Study Protocol for a Randomized Controlled Trial Investigating the Effects of the Daily Consumption of Ruminant Milk on Digestive Comfort and Nutrition in Older Women: The YUMMI Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Recruitment and Eligibility Criteria
- Inclusion criteria:
- Healthy, non-institutionalized women aged 60 to 80 years.
- Body mass index >18.5 or <40 kg/m2.
- Do not undertake structured exercise for more than 2 h per day.
- Exclusion criteria:
- Unable to give informed consent.
- Unable or unwilling to comply with the study procedures.
- Have taken antibiotics within 4 weeks of starting the study.
- Have taken certain prescribed medications or recreational drugs that could affect the gastrointestinal tract within 4 weeks of starting the study: opioids, non-steroidal anti-inflammatory drugs, laxatives, prebiotic, or probiotic supplements.
- Have medical history of gastrointestinal surgery or disorders (inflammatory bowel disease, ulcerative colitis, coeliac disease, Crohn’s disease), cardiorespiratory problems, uncontrolled diabetes mellitus, bleeding disorders, sleep disorders, psychiatric conditions (major depressive disorder, schizophrenia, bipolar disorder, post-traumatic stress disorder).
- Have alarm features associated with significant gastrointestinal or other disorders, such as burning pain in the epigastrium, which increases during the night and wakes the patient up; frequent vomiting; loss of appetite; lower gastrointestinal bleeding; odynophagia; dysphagia; palpable abdominal mass; lymphadenopathy; and jaundice.
- Experienced unintentional weight loss of ≥5% within the month of starting the study.
- Have dairy intolerance or ruminant milk allergy.
- Have a high habitual milk intake (≥500 mL ≥4 days per week).
- Malnutrition Screening Tool score of 2 or more points.
- Use tobacco, including cigarette smoking or other use of tobacco or nicotine-containing products.
- Excessive alcohol intake, i.e., >20g of pure alcohol (2 drinks)/d on average (>21 standard drinks a week).
- Screening blood biochemistries:
- Non-exclusion criteria:
2.3. Participant Flow
2.3.1. Screening
2.3.2. Main Study
2.3.3. Acute Sub-Study
2.4. Randomization and Blinding
2.5. Intervention
2.6. Attrition and Compliance/Adherence
2.7. Participation and Withdrawal from the Study
2.8. Risk and Adverse Events
3. Study Outcomes and Measurements
3.1. Weekly Questionnaires
3.1.1. Gastrointestinal Syndrome Rating Scale (GSRS)
3.1.2. Patient-Reported Outcomes Measurement Information System (PROMIS): Anxiety and Depression
3.1.3. Leeds Sleep Evaluation Questionnaire (LSEQ)
3.1.4. Sensory and Emotional Assessments
3.1.5. Milk-Specific Food Frequency Questionnaire
3.2. Daily Questionnaires
3.2.1. Bowel Movement Diary
3.2.2. Compliance Diary
3.3. Dietary Assessment
3.4. Physical Activity and Sleep Assessment
3.5. Clinical Measurements
3.5.1. Anthropometry
3.5.2. Body Composition
3.5.3. Blood Pressure
3.5.4. Functional Tests
3.6. Biological Measurements
3.6.1. Blood Samples
- Amino acids
- 2.
- Blood lipids and Hemoglobin A1c (HbA1c)
- 3.
- Trace elements
- 4.
- Inflammatory markers
- 5.
- Parathyroid hormone and vitamin D
- 6.
- Non-polar metabolites
3.6.2. Stool Samples
3.7. Acute Sub-Study
4. Data Analysis
4.1. Sample Size Calculation
4.2. Statistical Analysis
5. Data Management
5.1. Privacy and Confidentiality
5.2. Data Quality and Assurance
5.3. Data Storage
6. Expected Results and Contributions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Test | Purpose |
---|---|
Albumin | Liver function |
Alkaline Phosphatase | Liver function |
Alanine aminotransferase (ALT) | Liver function |
Aspartate aminotransferase (AST) | Liver function |
Blood Urea Nitrogen (BUN) | Kidney function |
Creatinine | Kidney function |
Potassium | Acid/base balance |
Sodium | Acid/base balance |
Total bilirubin | Liver function |
Total protein | Liver function |
C-Reactive protein | Immune response |
Complete blood count | Immune response, anemia, overall health |
HbA1c | Blood sugar control |
Appendix B
Screening | Lead-In (Week −2 to −1) | Baseline (Week 0) | Final (Week 12) | |
---|---|---|---|---|
SCREENING and ENROLMENT | ||||
Online pre-screening (including general health and wellbeing assessment) | X | |||
Informed consent | X | |||
Screening visit | X | |||
Screening blood test | X | |||
ENROLMENT | ||||
Economic Living Standard Index Short Form (ELSISF) | X | |||
Study allocation | X | |||
INTERVENTION | ||||
Study milk + habitual diet (intervention) OR habitual diet (control) | ||||
ASSESSMENTS | ||||
Anthropometry | X | X | X | |
Blood sample | X | X | X | |
Gastrointestinal Syndrome Rating Scale (GSRS) 1 | X | X | X | |
Patient-Reported Outcomes Measurement Information System (PROMIS): Anxiety, Depression 1 | X | X | X | |
Leeds sleep evaluation questionnaire 1 | X | X | X | |
Sensory and emotional assessments 1* | X | X | ||
Milk-specific food frequency questionnaire 1 | X | X | X | |
Bowel movement diary 2 | X | X | X | |
Compliance diary 2* | X | X | ||
Dietary assessment | X | X (completed seven days prior) | ||
Physical activity and sleep assessment | X | X (completed seven days prior) | ||
Body composition | X (completed seven days prior) | X (completed seven days prior) | ||
Stool sample | X (collected one day prior) | X (collected one day prior) | ||
Blood pressure | X | X | ||
Functional tests | X | X | ||
Appetite and satiety assessment # | X | X |
References
- World Health Organization. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 18 January 2024).
- Roberts, S.B.; Silver, R.E.; Das, S.K.; Fielding, R.A.; Gilhooly, C.H.; Jacques, P.F.; Kelly, J.M.; Mason, J.B.; McKeown, N.M.; Reardon, M.A.; et al. Healthy Aging—Nutrition Matters: Start Early and Screen Often. Adv. Nutr. 2021, 12, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dwyer-Lindgren, L.; Lofgren, K.T.; Rajaratnam, J.K.; Marcus, J.R.; Levin-Rector, A.; Levitz, C.E.; Lopez, A.D.; Murray, C.J.L. Age-specific and sex-specific mortality in 187 countries, 1970-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2071–2094. [Google Scholar] [CrossRef] [PubMed]
- Ganda Mall, J.-P.; Östlund-Lagerström, L.; Lindqvist, C.M.; Algilani, S.; Rasoal, D.; Repsilber, D.; Brummer, R.J.; Keita, Å.V.; Schoultz, I. Are self-reported gastrointestinal symptoms among older adults associated with increased intestinal permeability and psychological distress? BMC Geriatr. 2018, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; Sisto, A.; Marzetti, E. Anorexia of aging: Risk factors, consequences, and potential treatments. Nutrients 2016, 8, 69. [Google Scholar] [CrossRef]
- Robinson, S.M. Improving nutrition to support healthy ageing: What are the opportunities for intervention? Proc. Nutr. Soc. 2018, 77, 257–264. [Google Scholar] [CrossRef]
- Martone, A.M.; Onder, G.; Vetrano, D.L.; Ortolani, E.; Tosato, M.; Marzetti, E.; Landi, F. Anorexia of Aging: A Modifiable Risk Factor for Frailty. Nutrients 2013, 5, 4126–4133. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Kwan, M.; Woo, J. Healthy Diet for Healthy Aging. Nutrients 2021, 13, 4310. [Google Scholar] [CrossRef]
- Van Staveren, W.A.; de Groot, L.C.P. Evidence-based dietary guidance and the role of dairy products for appropriate nutrition in the elderly. J. Am. Coll. Nutr. 2011, 30, 429S–437S. [Google Scholar] [CrossRef]
- Rice, B.H.; Quann, E.E.; Miller, G.D. Meeting and exceeding dairy recommendations: Effects of dairy consumption on nutrient intakes and risk of chronic disease. Nutr. Rev. 2013, 71, 209–223. [Google Scholar] [CrossRef]
- Barr, S.I.; McCARRON, D.A.; Heaney, R.P.; Dawson-hughes, B.; Berga, S.L.; Stern, J.S.; Oparil, S. Effects of Increased Consumption of Fluid Milk on Energy and Nutrient Intake, Body Weight, and Cardiovascular Risk Factors in Healthy Older Adults. J. Am. Diet. Assoc. 2000, 100, 810–817. [Google Scholar] [CrossRef]
- Weinberg, L.G.; Berner, L.A.; Groves, J.E. Nutrient contributions of dairy foods in the United States, continuing survey of food intakes by individuals, 1994–1996, 1998. J. Am. Diet. Assoc. 2004, 104, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Okada, E.; Tarui, I.; Matsumoto, M.; Takimoto, H. The Association between Milk and Dairy Products Consumption and Nutrient Intake Adequacy among Japanese Adults: Analysis of the 2016 National Health and Nutrition Survey. Nutrients 2019, 11, 2361. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.M.; Cifelli, C.J.; Fulgoni III, V.L. Energy and Nutrient Intake of Americans according to Meeting Current Dairy Recommendations. Nutrients 2020, 12, 3006. [Google Scholar] [CrossRef] [PubMed]
- Ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.G.A.; Luiking, Y.C.; de Groot, L.C.P.G.M. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Conzade, R.; Koenig, W.; Heier, M.; Schneider, A.; Grill, E.; Peters, A.; Thorand, B. Prevalence and Predictors of Subclinical Micronutrient Deficiency in German Older Adults: Results from the Population-Based KORA-Age Study. Nutrients 2017, 9, 1276. [Google Scholar] [CrossRef]
- Hengeveld, L.M.; Boer, J.M.A.; Gaudreau, P.; Heymans, M.W.; Jagger, C.; Mendonça, N.; Ocké, M.C.; Presse, N.; Sette, S.; Simonsick, E.M.; et al. Prevalence of protein intake below recommended in community-dwelling older adults: A meta-analysis across cohorts from the PROMISS consortium. J. Cachexia Sarcopenia Muscle 2020, 11, 1212–1222. [Google Scholar] [CrossRef]
- Vural, Z.; Avery, A.; Kalogiros, D.I.; Coneyworth, L.J.; Welham, S.J.M. Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review. Nutrients 2020, 12, 1072. [Google Scholar] [CrossRef]
- Ouyang, Y.; Tan, T.; Song, X.; Huang, F.; Zhang, B.; Ding, G.; Wang, H. Dietary Protein Intake Dynamics in Elderly Chinese from 1991 to 2018. Nutrients 2021, 13, 3806. [Google Scholar] [CrossRef]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, Regional, and National Consumption of Sugar-Sweetened Beverages, Fruit Juices, and Milk: A Systematic Assessment of Beverage Intake in 187 Countries. PLoS ONE 2015, 10, e0124845. [Google Scholar] [CrossRef]
- Chollet, M.; Gille, D.; Piccinali, P.; Bütikofer, U.; Schmid, A.; Stoffers, H.; Altintzoglou, T.; Walther, B. Short communication: Dairy consumption among middle-aged and elderly adults in Switzerland. J. Dairy Sci. 2014, 97, 5387–5392. [Google Scholar] [CrossRef]
- Zingone, F.; Bucci, C.; Iovino, P.; Ciacci, C. Consumption of milk and dairy products: Facts and figures. Nutrition 2017, 33, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Crane, S.J.; Talley, N.J. Chronic gastrointestinal symptoms in the elderly. Clin. Geriatr. Med. 2007, 23, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Al Ameel, T.; Basheikh, M.; Andrew, M.K. Digestive symptoms in older adults: Prevalence and associations with institutionalization and mortality. Can. J. Gastroenterol. 2012, 26, 881–884. [Google Scholar] [CrossRef]
- Henchoz, Y.; Büla, C.; Guessous, I.; Rodondi, N.; Goy, R.; Demont, M.; Santos-Eggimann, B. Chronic symptoms in a representative sample of community-dwelling older people: A cross-sectional study in Switzerland. BMJ Open 2017, 7, e014485. [Google Scholar] [CrossRef]
- Fart, F.; Tingö, L.; Engelheart, S.; Lindqvist, C.M.; Brummer, R.J.; Kihlgren, A.; Schoultz, I. Gut Health and Its Association with Wellbeing and Nutrient Intake in Community-Dwelling Older Adults. Gastroenterol. Insights 2022, 13, 349–364. [Google Scholar] [CrossRef]
- Zhao, A.; Wang, M.-C.; Szeto, I.M.-Y.; Meng, L.-P.; Wang, Y.; Li, T.; Zhang, Y.-M. Gastrointestinal discomforts and dietary intake in Chinese urban elders: A cross-sectional study in eight cities of China. World J. Gastroenterol. 2019, 25, 6681–6692. [Google Scholar] [CrossRef]
- Narayanan, S.P.; Anderson, B.; Bharucha, A.E. Sex- and Gender-Related Differences in Common Functional Gastroenterologic Disorders. Mayo Clin. Proc. 2021, 96, 1071–1089. [Google Scholar] [CrossRef]
- Mayer, E.A.; Berman, S.; Chang, L.; Naliboff, B.D. Sex-based differences in gastrointestinal pain. Eur. J. Pain 2004, 8, 451–463. [Google Scholar] [CrossRef]
- Wham, C.A.; Worsley, A. New Zealanders’ attitudes to milk: Implications for public health. Public Health Nutr. 2003, 6, 73–78. [Google Scholar] [CrossRef]
- Crichton, M.; Craven, D.; Mackay, H.; Marx, W.; de van der Schueren, M.; Marshall, S. A systematic review, meta-analysis and meta-regression of the prevalence of protein-energy malnutrition: Associations with geographical region and sex. Age Ageing 2019, 48, 38–48. [Google Scholar] [CrossRef]
- Johansson, Y.; Bachrach-Lindström, M.; Carstensen, J.; Ek, A.-C. Malnutrition in a home-living older population: Prevalence, incidence and risk factors. A prospective study. J. Clin. Nurs. 2009, 18, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.-H.; Bai, Y.-Y.; Huang, G.-H.; Tang, S.T. Revisiting the concept of malnutrition in older people. J. Clin. Nurs. 2007, 16, 2015–2026. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, Structure, and Digestive Dynamics of Milk from Different Species—A Review. Front. Nutr. 2020, 7, 577759. Available online: https://www.frontiersin.org/articles/10.3389/fnut.2020.577759 (accessed on 30 January 2024). [CrossRef] [PubMed]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An Overview on Nutritional Aspects of Plant-Based Beverages Used as Substitutes for Cow’s Milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Antunes, I.C.; Bexiga, R.; Pinto, C.; Roseiro, L.C.; Quaresma, M.A.G. Cow’s Milk in Human Nutrition and the Emergence of Plant-Based Milk Alternatives. Foods 2023, 12, 99. [Google Scholar] [CrossRef]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Structural changes in cow, goat, and sheep skim milk during dynamic in vitro gastric digestion. J. Dairy Sci. 2021, 104, 1394–1411. [Google Scholar] [CrossRef]
- Penhaligan, J.; Poppitt, S.D.; Miles-Chan, J.L. The Role of Bovine and Non-Bovine Milk in Cardiometabolic Health: Should We Raise the “Baa”? Nutrients 2022, 14, 290. [Google Scholar] [CrossRef]
- Alichanidis, E.; Moatsou, G.; Polychroniadou, A. Chapter 5-Composition and Properties of Non-cow Milk and Products. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 81–116. Available online: https://www.sciencedirect.com/science/article/pii/B9780128033616000053 (accessed on 4 June 2024).
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Park, Y.W.; Haenlein, G.F.W.; Wendorff, W.L. Overview of Milk of Non-Bovine Mammals (Second Edition). In Handbook of Milk of Non-Bovine Mammals, 1st ed.; Park, Y.W., Haenlein, G.F.W., Wendorff, W.L., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–9. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781119110316.ch1 (accessed on 4 June 2024).
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional Value and Technological Suitability of Milk from Various Animal Species Used for Dairy Production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Jasińska, B. The comparison of pepsin and trypsin action on goat, cow, mare and human caseins. Rocz. Akad. Med. Bialymst. 1995, 40, 486–493. [Google Scholar]
- Yang, M.; Ye, A.; Gilbert, E.P.; Yang, Z.; Everett, D.W.; Singh, H. Pepsin-induced hydrolysis and coagulation of proteins in goat, sheep and cow milk. Int. Dairy J. 2024, 153, 105898. [Google Scholar] [CrossRef]
- Ceballos, L.S.; Morales, E.R.; Adarve, G.d.l.T.; Castro, J.D.; Martínez, L.P.; Sampelayo, M.R.S. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 2009, 22, 322. [Google Scholar] [CrossRef]
- Park, Y.W. Goat Milk—Chemistry and Nutrition. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 42–83. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119110316.ch2.2 (accessed on 14 September 2023).
- Wendorff, W.L.; Haenlein, G.F.W. Sheep Milk—Composition and Nutrition. In Handbook of Milk of Non-Bovine Mammals, 1st ed.; Park, Y.W., Haenlein, G.F.W., Wendorff, W.L., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 210–221. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781119110316.ch3.2 (accessed on 13 May 2024).
- Almaas, H.; Cases, A.-L.; Devold, T.G.; Holm, H.; Langsrud, T.; Aabakken, L.; Aadnoey, T.; Vegarud, G.E. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int. Dairy J. 2006, 16, 961–968. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Martini, S.; Shamsia, S.; Helal, A.; Conte, A. Biological activities and peptidomic profile of in vitro-digested cow, camel, goat and sheep milk. Int. Dairy J. 2018, 81, 19–27. [Google Scholar] [CrossRef]
- He, T.; Rombouts, W.; Einerhand, A.W.C.; Hotrum, N.; van de Velde, F. Gastric protein digestion of goat and cow milk infant formula and human milk under simulated infant conditions. Int. J. Food Sci. Nutr. 2022, 73, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Martín, E.; García-Escobar, E.; Ruiz de Adana, M.-S.; Lima-Rubio, F.; Peláez, L.; Caracuel, A.-M.; Bermúdez-Silva, F.-J.; Soriguer, F.; Rojo-Martínez, G.; Olveira, G. Comparison of the Effects of Goat Dairy and Cow Dairy Based Breakfasts on Satiety, Appetite Hormones, and Metabolic Profile. Nutrients 2017, 9, 877. [Google Scholar] [CrossRef]
- Milan, A.M.; Hodgkinson, A.J.; Mitchell, S.M.; Prodhan, U.K.; Prosser, C.G.; Carpenter, E.A.; Fraser, K.; Cameron-Smith, D. Digestive Responses to Fortified Cow or Goat Dairy Drinks: A Randomised Controlled Trial. Nutrients 2018, 10, 1492. [Google Scholar] [CrossRef]
- Milan, A.M.; Samuelsson, L.M.; Shrestha, A.; Sharma, P.; Day, L.; Cameron-Smith, D. Circulating Branched Chain Amino Acid Concentrations Are Higher in Dairy-Avoiding Females Following an Equal Volume of Sheep Milk Relative to Cow Milk: A Randomized Controlled Trial. Front. Nutr. 2020, 7, 553674. [Google Scholar] [CrossRef]
- Shrestha, A.; Samuelsson, L.M.; Sharma, P.; Day, L.; Cameron-Smith, D.; Milan, A.M. Comparing Response of Sheep and Cow Milk on Acute Digestive Comfort and Lactose Malabsorption: A Randomized Controlled Trial in Female Dairy Avoiders. Front. Nutr. 2021, 8, 603816. [Google Scholar] [CrossRef]
- Teng, F.; Samuelsson, L.M.; Milan, A.M.; Subbaraj, A.; Agnew, M.; Shrestha, A.; Cameron-Smith, D.; Day, L. Postprandial lipemic response in dairy-avoiding females following an equal volume of sheep milk relative to cow milk: A randomized controlled trial. Front. Nutr. 2023, 9, 1029813. Available online: https://www.frontiersin.org/articles/10.3389/fnut.2022.1029813 (accessed on 9 March 2024). [CrossRef]
- Thota, R.N.; Moughan, P.J.; Singh, H.; Garg, M.L. GlucoTRIG: A novel tool to determine the nutritional quality of foods and meals in general population. Lipids Health Dis. 2020, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Cardiovascular Disease Risk Assessment and Management for Primary Care. Te Whatu Ora. 2018. Available online: https://www.tewhatuora.govt.nz/publications/cardiovascular-disease-risk-assessment-and-management-for-primary-care (accessed on 30 May 2024).
- Simundic, A.M.; Cornes, M.; Grankvist, K.; Lippi, G.; Nybo, M. Standardization of collection requirements for fasting samples: For the Working Group on Preanalytical Phase (WG-PA) of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM). Clin. Chim. Acta 2014, 432, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Social Development. ELSI Short Form: User Manual for a Direct Measure of Living Standards—Ministry of Social Development. Available online: https://www.msd.govt.nz/about-msd-and-our-work/publications-resources/monitoring/living-standards/elsi-short-form.html (accessed on 26 January 2024).
- Norton, C.; Toomey, C.; McCormack, W.G.; Francis, P.; Saunders, J.; Kerin, E.; Jakeman, P. Protein Supplementation at Breakfast and Lunch for 24 Weeks beyond Habitual Intakes Increases Whole-Body Lean Tissue Mass in Healthy Older Adults123. J. Nutr. 2016, 146, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Ram, A.; Kerse, N.; Moyes, S.A.; Muru-Lanning, M.; Wham, C. Dietary Protein Intake and Determinants in Māori and Non-Māori Octogenarians. Te Puāwaitanga o Ngā Tapuwae Kia Ora Tonu: Life and Living in Advanced Age: A Cohort Study in New Zealand. Nutrients 2020, 12, 2079. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400903/ (accessed on 18 January 2024). [CrossRef] [PubMed]
- Li, S.; Ye, A.; Cui, J.; Zhang, Y.; Ware, L.; Miller, J.C.; Abbotts-Holmes, H.; Roy, N.C.; Singh, H.; McNabb, W. Dynamic Gastrointestinal Digestion of Bovine, Caprine and Ovine Milk Reconstituted from Commercial Whole Milk Powders. Foods 2024, 13, 1403. [Google Scholar] [CrossRef]
- Svedlund, J.; Sjödin, I.; Dotevall, G. GSRS—A clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig. Dis. Sci. 1988, 33, 129–134. [Google Scholar] [CrossRef]
- Chan, L.; Mulgaonkar, S.; Walker, R.; Arns, W.; Ambühl, P.; Schiavelli, R. Patient-Reported Gastrointestinal Symptom Burden and Health-Related Quality of Life following Conversion from Mycophenolate Mofetil to Enteric-Coated Mycophenolate Sodium. Transplantation 2006, 81, 1290–1297. [Google Scholar] [CrossRef]
- PROMIS. Health Measures. 2023. Available online: https://www.healthmeasures.net/explore-measurement-systems/promis (accessed on 12 June 2024).
- Pilkonis, P.A.; Choi, S.W.; Reise, S.P.; Stover, A.M.; Riley, W.T.; Cella, D. Item Banks for Measuring Emotional Distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): Depression, Anxiety, and Anger. Assessment 2011, 18, 263–283. [Google Scholar] [CrossRef]
- Parrott, A.C.; Hindmarch, I. The leeds sleep evaluation questionnaire in psychopharmacological investigations?—A review. Psychopharmacology 1980, 71, 173–179. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Russell, J. A Circumplex Model of Affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Yang, Y.J.; Kim, M.K.; Hwang, S.H.; Ahn, Y.; Shim, J.E.; Kim, D.H. Relative validities of 3-day food records and the food frequency questionnaire. Nutr. Res. Pract. 2010, 4, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Bammann, K.; Thomson, N.K.; Albrecht, B.M.; Buchan, D.S.; Easton, C. Generation and validation of ActiGraph GT3X+ accelerometer cut-points for assessing physical activity intensity in older adults. The OUTDOOR ACTIVE validation study. PLoS ONE 2021, 16, e0252615. [Google Scholar] [CrossRef]
- Gale, J.T.; Haszard, J.J.; Scott, T.; Peddie, M.C. The Impact of Organised Sport, Physical Education and Active Commuting on Physical Activity in a Sample of New Zealand Adolescent Females. Int. J. Environ. Res. Public Health 2021, 18, 8077. [Google Scholar] [CrossRef]
- Ministry of Health. Protocol for Collecting Height, Weight and Waist Measurements in New Zealand Health Monitor (NZHM) Surveys 2008. Available online: https://www.moh.govt.nz/notebook/nbbooks.nsf/0/e846bf606184f2cdcc257487007eb4e8/$FILE/protocols-for-collecting-height-weight-waist-measurements.pdf (accessed on 30 June 2024).
- Meredith-Jones, K.; Haszard, J.; Stanger, N.; Taylor, R. Precision of DXA-Derived Visceral Fat Measurements in a Large Sample of Adults of Varying Body Size. Obesity 2018, 26, 505–512. [Google Scholar] [CrossRef]
- Sharman, J.E.; Howes, F.S.; Head, G.A.; McGrath, B.P.; Stowasser, M.; Schlaich, M.; Glasziou, P.; Nelson, M.R. Home blood pressure monitoring: Australian Expert Consensus Statement. J. Hypertens. 2015, 33, 1721–1728. [Google Scholar] [CrossRef]
- Wilson, C.M.; Kostsuca, S.R.; Boura, J.A. Utilization of a 5-Meter Walk Test in Evaluating Self-selected Gait Speed during Preoperative Screening of Patients Scheduled for Cardiac Surgery. Cardiopulm. Phys. Ther. J. 2013, 24, 36–43. [Google Scholar] [CrossRef]
- Mathiowetz, V. Comparison of Rolyan and Jamar dynamometers for measuring grip strength. Occup. Ther. Intl. 2002, 9, 201–209. [Google Scholar] [CrossRef]
- Chungchunlam, S.M.S.; Henare, S.J.; Ganesh, S.; Moughan, P.J. Dietary whey protein influences plasma satiety-related hormones and plasma amino acids in normal-weight adult women. Eur. J. Clin. Nutr. 2015, 69, 179–186. [Google Scholar] [CrossRef]
- Terrlink, T.; Leeuwen, P.A.M.; Houdijk, A. Plasma amino acids determined by liquid chromatography within 17 minutes. Clin. Chem. 1994, 40, 245–249. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Laur, N.; Kinscherf, R.; Pomytkin, K.; Kaiser, L.; Knes, O.; Deigner, H.-P. ICP-MS trace element analysis in serum and whole blood. PLoS ONE 2020, 15, e0233357. [Google Scholar] [CrossRef] [PubMed]
- MacDonell, S.O.; Miller, J.C.; Harper, M.J.; Reid, M.R.; Haszard, J.J.; Gibson, R.S.; Houghton, L.A. A comparison of methods for adjusting biomarkers of iron, zinc, and selenium status for the effect of inflammation in an older population: A case for interleukin 6. Am. J. Clin. Nutr. 2018, 107, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef]
- Visser, M.; Deeg, D.J.H.; Lips, P. Low Vitamin D and High Parathyroid Hormone Levels as Determinants of Loss of Muscle Strength and Muscle Mass (Sarcopenia): The Longitudinal Aging Study Amsterdam. J. Clin. Endocrinol. Metab. 2003, 88, 5766–5772. [Google Scholar] [CrossRef]
- Huynh, K.; Barlow, C.K.; Jayawardana, K.S.; Weir, J.M.; Mellett, N.A.; Cinel, M.; Magliano, D.J.; Shaw, J.E.; Drew, B.G.; Meikle, P.J. High-Throughput Plasma Lipidomics: Detailed Mapping of the Associations with Cardiometabolic Risk Factors. Cell Chem. Biol. 2019, 26, 71–84.e4. [Google Scholar] [CrossRef]
- Abshirini, M.; Cabrera, D.; Fraser, K.; Siriarchavatana, P.; Wolber, F.M.; Miller, M.R.; Tian, H.S.; Kruger, M.C. Mass Spectrometry-Based Metabolomic and Lipidomic Analysis of the Effect of High Fat/High Sugar Diet and GreenshellTM Mussel Feeding on Plasma of Ovariectomized Rats. Metabolites 2021, 11, 754. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics, Babraham Institute, Cambridge, UK. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 18 January 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. 2014. Available online: https://escholarship.org/uc/item/1h3515gn (accessed on 18 January 2024).
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef]
- Franzosa, E.A.; McIver, L.J.; Rahnavard, G.; Thompson, L.R.; Schirmer, M.; Weingart, G.; Lipson, K.S.; Knight, R.; Caporaso, J.G.; Segata, N.; et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 2018, 15, 962–968. [Google Scholar] [CrossRef]
- Truong, D.T.; Franzosa, E.A.; Tickle, T.L.; Scholz, M.; Weingart, G.; Pasolli, E.; Tett, A.; Huttenhower, C.; Segata, N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 2015, 12, 902–903. [Google Scholar] [CrossRef] [PubMed]
- Medini, D.; Donati, C.; Tettelin, H.; Masignani, V.; Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 2005, 15, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Suzek, B.E.; Wang, Y.; Huang, H.; McGarvey, P.B.; Wu, C.H.; the UniProt Consortium. UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 2015, 31, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Bruin, O.M.D.; Freinkman, E.; Breton, H.; Evans, A.M.; Miller, L.A.D.; Nguyen, U.; Adam, K.-P.; Doukhanine, E. Methods Appendix: OMNImetTM•GUT (ME-200) Enables at-Home Collection and Ambient Temperature Transport of Fecal Samples for Metabolomics (PD-WP-00066); DNA Genotek: Ottawa, ON, Canada, 2020. [Google Scholar]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. 2000, 24, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Bonachea, R. Gastrointestinal Symptom Rating Scale Constipation Scores Among Age Groups. Undergraduate Thesis, University of Florida, Gainesville, FL, USA, 2017. Available online: https://ufdcimages.uflib.ufl.edu/AA/00/06/21/96/00001/Bonachea_Roxana.pdf (accessed on 30 April 2024).
- Revicki, D.A.; Wood, M.; Wiklund, I.; Crawley, J. Reliability and validity of the gastrointestinal symptom rating scale in patients with gastroesophageal reflux disease. Qual. Life Res. 1997, 7, 75–83. [Google Scholar] [CrossRef]
- Lin, H.; Peddada, S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef]
- NZS 4304:2002; Management of Healthcare Waste. Standards New Zealand: Wellington, New Zealand, 2002.
- Mobley, A.R.; Jensen, J.D.; Maulding, M.K. Attitudes, Beliefs, and Barriers Related to Milk Consumption in Older, Low-Income Women. J. Nutr. Educ. Behav. 2014, 46, 554–559. [Google Scholar] [CrossRef]
- Tagliamonte, S.; Barone Lumaga, R.; De Filippis, F.; Valentino, V.; Ferracane, R.; Guerville, M.; Gandolfi, I.; Barbara, G.; Ercolini, D.; Vitaglione, P. Milk protein digestion and the gut microbiome influence gastrointestinal discomfort after cow milk consumption in healthy subjects. Food Res. Int. 2023, 170, 112953. [Google Scholar] [CrossRef]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults—Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef]
- Bus, A.E.M.; Worsley, A. Consumers’ sensory and nutritional perceptions of three types of milk. Public Health Nutr. 2003, 6, 201–208. [Google Scholar] [CrossRef]
- Jung, M.E.; Mistry, C.; Bourne, J.E.; Perrier, M.-J.; Martin Ginis, K.A.; Latimer-Cheung, A.E. A qualitative investigation of adults’ perceived benefits, barriers and strategies for consuming milk and milk products. Health Educ. J. 2015, 74, 364–378. [Google Scholar] [CrossRef]
- Poppitt, S.D. Cow’s Milk and Dairy Consumption: Is There Now Consensus for Cardiometabolic Health? Front. Nutr. 2020, 7, 574725. Available online: https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2020.574725/full (accessed on 7 November 2024). [CrossRef] [PubMed]
- Kiesswetter, E.; Stadelmaier, J.; Petropoulou, M.; Morze, J.; Grummich, K.; Roux, I.; Lay, R.; Himmelsbach, L.; Kussmann, M.; Roeger, C.; et al. Effects of Dairy Intake on Markers of Cardiometabolic Health in Adults: A Systematic Review with Network Meta-Analysis. Adv. Nutr. 2023, 14, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Taormina, V.M.; Unger, A.L.; Kraft, J. Full-fat dairy products and cardiometabolic health outcomes: Does the dairy-fat matrix matter? Front. Nutr. 2024, 11, 1386257. [Google Scholar] [CrossRef]
- Koloski, N.A.; Talley, N.J.; Boyce, P.M. Does psychological distress modulate functional gastrointestinal symptoms and health care seeking? A prospective, community Cohort study. Am. J. Gastroenterol. 2003, 98, 789–797. [Google Scholar] [CrossRef]
- Huang, T.-T.; Lai, J.-B.; Du, Y.-L.; Xu, Y.; Ruan, L.-M.; Hu, S.-H. Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Front. Genet. 2019, 10, 98. [Google Scholar] [CrossRef]
- Ma, L.; Yan, Y.; Webb, R.J.; Li, Y.; Mehrabani, S.; Xin, B.; Sun, X.; Wang, Y.; Mazidi, M. Psychological Stress and Gut Microbiota Composition: A Systematic Review of Human Studies. Neuropsychobiology 2023, 82, 247–262. [Google Scholar] [CrossRef]
- Matenchuk, B.A.; Mandhane, P.J.; Kozyrskyj, A.L. Sleep, circadian rhythm, and gut microbiota. Sleep Med. Rev. 2020, 53, 101340. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Lu, T.; Chen, W.; Yan, W.; Yuan, K.; Shi, L.; Liu, X.; Zhou, X.; Shi, J.; et al. The microbiota-gut-brain axis in sleep disorders. Sleep Med. Rev. 2022, 65, 101691. [Google Scholar] [CrossRef]
- Cremonini, F.; Camilleri, M.; Zinsmeister, A.R.; Herrick, L.M.; Beebe, T.; Talley, N.J. Sleep disturbances are linked to both upper and lower gastrointestinal symptoms in the general population. Neurogastroenterol. Motil. 2009, 21, 128–135. [Google Scholar] [CrossRef]
- Komada, Y.; Okajima, I.; Kuwata, T. The Effects of Milk and Dairy Products on Sleep: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 9440. [Google Scholar] [CrossRef] [PubMed]
- Hockey, M.; McGuinness, A.J.; Marx, W.; Rocks, T.; Jacka, F.N.; Ruusunen, A. Is dairy consumption associated with depressive symptoms or disorders in adults? A systematic review of observational studies. Crit. Rev. Food Sci. Nutr. 2020, 60, 3653–3668. [Google Scholar] [CrossRef] [PubMed]
- McGregor, R.A.; Poppitt, S.D. Milk protein for improved metabolic health: A review of the evidence. Nutr. Metab. 2013, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Zanini, B.; Simonetto, A.; Zubani, M.; Castellano, M.; Gilioli, G. The Effects of Cow-Milk Protein Supplementation in Elderly Population: Systematic Review and Narrative Synthesis. Nutrients 2020, 12, 2548. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef]
- Hanach, N.I.; McCullough, F.; Avery, A. The Impact of Dairy Protein Intake on Muscle Mass, Muscle Strength, and Physical Performance in Middle-Aged to Older Adults with or without Existing Sarcopenia: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 59–69. [Google Scholar] [CrossRef]
- Jiang, Y.; King, J.M.; Prinyawiwatkul, W. A review of measurement and relationships between food, eating behavior and emotion. Trends Food Sci. Technol. 2014, 36, 15–28. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Tajonar, K.; Foggi, G.; Mele, M.; Simitzis, P.; Mavrommatis, A.; Tsiplakou, E.; Habib, M.R.; Gonzalez-Ronquillo, M.; Toro-Mujica, P. Consumer attitudes toward dairy products from sheep and goats: A cross-continental perspective. J. Dairy Sci. 2022, 105, 8718–8733. [Google Scholar] [CrossRef]
- Mandolesi, S.; Naspetti, S.; Arsenos, G.; Caramelle-Holtz, E.; Latvala, T.; Martin-Collado, D.; Orsini, S.; Ozturk, E.; Zanoli, R. Consumer attitudes, motivations and barriers towards sheep and goat dairy products. Int. J. Gastron. Food Sci. 2024, 36, 100917. [Google Scholar] [CrossRef]
- Vesnaver, E.; Keller, H.H.; Payette, H.; Shatenstein, B. Dietary resilience as described by older community-dwelling adults from the NuAge study “if there is a will-there is a way!”. Appetite 2012, 58, 730–738. [Google Scholar] [CrossRef]
Milk Powder Dose | Protein Content | Fat Content | |||
---|---|---|---|---|---|
g/day | g/100 g | g/day | g/100 g | g/day | |
Bovine | 70 | 26.7 | 18.69 | 23.6 | 16.52 |
Caprine | 70 | 31.8 | 22.26 | 26.2 | 18.34 |
Ovine | 88 | 33.3 | 29.304 | 29.9 | 26.312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, S.P.; Miller, J.C.; McNabb, W.C.; Gearry, R.B.; Ware, L.M.; Mullaney, J.A.; Fraser, K.; Hort, J.; Bayer, S.B.; Frampton, C.M.A.; et al. Study Protocol for a Randomized Controlled Trial Investigating the Effects of the Daily Consumption of Ruminant Milk on Digestive Comfort and Nutrition in Older Women: The YUMMI Study. Nutrients 2024, 16, 4215. https://doi.org/10.3390/nu16234215
Ong SP, Miller JC, McNabb WC, Gearry RB, Ware LM, Mullaney JA, Fraser K, Hort J, Bayer SB, Frampton CMA, et al. Study Protocol for a Randomized Controlled Trial Investigating the Effects of the Daily Consumption of Ruminant Milk on Digestive Comfort and Nutrition in Older Women: The YUMMI Study. Nutrients. 2024; 16(23):4215. https://doi.org/10.3390/nu16234215
Chicago/Turabian StyleOng, Shien Ping, Jody C. Miller, Warren C. McNabb, Richard B. Gearry, Lara M. Ware, Jane A. Mullaney, Karl Fraser, Joanne Hort, Simone B. Bayer, Chris M. A. Frampton, and et al. 2024. "Study Protocol for a Randomized Controlled Trial Investigating the Effects of the Daily Consumption of Ruminant Milk on Digestive Comfort and Nutrition in Older Women: The YUMMI Study" Nutrients 16, no. 23: 4215. https://doi.org/10.3390/nu16234215
APA StyleOng, S. P., Miller, J. C., McNabb, W. C., Gearry, R. B., Ware, L. M., Mullaney, J. A., Fraser, K., Hort, J., Bayer, S. B., Frampton, C. M. A., & Roy, N. C. (2024). Study Protocol for a Randomized Controlled Trial Investigating the Effects of the Daily Consumption of Ruminant Milk on Digestive Comfort and Nutrition in Older Women: The YUMMI Study. Nutrients, 16(23), 4215. https://doi.org/10.3390/nu16234215