type distribution in aging men with subnormal testosterone. Metabolism 2020, 112, 154347. [Google Scholar] [CrossRef]
- Ferrando, A.A.; Sheffield-Moore, M.; Yeckel, C.W.; Gilkison, C.; Jiang, J.; Achacosa, A.; Lieberman, S.A.; Tipton, K.; Wolfe, R.R.; Urban, R.J. Testosterone administration to older men improves muscle function: Molecular and physiological mechanisms. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E601–E607. [Google Scholar] [CrossRef]
- Sinha-Hikim, I.; Cornford, M.; Gaytan, H.; Lee, M.L.; Bhasin, S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J. Clin. Endocrinol. Metab. 2006, 91, 3024–3033. [Google Scholar] [CrossRef]
- Caminiti, G.; Volterrani, M.; Iellamo, F.; Marazzi, G.; Massaro, R.; Miceli, M.; Mammi, C.; Piepoli, M.; Fini, M.; Rosano, G.M. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J. Am. Coll. Cardiol. 2009, 54, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Katayama, T.; Takada, S.; Masaki, Y.; Kinugawa, S.; Matsumoto, J.; Furihata, T.; Fukushima, A.; Yokota, T.; Okita, K.; Tsutsui, H. The activation of glucagon-like peptide-1 improves the mitochondrial abnormalities in skeletal muscle and exercise intolerance in heart failure mice. J. Card. Fail. 2016, 22, S162. [Google Scholar] [CrossRef]
- Hong, Y.; Lee, J.H.; Jeong, K.W.; Choi, C.S.; Jun, H.S. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J. Cachexia Sarcopenia Muscle 2019, 10, 903–918. [Google Scholar] [CrossRef] [PubMed]
- Tuddenham, S.; Sears, C.L. The intestinal microbiome and health. Curr. Opin. Infect. Dis. 2015, 28, p464–p470. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, H.; Yu, Z.H.; Zhang, F.; Liang, S.; Liu, H.; Chen, H.; Lü, M.H. The Gut microbiome and sex hormone-related diseases. Front. Microbiol. 2021, 12, 711137. [Google Scholar] [CrossRef]
- Falcinelli, S.; Rodiles, A.; Hatef, A.; Picchietti, S.; Cossignani, L.; Merrifield, D.L.; Unniappan, S.; Carnevali, O. Influence of probiotics administration on gut microbiota core. J. Clin. Gastroenterol. 2018, 52, S50–S56. [Google Scholar] [CrossRef]
- Okuka, N.; Milinkovic, N.; Velickovic, K.; Polovina, S.; Sumarac-Dumanovic, M.; Minic, R.; Korčok, D.; Djordjevic, B.; Ivanovic, N.D. Beneficial effects of a new probiotic formulation on adipocytokines, appetite-regulating hormones, and metabolic parameters in obese women. Food Funct. 2024, 15, 7658–7668. [Google Scholar] [CrossRef]
Placebo (n = 36) | Probiotic (n = 36) | |
---|---|---|
Age (years) | 20.25 ± 1.03 | 20.19 ± 0.79 |
Height (cm) | 179.00 ± 5.94 | 179.25 ± 5.16 |
Weigh (kg) | 73.55 ± 8.73 | 73.61 ± 8.24 |
AST (mmol/L) | 16.63 ± 9.23 | 15.14 ± 4.77 |
ALT (mmol/L) | 35.53 ± 9.21 | 32.06 ± 8.65 |
TG (mmol/L) | 0.97 ± 0.66 | 0.99 ± 0.39 |
TC (mmol/L) | 3.49 ± 0.44 | 3.76 ± 0.48 |
Glucose(mmol/L) | 4.93 ± 0.31 | 4.91 ± 0.29 |
Feces occult blood | ND | ND |
Placebo | Probiotics | ||||
---|---|---|---|---|---|
Baseline | End | Baseline | End | ||
Bench press | 1RM (kg) | 68.06 ± 12.32 | 76.14 ± 9.04 * | 70.14 ± 9.74 | 78.27 ± 10.29 * |
80%RM (times) | 11.42 ± 3.54 | 10.07 ± 2.36 | 11.31 ± 3.09 | 11.41 ± 1.84 ▲ | |
Squat | 1RM (kg) | 114.86 ± 21.51 | 131.90 ± 23.20 * | 121.57 ± 17.65 | 133.65 ± 18.84 * |
80%RM (times) | 10.33 ± 5.39 | 10.91 ± 2.96 | 10.54 ± 4.14 | 13.04 ± 4.01 ▲ |
Placebo | Probiotics | |||
---|---|---|---|---|
Baseline | End | Baseline | End | |
Muscle mass | 34.44 ± 3.78 | 34.15 ± 2.93 | 34.47 ± 3.34 | 36.16 ± 3.12 *▲ |
Fat mass | 11.01 ± 3.41 | 9.90 ± 3.55 | 10.91 ± 3.07 | 8.31 ± 2.18 **▲ |
Fat-free mass | 61.28 ± 4.78 | 59.89 ± 4.05 | 61.25 ± 5.69 | 64.77 ± 4.59 *▲ |
Body weight | 73.55 ± 8.73 | 69.94 ± 6.95 | 73.61 ± 8.24 | 70.08 ± 7.18 |
BMI | 22.26 ± 2.14 | 21.67 ± 2.12 | 22.55 ± 2.13 | 21.95 ± 1.94 |
Amino Acids | Placebo (n = 36) | Probiotic (n = 36) | p Value |
---|---|---|---|
Alanine | 100.45 ± 5.02 | 119.32 ± 8.39 | 0.001 |
Arginine | 74.30 ± 5.75 | 107.43 ± 12.13 | 0.000 |
Asparagine | 36.16 ± 3.34 | 40.53 ± 2.84 | 0.210 |
Aspartic acid | 7.18 ± 1.15 | 7.76 ± 0.39 | 0.273 |
Cysteine | 7.19 ± 1.16 | 7.78 ± 0.40 | 0.261 |
GABA | 0.41 ± 0.09 | 0.59 ± 0.08 | 0.004 |
Glutamate | 1589.43 ± 251.86 | 1704.56 ± 431.67 | 0.008 |
Glutamine | 486.67 ± 32.71 | 542.75 ± 25.63 | 0.585 |
Glycine | 107.29 ± 10.67 | 105.34 ± 11.19 | 0.764 |
Histidine | 87.89 ± 8.82 | 87.60 ± 7.49 | 0.951 |
Isoleucine | 75.89 ± 7.26 | 90.68 ± 14.11 | 0.001 |
Leucine | 156.03 ± 22.01 | 192.79 ± 19.41 | 0.014 |
Lysine | 229.17 ± 48.41 | 240.14 ± 25.52 | 0.108 |
Methionine | 29.45 ± 2.74 | 32.64 ± 3.89 | 0.132 |
Phenylalanine | 55.28 ± 2.05 | 53.47 ± 5.23 | 0.449 |
Proline | 118.92 ± 9.57 | 132.49 ± 12.34 | 0.059 |
Serine | 83.33 ± 11.38 | 83.15 ± 15.97 | 0.983 |
Taurine | 22.85 ± 1.51 | 25.51 ± 2.19 | 0.035 |
Threonine | 190.11 ± 13.40 | 205.05 ± 28.42 | 0.271 |
Tryptophan | 38.75 ± 5.11 | 37.54 ± 4.69 | 0.678 |
Tyrosine | 38.54 ± 1.67 | 33.07 ± 2.51 | 0.001 |
Valine | 120.32 ± 9.28 | 131.25 ± 8.96 | 0.065 |
BCAA | 350.49 ± 39.83 | 564.18 ± 29.06 | 0.000 |
EAA | 963.65 ± 65.47 | 1222.31 ± 65.83 | 0.000 |
Total AA | 3643.83 ± 254.01 | 4092.35 ± 495.51 | 0.077 |
Placebo (n = 36) | Probiotic (n = 36) | |
---|---|---|
LDH (U/L) | 2036.90 ± 273 | 1327.18 ± 368 * |
CK (U/mL) | 0.19 ± 0.04 | 0.09 ± 0.03 ** |
BUN (mmol/L) | 5.44 ± 1.05 | 4.96 ± 0.89 * |
Mb (ng/mL) | 1.74 ± 0.33 | 1.60 ± 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Guo, M.; Zhou, Y.; Zhang, J.; Tie, S.; Li, X.; Tian, P.; Wu, Y.; Gu, S. Weizmannia coagulans BC99 Improves Strength Performance by Enhancing Protein Digestion and Regulating Skeletal Muscle Quality in College Students of Physical Education Major. Nutrients 2024, 16, 3990. https://doi.org/10.3390/nu16233990
Cao L, Guo M, Zhou Y, Zhang J, Tie S, Li X, Tian P, Wu Y, Gu S. Weizmannia coagulans BC99 Improves Strength Performance by Enhancing Protein Digestion and Regulating Skeletal Muscle Quality in College Students of Physical Education Major. Nutrients. 2024; 16(23):3990. https://doi.org/10.3390/nu16233990
Chicago/Turabian StyleCao, Li, Minghan Guo, Yiqing Zhou, Jie Zhang, Shanshan Tie, Xuan Li, Pingping Tian, Ying Wu, and Shaobin Gu. 2024. "Weizmannia coagulans BC99 Improves Strength Performance by Enhancing Protein Digestion and Regulating Skeletal Muscle Quality in College Students of Physical Education Major" Nutrients 16, no. 23: 3990. https://doi.org/10.3390/nu16233990
APA StyleCao, L., Guo, M., Zhou, Y., Zhang, J., Tie, S., Li, X., Tian, P., Wu, Y., & Gu, S. (2024). Weizmannia coagulans BC99 Improves Strength Performance by Enhancing Protein Digestion and Regulating Skeletal Muscle Quality in College Students of Physical Education Major. Nutrients, 16(23), 3990. https://doi.org/10.3390/nu16233990