High Meat Intake and Ferritin Levels in Relation to Cardiovascular Risk Among Individuals with Diabetes in Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dietary Assessment: 24 h Dietary Recall
2.3. Ferritin and Health Marker Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Mongolia: Country Profile on Food and Agriculture; FAO: Rome, Italy, 2020; Available online: http://www.fao.org/countryprofiles/index/en/?iso3=MNG (accessed on 16 November 2024).
- Alimaa, T.; Ariunbileg, Z.; Dagvatseren, B. The consumption of traditional foods in Mongolia. Asia Pac. J. Public Health 2008, 20, 2–5. [Google Scholar] [PubMed]
- World Health Organization (WHO). Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/924120916X (accessed on 16 November 2024).
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. J. Am. Med. Assoc. 2017, 317, 912–924. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y. Meat consumption and risk of metabolic syndrome: Results from the Korean population and a meta-analysis of observational studies. Nutrients 2018, 10, 390. [Google Scholar] [CrossRef]
- Hu, P.; Ley, S.; Bhupathiraju, S.; Li, Y.; Wang, D. Associations of dietary, lifestyle, and sociodemographic factors with iron status in Chinese adults: A cross-sectional study in the China Health and Nutrition Survey. Am. J. Clin. Nutr. 2017, 105, 503–512. [Google Scholar] [CrossRef]
- Garcia-Casal, M.; Pasricha, S.; Martinez, R.; Lopez-Perez, L.; Peña-Rosas, J. Serum or plasma ferritin concentration as an index of iron deficiency and overload. Cochrane Database Syst. Rev. 2015, 5, CD011817. [Google Scholar] [CrossRef]
- Vona, R.; Gambardella, L.; Cittadini, C.; Straface, E.; Pietraforte, D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxidative Med. Cell. Longev. 2019, 2019, 8267234. [Google Scholar] [CrossRef] [PubMed]
- Kell, D.; Pretorius, E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014, 6, 748–773. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Park, J.; Choi, W.; Cho, A.; Lee, Y. Serum ferritin level is positively associated with insulin resistance and metabolic syndrome in postmenopausal women: A nationwide population-based study. Maturitas 2017, 103, 3–7. [Google Scholar] [CrossRef]
- Li, G.; Yu, W.; Yang, H.; Wang, X.; Ma, T.; Luo, X. Relationship between serum ferritin level and dyslipidemia in US adults based on data from the National Health and Nutrition Examination Surveys 2017 to 2020. Nutrients 2023, 15, 818. [Google Scholar] [CrossRef]
- Suárez-Ortegón, M.; Ensaldo-Carrasco, E.; Shi, T.; McLachlan, S.; Fernández-Real, J.; Wild, S. Ferritin, metabolic syndrome and its components: A systematic review and meta-analysis. Atherosclerosis 2018, 275, 97–106. [Google Scholar] [CrossRef]
- Stentz, F.; Mikhael, A.; Kineish, O.; Christman, J.; Sands, C. High protein diet leads to prediabetes remission and positive changes in incretins and cardiovascular risk factors. Nutr. Metab. Cardiovasc. Dis. 2020, 31, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Mdaki, K.; Larsen, T.; Wachal, A.; Schimelpfenig, M.; Weaver, L.; Dooyema, S.; Louwagie, E.; Baack, M. Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H681–H692. [Google Scholar] [CrossRef]
- Koperdanova, M.; Cullis, J. Interpreting raised serum ferritin levels. BMJ 2015, 351, h3692. [Google Scholar] [CrossRef] [PubMed]
- Linseisen, J.; Kesse, E.; Slimani, N.; Bueno-de-Mesquita, H.B.; Ocké, M.C.; Kumle, M.; Iraeta, M.D.; Gómez, P.M.; Janzon, L.; Stattin, P.; et al. Meat consumption in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts: Results from 24-h dietary recalls. Public Health Nutr. 2002, 5, 1243–1258. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, R.B.; Grundy, S.; Sullivan, L.M. Validation of the Framingham coronary heart disease prediction scores. Circulation 2001, 104, 2562–2567. [Google Scholar] [CrossRef] [PubMed]
- Fleming, D.J.; Tucker, K.L.; Jacques, P.F.; Dallal, G.E.; Wilson, P.W.; Wood, R.J. Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am. J. Clin. Nutr. 2002, 76, 1375–1384. [Google Scholar] [CrossRef]
- Gibson, S.; Ashwell, M. The association between red and processed meat consumption and iron intakes and status among British adults. Public Health Nutr. 2003, 6, 341–350. [Google Scholar] [CrossRef]
- Felipe, A.; Guadalupe, E.; Druso, P.; Carlos, M.; Pablo, S.; Oscar, C.; Luis, V.; Diego, M.; Jaime, R.; Inés, U.; et al. Serum ferritin is associated with metabolic syndrome and red meat consumption. Oxidative Med. Cell. Longev. 2015, 2015, 769739. [Google Scholar] [CrossRef]
- Jamieson, J.; Weiler, H.; Kuhnlein, H.; Egeland, G. Traditional food intake is correlated with iron stores in Canadian Inuit men. J. Nutr. 2012, 142, 764–770. [Google Scholar] [CrossRef]
- Kado, S.; Nagase, T.; Nagata, N. Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus. Acta Diabetol. 1999, 36, 67–72. [Google Scholar] [CrossRef]
- Vinagre, I.; Sánchez-Quesada, J.L.; Sánchez-Hernández, J.; Santos, D.; Ordoñez-Llanos, J.; De Leiva, A.; Pérez, A. Inflammatory biomarkers in type 2 diabetic patients: Effect of glycemic control and impact of LDL subfraction phenotype. Cardiovasc. Diabetol. 2014, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Mainous, A.; Wells, B.; Everett, C.; Gill, J.; King, D. Association of ferritin and lipids with C-reactive protein. Am. J. Cardiol. 2004, 93, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Lee, M.; Kang, J. Reaction of ferritin with hydrogen peroxide induces lipid peroxidation. BMB Rep. 2010, 43, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Khandpur, N.; Desjardins, C.; Wang, L.; Monteiro, C.; Rossato, S.; Fung, T.; Manson, J.; Willett, W.; Rimm, E.; et al. Ultra-Processed Food Consumption and Risk of Type 2 Diabetes: Three Large Prospective U.S. Cohort Studies. Diabetes Care 2023. [CrossRef]
- Liu, S.; Manson, J. Dietary carbohydrates, physical inactivity, obesity, and the ‘metabolic syndrome’ as predictors of coronary heart disease. Curr. Opin. Lipidol. 2001, 12, 395–404. [Google Scholar] [CrossRef]
- Currenti, W.; Godos, J.; Alanazi, A.; Grosso, G.; Cincione, R.; La Vignera, S.; Buscemi, S.; Galvano, F. Dietary Fats and Cardio-Metabolic Outcomes in a Cohort of Italian Adults. Nutrients 2022, 14, 4294. [Google Scholar] [CrossRef]
Variables | Meat Intake Category | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Total (n = 171) | T1, Low (n = 59) | T2, Middle (n = 59) | T3, High (n = 53) | Overall | T1 vs. T2 | T2 vs. T3 | T1 vs. T3 | |
Age (year) | 56.68 ± 10.51 | 58.35 ± 10.15 | 55.08 ± 10.9 | 56.6 ± 10.37 | 0.240 | 0.09 | 0.45 | 0.36 |
Gender, male, n (%) | 63 (36.8%) | 22 (37.3%) | 22 (37.3%) | 19 (35.8%) | 0.984 | 1 | 0.87 | 0.87 |
Education (below bachelor) n (%) | 103 (60.3%) | 38 (64.5%) | 31 (52.6%) | 34 (64.2%) | 0.245 | 0.19 | 0.21 | 0.97 |
Married or cohabiting, n (%) | 131 (76.6%) | 41 (69.5%) | 49 (83.1%) | 41 (77.4%) | 0.218 | 0.08 | 0.44 | 0.34 |
Smoking, yes, n (%) | 42 (24.6%) | 16 (27.1%) | 13 (22%) | 13 (24.5%) | 0.814 | 0.52 | 0.75 | 0.75 |
Alcohol, yes, n (%) | 45 (30.4%) | 12 (26.1%) | 12 (23.5%) | 21 (41.2%) | 0.114 | 0.77 | 0.05 | 0.11 |
Diet, no, n (%) | 94 (56%) | 28 (49.1%) | 37 (63.8%) | 29 (54.7%) | 0.278 | 0.11 | 0.33 | 0.55 |
Exercise, no, n (%) | 60 (35.3%) | 19 (32.8%) | 20 (33.9%) | 21 (39.6%) | 0.641 | 0.59 | 0.53 | 0.49 |
Complication, n (%) | 70 (41%) | 28 (47.5%) | 21 (35.6%) | 21 (39.6%) | 0.826 | 0.19 | 0.66 | 0.40 |
Duration of diabetes | 9.63 ± 7.19 | 10.07 ± 8.11 | 8.68 ± 6.71 | 9.49 ± 6.57 | 0.317 | 0.93 | 0.45 | 0.57 |
Variables | Meat Intake Category | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Total (n = 171) | T1, Low (n = 59) | T2, Middle (n = 59) | T3, High (n = 53) | Overall | T1 vs. T2 | T2 vs. T3 | T1 vs. T3 | |
Meat intake max | 227.6 ± 94.62 | 163.89 ± 54.29 | 234.74 ± 89.68 | 290.56 ± 91.15 | 0.001 | 0.001 | 0.001 | 0.001 |
Meat intake mean 3 days | 136.57 ± 71.54 | 64.97 ± 19.54 | 132.76 ± 26.21 | 220.5 ± 50.27 | 0.001 | 0.001 | 0.001 | 0.001 |
BMI | 29.62 ± 4.98 | 29.63 ± 5.42 | 29.88 ± 4.5 | 29.36 ± 5.1 | 0.869 | 0.805 | 0.58 | 0.79 |
SPB (mm.Hg) | 128.86 ± 14.22 | 128.74 ± 13.65 | 128.74 ± 11.21 | 129.13 ± 17.69 | 0.986 | 0.99 | 0.88 | 0.89 |
DPB (mm.Hg) | 84.55 ± 11.17 | 85.76 ± 11.4 | 84.56 ± 10.11 | 83.31 ± 12.1 | 0.582 | 0.59 | 0.58 | 0.32 |
HbA1c (%) | 8.73 ± 2.45 | 8.79 ± 2.53 | 8.71 ± 2.42 | 8.69 ± 2.43 | 0.976 | 0.86 | 0.97 | 0.84 |
Total cholesterol (mmol/L) | 5.37 ± 1.12 | 5.38 ± 1.12 | 5.32 ± 0.99 | 5.43 ± 1.27 | 0.878 | 0.77 | 0.61 | 0.81 |
TG (mmol/L) | 2.08 ± 1.51 | 2.13 ± 1.4 | 2.1 ± 1.97 | 2.01 ± 1.13 | 0.925 | 0.92 | 0.79 | 0.64 |
HDL (mmol/L) | 1.25 ± 0.22 | 1.26 ± 0.21 | 1.27 ± 0.2 | 1.24 ± 0.24 | 0.75 | 0.77 | 0.46 | 0.64 |
LDL (mmol/L) | 3.43 ± 0.98 | 3.41 ± 0.94 | 3.35 ± 0.95 | 3.51 ± 1.05 | 0.749 | 0.8 | 0.47 | 0.61 |
RBC | 4.91 ± 0.52 | 4.81 ± 0.47 | 4.99 ± 0.6 | 4.95 ± 0.48 | 0.278 | 0.14 | 0.74 | 0.19 |
HGB | 14.22 ± 1.66 | 13.99 ± 1.61 | 14.39 ± 1.93 | 14.31 ± 1.46 | 0.503 | 0.302 | 0.82 | 0.33 |
HCT | 41.75 ± 4.52 | 41.2 ± 4.23 | 42.08 ± 5.26 | 42.02 ± 4.13 | 0.61 | 0.404 | 0.95 | 0.36 |
Ferritin | 241.9 ± 201.9 | 119.6 ± 172.1 | 254.0 ± 224.2 | 275.6 ± 202.1 | 0.118 | 0.14 | 0.59 | 0.34 |
Homocysteine | 11.76 ± 5.17 | 11.86 ± 5.72 | 12.02 ± 5.18 | 11.37 ± 4.64 | 0.851 | 0.89 | 0.56 | 0.68 |
IL-6 | 4.36 ± 5.32 | 3.82 ± 3.71 | 4.99 ± 6.66 | 4.25 ± 5.21 | 0.484 | 0.23 | 0.51 | 0.61 |
CRP | 1.2 ± 4.38 | 2 ± 7.08 | 0.87 ± 1.82 | 0.68 ± 1.32 | 0.218 | 1.33 | 0.29 | 0.58 |
sTFR | 14.83 ± 6.87 | 14.49 ± 4.93 | 14.88 ± 5.71 | 15.13 ± 9.47 | 0.895 | 0.705 | 0.86 | 0.66 |
RET He | 28.4 ± 2.08 | 28.42 ± 2.17 | 28.11 ± 2.52 | 28.68 ± 1.37 | 0.397 | 0.49 | 0.16 | 0.48 |
Total FRS | 12.43 ± 4.41 | 12.74 ± 4.41 | 11.89 ± 4.57 | 12.69 ± 4.25 | 0.511 | 0.304 | 0.34 | 0.95 |
Variables | Ferritin Category | p Value | ||
---|---|---|---|---|
Total (n = 171) | Normal (n = 102) | Elevated (n = 69) | ||
Age (year) | 56.68 ± 10.51 | 55.97 ± 11.4 | 57.7 ± 9 | 0.282 |
Gender, male, n (%) | 63 (36.8%) | 49 (48%) | 14 (20.3%) | 0.0001 |
Education (below bachelor) n (%) | 103 (60.3%) | 57 (55.9%) | 46 (66.7%) | 0.456 |
Married or cohabiting, n (%) | 131 (76.6%) | 82 (80.4%) | 49 (71%) | 0.197 |
Smoking, yes, n (%) | 42 (24.6%) | 28 (27.5%) | 14 (20.3%) | 0.366 |
Alcohol, yes, n (%) | 45 (30.4%) | 29 (33%) | 16 (26.7%) | 0.469 |
Diet, no, n (%) | 94 (56%) | 57 (57%) | 37 (54.4%) | 0.754 |
Exercise, no, n (%) | 60 (35.3%) | 35 (34.3%) | 25 (36.8%) | 0.687 |
Complication, number, n (%) | 70 (40.9%) | 43 (42.2%) | 27 (39.1%) | 0.745 |
Duration of diabetes | 9.63 ± 7.19 | 10.2 ± 7.68 | 8.7 ± 6.33 | 0.199 |
Meat intake max | 227.6 ± 94.62 | 223.72 ± 91.95 | 233.33 ± 98.84 | 0.516 |
Meat intake mean 3 days | 136.57 ± 71.54 | 131.24 ± 69.53 | 144.44 ± 74.22 | 0.238 |
BMI | 29.62 ± 4.98 | 29.7 ± 4.86 | 29.51 ± 5.19 | 0.817 |
SPB (mm.Hg) | 128.86 ± 14.22 | 128.89 ± 15.91 | 128.82 ± 11.38 | 0.974 |
DPB (mm.Hg) | 84.55 ± 11.17 | 84.67 ± 11.39 | 84.37 ± 10.95 | 0.877 |
HbA1c | 8.73 ± 2.45 | 8.6 ± 2.42 | 8.9 ± 2.5 | 0.411 |
Total cholesterol (mmol/L) | 5.37 ± 1.12 | 5.2 ± 0.94 | 5.63 ± 1.31 | 0.012 |
TG (mmol/L) | 2.08 ± 1.51 | 2.06 ± 1.24 | 2.11 ± 1.87 | 0.849 |
HDL (mmol/L) | 1.25 ± 0.22 | 1.23 ± 0.18 | 1.29 ± 0.26 | 0.133 |
LDL (mmol/L) | 3.43 ± 0.98 | 3.22 ± 0.84 | 3.75 ± 1.09 | 0.002 |
RBC | 4.91 ± 0.52 | 4.94 ± 0.55 | 4.87 ± 0.47 | 0.455 |
HGB | 14.22 ± 1.66 | 14.1 ± 1.77 | 14.3 ± 1.49 | 0.478 |
HCT | 41.75 ± 4.52 | 41.5 ± 4.69 | 42 ± 4.22 | 0.618 |
Homocysteine | 11.76 ± 5.17 | 12.42 ± 5.43 | 10.68 ± 4.55 | 0.077 |
IL-6 | 4.36 ± 5.32 | 4.35 ± 5.39 | 4.36 ± 5.27 | 0.995 |
CRP | 1.2 ± 4.38 | 0.8 ± 1.82 | 1.79 ± 6.5 | 0.147 |
sTFR | 14.83 ± 6.87 | 14.71 ± 6 | 15.02 ± 8.05 | 0.778 |
RET He | 28.4 ± 2.08 | 28.05 ± 2.49 | 28.87 ± 1.23 | 0.016 |
Total FRS | 12.43 ± 4.41 | 11.4 ± 4.32 | 13.97 ± 4.1 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galsanjigmed, N.; Nordog, M.; Khasag, A.; Tsogbadrakh, O.; Byambasukh, O.; Altangerel, O. High Meat Intake and Ferritin Levels in Relation to Cardiovascular Risk Among Individuals with Diabetes in Mongolia. Nutrients 2024, 16, 4245. https://doi.org/10.3390/nu16234245
Galsanjigmed N, Nordog M, Khasag A, Tsogbadrakh O, Byambasukh O, Altangerel O. High Meat Intake and Ferritin Levels in Relation to Cardiovascular Risk Among Individuals with Diabetes in Mongolia. Nutrients. 2024; 16(23):4245. https://doi.org/10.3390/nu16234245
Chicago/Turabian StyleGalsanjigmed, Narkhajid, Munkhuchral Nordog, Altaisaikhan Khasag, Odgerel Tsogbadrakh, Oyuntugs Byambasukh, and Otgonbat Altangerel. 2024. "High Meat Intake and Ferritin Levels in Relation to Cardiovascular Risk Among Individuals with Diabetes in Mongolia" Nutrients 16, no. 23: 4245. https://doi.org/10.3390/nu16234245
APA StyleGalsanjigmed, N., Nordog, M., Khasag, A., Tsogbadrakh, O., Byambasukh, O., & Altangerel, O. (2024). High Meat Intake and Ferritin Levels in Relation to Cardiovascular Risk Among Individuals with Diabetes in Mongolia. Nutrients, 16(23), 4245. https://doi.org/10.3390/nu16234245