Associations of Dietary and Lifestyle Components with Atrial Fibrillation
Abstract
:1. Introduction
2. Lifestyle
2.1. Physical Activity
2.2. Smoking Tobacco
2.3. Sleep
2.3.1. Hypoxia
2.3.2. Intrathoracic Pressure Changes
2.3.3. Cardiac Autonomic Nervous System Hyperactivity
2.3.4. Systemic Inflammation and Oxydative Stress
2.4. Air Pollution
3. Diet
3.1. Dietary Patterns
3.2. Coffee
3.3. Alcohol
4. New-Onset AF Risk Assessment Based on Lifestyle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498, Erratum in Eur. Heart J. 2021, 42, 4194. [Google Scholar] [CrossRef]
- Al-Khatib, S.M.; Allen LaPointe, N.M.; Chatterjee, R.; Crowley, M.J.; Dupre, M.E.; Kong, D.F.; Lopes, R.D.; Povsic, T.J.; Raju, S.S.; Shah, B.; et al. Rate- and rhythm-control therapies in patients with atrial fibrillation: A systematic review. Ann. Intern. Med. 2014, 160, 760–773. [Google Scholar] [CrossRef]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke 2021, 16, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Westerman, S.; Wenger, N. Gender Differences in Atrial Fibrillation: A Review of Epidemiology, Management, and Outcomes. Curr. Cardiol. Rev. 2019, 15, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Brundel, B.J.J.M.; Ai, X.; Hills, M.T.; Kuipers, M.F.; Lip, G.Y.H.; de Groot, N.M.S. Atrial fibrillation. Nat. Rev. Dis. Primers 2022, 8, 21. [Google Scholar] [CrossRef]
- Alonso, A.; Almuwaqqat, Z.; Chamberlain, A. Mortality in atrial fibrillation. Is it changing? Trends Cardiovasc. Med. 2021, 31, 469–473. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Borlaug, B.A.; Gersh, B.J. Management of Atrial Fibrillation Across the Spectrum of Heart Failure with Preserved and Reduced Ejection Fraction. Circulation 2022, 146, 339–357. [Google Scholar] [CrossRef]
- Ren, J.; Yang, Y.; Zhu, J.; Wu, S.; Wang, J.; Zhang, H.; Shao, X.; Lyu, S. Type of atrial fibrillation and outcomes in patients without oral anticoagulants. Clin. Cardiol. 2021, 44, 168–175. [Google Scholar] [CrossRef]
- Wada, H.; Miyauchi, K.; Suwa, S.; Miyazaki, S.; Hayashi, H.; Yamashiro, K.; Tanaka, R.; Nishizaki, Y.; Nojiri, S.; Sumiyoshi, M.; et al. Impact of atrial fibrillation type (paroxysmal vs. non-paroxysmal) on long-term clinical outcomes: The RAFFINE registry subanalysis. J. Cardiol. 2023, 81, 450–455. [Google Scholar] [CrossRef]
- Haywood, G.; Davies, E. Atrial fibrillation: Relieving symptoms and managing risk. Clin. Med. 2013, 13, 607–609. [Google Scholar] [CrossRef]
- Walker, M.; Patel, P.; Kwon, O.; Koene, R.J.; Duprez, D.A.; Kwon, Y. Atrial Fibrillation and Hypertension: “Quo Vadis”. Curr. Hypertens. Rev. 2022, 18, 39–53. [Google Scholar] [CrossRef]
- Vizzardi, E.; Curnis, A.; Latini, M.G.; Salghetti, F.; Rocco, E.; Lupi, L.; Rovetta, R.; Quinzani, F.; Bonadei, I.; Bontempi, L.; et al. Risk factors for atrial fibrillation recurrence: A literature review. J. Cardiovasc. Med. 2014, 15, 235–253. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Hagens, V.E.; Bosker, H.A.; Kingma, J.H.; Kamp, O.; Kingma, T.; Said, S.A.; Darmanata, J.I.; Timmermans, A.J.; Tijssen, J.G.; et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N. Engl. J. Med. 2002, 347, 1834–1840. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients with Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2019, 74, 104–132. [Google Scholar] [CrossRef]
- Rillig, A.; Borof, K.; Breithardt, G.; Camm, A.J.; Crijns, H.J.G.M.; Goette, A.; Kuck, K.H.; Metzner, A.; Vardas, P.; Vettorazzi, E.; et al. Early Rhythm Control in Patients With Atrial Fibrillation and High Comorbidity Burden. Circulation 2022, 146, 836–847. [Google Scholar] [CrossRef]
- Palmer, C. Anticoagulation for Stroke Prevention in Atrial Fibrillation. Nurs. Clin. N. Am. 2023, 58, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Dürschmied, D.; Bode, C. Interdisziplinäre Aspekte der oralen Antikoagulation mit NOAKs bei Vorhofflimmern [Interdisciplinary aspects of oral anticoagulation with NOACs in atrial fibrillation]. Dtsch. Med. Wochenschr. 2021, 146, S1. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Nattel, S.; Kalman, J.M.; Sanders, P. Modifiable Risk Factors and Atrial Fibrillation. Circulation 2017, 136, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Schotten, U.; Mahajan, R.; Antic, N.A.; Hatem, S.N.; Pathak, R.K.; Hendriks, J.M.; Kalman, J.M.; Sanders, P. Novel mechanisms in the pathogenesis of atrial fibrillation: Practical applications. Eur. Heart J. 2016, 37, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Drca, N.; Wolk, A.; Jensen-Urstad, M.; Larsson, S.C. Physical activity is associated with a reduced risk of atrial fibrillation in middle-aged and elderly women. Heart 2015, 101, 1627–1630. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Furberg, C.D.; Psaty, B.M.; Siscovick, D. Physical activity and incidence of atrial fibrillation in older adults: The cardiovascular health study. Circulation 2008, 118, 800–807. [Google Scholar] [CrossRef]
- Drca, N.; Wolk, A.; Jensen-Urstad, M.; Larsson, S.C. Atrial fibrillation is associated with different levels of physical activity levels at different ages in men. Heart 2014, 100, 1037–1042. [Google Scholar] [CrossRef]
- Morseth, B.; Graff-Iversen, S.; Jacobsen, B.K.; Jørgensen, L.; Nyrnes, A.; Thelle, D.S.; Vestergaard, P.; Løchen, M.L. Physical activity, resting heart rate, and atrial fibrillation: The Tromsø Study. Eur. Heart J. 2016, 37, 2307–2313. [Google Scholar] [CrossRef]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.W.; Kim, S.H.; Kang, S.H.; Kim, H.J.; Yoon, C.H.; Youn, T.J.; Chae, I.H. Mortality reduction with physical activity in patients with and without cardiovascular disease. Eur. Heart J. 2019, 40, 3547–3555. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.D.; Linz, D.; Mishima, R.; Kadhim, K.; Gallagher, C.; Middeldorp, M.E.; Verdicchio, C.V.; Hendriks, J.M.L.; Lau, D.H.; La Gerche, A.; et al. Association between physical activity and risk of incident arrhythmias in 402 406 individuals: Evidence from the UK Biobank cohort. Eur. Heart J. 2020, 41, 1479–1486. [Google Scholar] [CrossRef]
- Jin, M.N.; Yang, P.S.; Song, C.; Yu, H.T.; Kim, T.H.; Uhm, J.S.; Sung, J.H.; Pak, H.N.; Lee, M.H.; Joung, B. Physical Activity and Risk of Atrial Fibrillation: A Nationwide Cohort Study in General Population. Sci. Rep. 2019, 9, 13270. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, E.L.; Sturgess, J.E.; O’Keefe, J.H.; Gupta, S.; Lavie, C.J. Prevention and Treatment of Atrial Fibrillation via Risk Factor Modification. Am. J. Cardiol. 2021, 160, 46–52. [Google Scholar] [CrossRef]
- Zhu, W.G.; Wan, R.; Din, Y.; Xu, Z.; Yang, X.; Hong, K. Sex Differences in the Association Between Regular Physical Activity and Incident Atrial Fibrillation: A Meta-analysis of 13 Prospective Studies. Clin. Cardiol. 2016, 39, 360–367. [Google Scholar] [CrossRef]
- Mohanty, S.; Mohanty, P.; Tamaki, M.; Natale, V.; Gianni, C.; Trivedi, C.; Gokoglan, Y.; DIBiase, L.; Natale, A. Differential Association of Exercise Intensity With Risk of Atrial Fibrillation in Men and Women: Evidence from a Meta-Analysis. J. Cardiovasc. Electrophysiol. 2016, 27, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Osbak, P.S.; Mourier, M.; Kjaer, A.; Henriksen, J.H.; Kofoed, K.F.; Jensen, G.B. A randomized study of the effects of exercise training on patients with atrial fibrillation. Am. Heart J. 2011, 162, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Giacomantonio, N.B.; Bredin, S.S.; Foulds, H.J.; Warburton, D.E. A systematic review of the health benefits of exercise rehabilitation in persons living with atrial fibrillation. Can. J. Cardiol. 2013, 29, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Skielboe, A.K.; Bandholm, T.Q.; Hakmann, S.; Mourier, M.; Kallemose, T.; Dixen, U. Cardiovascular exercise and burden of arrhythmia in patients with atrial fibrillation—A randomized controlled trial. PLoS ONE. 2017, 12, e0170060. [Google Scholar] [CrossRef]
- Herber, E.; Aeschbacher, S.; Coslovsky, M.; Schwendinger, F.; Hennings, E.; Gasser, A.; Di Valentino, M.; Rigamonti, E.; Reichlin, T.; Rodondi, N.; et al. Physical activity and brain health in patients with atrial fibrillation. Eur. J. Neurol. 2023, 30, 567–577. [Google Scholar] [CrossRef]
- Smart, N.A.; King, N.; Lambert, J.D.; Pearson, M.J.; Campbell, J.L.; Risom, S.S.; Taylor, R.S. Exercise-based cardiac rehabilitation improves exercise capacity and health-related quality of life in people with atrial fibrillation: A systematic review and meta-analysis of randomised and non-randomised trials. Open Heart 2018, 5, e000880. [Google Scholar] [CrossRef]
- Reed, J.L.; Terada, T.; Chirico, D.; Prince, S.A.; Pipe, A.L. The Effects of Cardiac Rehabilitation in Patients With Atrial Fibrillation: A Systematic Review. Can. J. Cardiol. 2018, 34 (Suppl. 2), S284–S295. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.A.; Arthur, H.M.; Canadian Association of Cardiac Rehabilitation Guidelines Writing Group. Canadian guidelines for cardiac rehabilitation and cardiovascular disease prevention, second edition, 2004: Executive summary. Can. J. Cardiol. 2005, 21 (Suppl. D), 3D–19D. [Google Scholar]
- Malmo, V.; Nes, B.M.; Amundsen, B.H.; Tjonna, A.E.; Stoylen, A.; Rossvoll, O.; Wisloff, U.; Loennechen, J.P. Aerobic Interval Training Reduces the Burden of Atrial Fibrillation in the Short Term: A Randomized Trial. Circulation 2016, 133, 466–473. [Google Scholar] [CrossRef]
- Centurión, O.A.; Candia, J.C.; Scavenius, K.E.; García, L.B.; Torales, J.M.; Miño, L.M. The Association Between Atrial Fibrillation and Endurance Physical Activity: How Much is too Much? J. Atr. Fibrillation 2019, 12, 2167. [Google Scholar] [CrossRef]
- Wilhelm, M.; Roten, L.; Tanner, H.; Wilhelm, I.; Schmid, J.P.; Saner, H. Atrial remodeling, autonomic tone, and lifetime training hours in nonelite athletes. Am. J. Cardiol. 2011, 108, 580–585. [Google Scholar] [CrossRef]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef]
- Lau, D.H.; Linz, D.; Schotten, U.; Mahajan, R.; Sanders, P.; Kalman, J.M. Pathophysiology of Paroxysmal and Persistent Atrial Fibrillation: Rotors, Foci and Fibrosis. Heart Lung Circ. 2017, 26, 887–893. [Google Scholar] [CrossRef]
- Alessi, R.; Nusynowitz, M.; Abildskov, J.A.; Moe, G.K. Nonuniform distribution of vagal effects on the atrial refractory period. Am. J. Physiol. 1958, 194, 406–410. [Google Scholar] [CrossRef]
- Guasch, E.; Benito, B.; Qi, X.; Cifelli, C.; Naud, P.; Shi, Y.; Mighiu, A.; Tardif, J.C.; Tadevosyan, A.; Chen, Y.; et al. Atrial fibrillation promotion by endurance exercise: Demonstration and mechanistic exploration in an animal model. J. Am. Coll. Cardiol. 2013, 62, 68–77. [Google Scholar] [CrossRef]
- Aizer, A.; Gaziano, J.M.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Albert, C.M. Relation of vigorous exercise to risk of atrial fibrillation. Am. J. Cardiol. 2009, 103, 1572–1577. [Google Scholar] [CrossRef] [PubMed]
- Petrungaro, M.; Fusco, L.; Cavarretta, E.; Scarà, A.; Borrelli, A.; Romano, S.; Petroni, R.; D’Ascenzi, F.; Sciarra, L. Long-Term Sports Practice and Atrial Fibrillation: An Updated Review of a Complex Relationship. J. Cardiovasc. Dev. Dis. 2023, 10, 218. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, A.D.; Keith, B.A.; Abernathy, K.E.; Zhang, J.; Brzezinski, W.A. Long-Term, Competitive Swimming and the Association with Atrial Fibrillation. Sports Med. Open 2016, 2, 42. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.M.; Walter, S.J.; Hayen, A.; Mallon, W.J.; Heijmans, J.; Studdert, D.M. Survival of the fittest: Retrospective cohort study of the longevity of Olympic medallists in the modern era. BMJ 2012, 345, e8308. [Google Scholar] [CrossRef] [PubMed]
- Marijon, E.; Tafflet, M.; Antero-Jacquemin, J.; El Helou, N.; Berthelot, G.; Celermajer, D.S.; Bougouin, W.; Combes, N.; Hermine, O.; Empana, J.P.; et al. Mortality of French participants in the Tour de France (1947–2012). Eur. Heart J. 2013, 34, 3145–3150. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Seidu, S.; Mäkikallio, T.H.; Dey, R.S.; Laukkanen, J.A. Physical activity and risk of atrial fibrillation in the general population: Meta-analysis of 23 cohort studies involving about 2 million participants. Eur. J. Epidemiol. 2021, 36, 259–274. [Google Scholar] [CrossRef]
- Barua, R.S.; Ambrose, J.A. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Zaid, M.; Miura, K.; Okayama, A.; Nakagawa, H.; Sakata, K.; Saitoh, S.; Okuda, N.; Yoshita, K.; Choudhury, S.R.; Rodriguez, B.; et al. Associations of High-Density Lipoprotein Particle and High-Density Lipoprotein Cholesterol With Alcohol Intake, Smoking, and Body Mass Index—The INTERLIPID Study. Circ. J. 2018, 82, 2557–2565. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsen, L.; Rosengren, A.; Lappas, G. Hospitalizations for atrial fibrillation in the general male population: Morbidity and risk factors. J. Intern. Med. 2001, 250, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, H.; Zhang, L.; Pourrier, M.; Yang, B.; Nattel, S.; Wang, Z. Nicotine is a potent blocker of the cardiac A-type K(+) channels. Effects on cloned Kv4.3 channels and native transient outward current. Circulation 2000, 102, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Goette, A.; Lendeckel, U.; Kuchenbecker, A.; Bukowska, A.; Peters, B.; Klein, H.U.; Huth, C.; Röcken, C. Cigarette smoking induces atrial fibrosis in humans via nicotine. Heart 2007, 93, 1056–1063. [Google Scholar] [CrossRef]
- Shan, H.; Zhang, Y.; Lu, Y.; Zhang, Y.; Pan, Z.; Cai, B.; Wang, N.; Li, X.; Feng, T.; Hong, Y.; et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc. Res. 2009, 83, 465–472. [Google Scholar] [CrossRef]
- Haass, M.; Kübler, W. Nicotine and sympathetic neurotransmission. Cardiovasc. Drugs Ther. 1997, 10, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Jacob, P., 3rd; Jones, R.T.; Rosenberg, J. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. J. Pharmacol. Exp. Ther. 1982, 221, 368–372. [Google Scholar]
- Bowman, T.S.; Gaziano, J.M.; Buring, J.E.; Sesso, H.D. A prospective study of cigarette smoking and risk of incident hypertension in women. J. Am. Coll. Cardiol. 2007, 50, 2085–2092. [Google Scholar] [CrossRef]
- Halperin, R.O.; Gaziano, J.M.; Sesso, H.D. Smoking and the risk of incident hypertension in middle-aged and older men. Am. J. Hypertens. 2008, 21, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Dochi, M.; Sakata, K.; Oishi, M.; Tanaka, K.; Kobayashi, E.; Suwazono, Y. Smoking as an independent risk factor for hypertension: A 14-year longitudinal study in male Japanese workers. Tohoku. J. Exp. Med. 2009, 217, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Sen, A.; ó’Hartaigh, B.; Janszky, I.; Romundstad, P.R.; Tonstad, S.; Vatten, L.J. Resting heart rate and the risk of cardiovascular disease, total cancer, and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 504–517. [Google Scholar] [CrossRef]
- Emdin, C.A.; Anderson, S.G.; Salimi-Khorshidi, G.; Woodward, M.; MacMahon, S.; Dwyer, T.; Rahimi, K. Usual blood pressure, atrial fibrillation and vascular risk: Evidence from 4.3 million adults. Int. J. Epidemiol. 2017, 46, 162–172. [Google Scholar] [CrossRef]
- European Heart Rhythm Association European Association for Cardio-Thoracic Surgery; Camm, A.J.; Kirchhof, P.; Lip, G.Y.; Schotten, U.; Savelieva, I.; Ernst, S.; Van Gelder, I.C.; Al-Attar, N.; Hindricks, G.; et al. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 2010, 31, 2369–2429. [Google Scholar] [CrossRef]
- Albertsen, I.E.; Rasmussen, L.H.; Lane, D.A.; Overvad, T.F.; Skjøth, F.; Overvad, K.; Lip, G.Y.; Larsen, T.B. The impact of smoking on thromboembolism and mortality in patients with incident atrial fibrillation: Insights from the Danish Diet, Cancer, and Health study. Chest 2014, 145, 559–566. [Google Scholar] [CrossRef]
- Auer, R.; Concha-Lozano, N.; Jacot-Sadowski, I.; Cornuz, J.; Berthet, A. Heat-Not-Burn Tobacco Cigarettes: Smoke by Any Other Name. JAMA Intern. Med. 2017, 177, 1050–1052. [Google Scholar] [CrossRef]
- Dixit, S.; Pletcher, M.J.; Vittinghoff, E.; Imburgia, K.; Maguire, C.; Whitman, I.R.; Glantz, S.A.; Olgin, J.E.; Marcus, G.M. Secondhand smoke and atrial fibrillation: Data from the Health eHeart Study. Heart Rhythm. 2016, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; White, D.P. Obstructive sleep apnoea. Lancet 2002, 360, 237–245. [Google Scholar] [CrossRef]
- Linz, D.; McEvoy, R.D.; Cowie, M.R.; Somers, V.K.; Nattel, S.; Lévy, P.; Kalman, J.M.; Sanders, P. Associations of Obstructive Sleep Apnea with Atrial Fibrillation and Continuous Positive Airway Pressure Treatment: A Review. JAMA Cardiol. 2018, 3, 532–540. [Google Scholar] [CrossRef]
- Riaz, S.; Bhatti, H.; Sampat, P.J.; Dhamoon, A. The Converging Pathologies of Obstructive Sleep Apnea and Atrial Arrhythmias. Cureus 2020, 12, e9388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, Y.; Po, S.S. Obstructive Sleep Apnoea and Atrial Fibrillation. Arrhythm. Electrophysiol. Rev. 2015, 4, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Pépin, J.L.; Lévy, P. Physiopathologie du risque cardio-vasculaire au cours du syndrome d’apnées du sommeil (SAS) [Pathophysiology of cardiovascular risk in sleep apnea syndrome (SAS)]. Rev. Neurol. 2002, 158, 785–797. [Google Scholar] [PubMed]
- Guggisberg, A.G.; Hess, C.W.; Mathis, J. The significance of the sympathetic nervous system in the pathophysiology of periodic leg movements in sleep. Sleep 2007, 30, 755–766. [Google Scholar] [CrossRef]
- Dewland, T.A.; Vittinghoff, E.; Mandyam, M.C.; Heckbert, S.R.; Siscovick, D.S.; Stein, P.K.; Psaty, B.M.; Sotoodehnia, N.; Gottdiener, J.S.; Marcus, G.M. Atrial ectopy as a predictor of incident atrial fibrillation: A cohort study. Ann. Intern. Med. 2013, 159, 721–728. [Google Scholar] [CrossRef]
- Virolainen, J.; Ventilä, M.; Turto, H.; Kupari, M. Effect of negative intrathoracic pressure on left ventricular pressure dynamics and relaxation. J. Appl. Physiol 1995, 79, 455–460. [Google Scholar] [CrossRef]
- Virolainen, J.; Ventilä, M.; Turto, H.; Kupari, M. Influence of negative intrathoracic pressure on right atrial and systemic venous dynamics. Eur. Heart J. 1995, 16, 1293–1299. [Google Scholar] [CrossRef]
- Chang, S.L.; Chen, Y.C.; Chen, Y.J.; Wangcharoen, W.; Lee, S.H.; Lin, C.I.; Chen, S.A. Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins. Heart 2007, 93, 82–88. [Google Scholar] [CrossRef]
- Lombardi, C.; Faini, A.; Mariani, D.; Gironi, F.; Castiglioni, P.; Parati, G. Nocturnal Arrhythmias and Heart-Rate Swings in Patients With Obstructive Sleep Apnea Syndrome Treated With Beta Blockers. J. Am. Heart Assoc. 2020, 9, e015926. [Google Scholar] [CrossRef] [PubMed]
- Cowie, M.R.; Linz, D.; Redline, S.; Somers, V.K.; Simonds, A.K. Sleep Disordered Breathing and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Nanduri, J.; Vaddi, D.R.; Khan, S.A.; Wang, N.; Makerenko, V.; Prabhakar, N.R. Xanthine oxidase mediates hypoxia-inducible factor-2α degradation by intermittent hypoxia. PLoS ONE 2013, 8, e75838. [Google Scholar] [CrossRef] [PubMed]
- Eisele, H.J.; Markart, P.; Schulz, R. Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies. Oxid. Med. Cell Longev. 2015, 2015, 608438. [Google Scholar] [CrossRef] [PubMed]
- DeMartino, T.; Ghoul, R.E.; Wang, L.; Bena, J.; Hazen, S.L.; Tracy, R.; Patel, S.R.; Auckley, D.; Mehra, R. Oxidative Stress and Inflammation Differentially Elevated in Objective Versus Habitual Subjective Reduced Sleep Duration in Obstructive Sleep Apnea. Sleep 2016, 39, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Kaski, J.C.; Arrebola-Moreno, A.L. Inflamación y trombosis en la fibrilación auricular [Inflammation and thrombosis in atrial fibrillation]. Rev. Esp. Cardiol. 2011, 64, 551–553. [Google Scholar] [CrossRef]
- Tousoulis, D.; Zisimos, K.; Antoniades, C.; Stefanadi, E.; Siasos, G.; Tsioufis, C.; Papageorgiou, N.; Vavouranakis, E.; Vlachopoulos, C.; Stefanadis, C. Oxidative stress and inflammatory process in patients with atrial fibrillation: The role of left atrium distension. Int. J. Cardiol. 2009, 136, 258–262. [Google Scholar] [CrossRef]
- Gami, A.S.; Hodge, D.O.; Herges, R.M.; Olson, E.J.; Nykodym, J.; Kara, T.; Somers, V.K. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J. Am. Coll. Cardiol. 2007, 49, 565–571. [Google Scholar] [CrossRef]
- Christensen, M.A.; Dixit, S.; Dewland, T.A.; Whitman, I.R.; Nah, G.; Vittinghoff, E.; Mukamal, K.J.; Redline, S.; Robbins, J.A.; Newman, A.B.; et al. Sleep characteristics that predict atrial fibrillation. Heart Rhythm. 2018, 15, 1289–1295. [Google Scholar] [CrossRef]
- Genuardi, M.V.; Ogilvie, R.P.; Saand, A.R.; DeSensi, R.S.; Saul, M.I.; Magnani, J.W.; Patel, S.R. Association of Short Sleep Duration and Atrial Fibrillation. Chest 2019, 156, 544–552. [Google Scholar] [CrossRef]
- Monahan, K.; Storfer-Isser, A.; Mehra, R.; Shahar, E.; Mittleman, M.; Rottman, J.; Punjabi, N.; Sanders, M.; Quan, S.F.; Resnick, H.; et al. Triggering of nocturnal arrhythmias by sleepdisordered breathing events. J. Am. Coll. Cardiol 2009, 54, 1797–1804. [Google Scholar] [CrossRef]
- Kanagala, R.; Murali, N.S.; Friedman, P.A.; Ammash, N.M.; Gersh, B.J.; Ballman, K.V.; Shamsuzzaman, A.S.; Somers, V.K. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation 2003, 107, 2589–2594. [Google Scholar] [CrossRef]
- Ng, C.Y.; Liu, T.; Shehata, M.; Stevens, S.; Chugh, S.S.; Wang, X. Meta-analysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation. Am. J. Cardiol. 2011, 108, 47–51. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.W.; Li, J.; Ge, X.; Guo, L.Z.; Wang, Y.; Guo, W.H.; Jiang, C.X.; Ma, C.S. Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: A meta-analysis of observational studies. Europace 2014, 16, 1309–1314. [Google Scholar] [CrossRef]
- Linz, D.; Brooks, A.G.; Elliott, A.D.; Nalliah, C.J.; Hendriks, J.M.L.; Middeldorp, M.E.; Gallagher, C.; Mahajan, R.; Kalman, J.M.; McEvoy, R.D.; et al. Variability of sleep apnea severity and risk of atrial fibrillation: The VARIOSA-AF study. JACC Clin. Electrophysiol. 2019, 5, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Kuźniar, T.J. New approaches to positive airway pressure treatment in obstructive sleep apnea. Sleep Med. Clin. 2016, 11, 153–159. [Google Scholar] [CrossRef]
- Fein, A.S.; Shvilkin, A.; Shah, D.; Haffajee, C.I.; Das, S.; Kumar, K.; Kramer, D.B.; Zimetbaum, P.J.; Buxton, A.E.; Josephson, M.E.; et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol 2013, 62, 300–305. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulphur Dioxide, and Carbon Monoxide; WHO: Genève, Switzerland, 2021. [Google Scholar]
- Bennett, M.; Nault, I.; Koehle, M.; Wilton, S. Air Pollution and Arrhythmias. Can. J. Cardiol. 2023, 39, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Solimini, A.G.; Renzi, M. Association between Air Pollution and Emergency Room Visits for Atrial Fibrillation. Int. J. Environ. Res. Public Health 2017, 14, 661. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Burnett, R.T.; Kwong, J.C.; Hystad, P.; van Donkelaar, A.; Brook, J.R.; Goldberg, M.S.; Tu, K.; Copes, R.; Martin, R.V.; et al. Ambient Air Pollution and the Risk of Atrial Fibrillation and Stroke: A Population-Based Cohort Study. Environ. Health Perspect. 2019, 127, 87009. [Google Scholar] [CrossRef]
- Kim, I.S.; Yang, P.S.; Lee, J.; Yu, H.T.; Kim, T.H.; Uhm, J.S.; Pak, H.N.; Lee, M.H.; Joung, B. Long-term exposure of fine particulate matter air pollution and incident atrial fibrillation in the general population: A nationwide cohort study. Int. J. Cardiol. 2019, 283, 178–183. [Google Scholar] [CrossRef]
- Kwon, O.K.; Kim, S.H.; Kang, S.H.; Cho, Y.; Oh, I.Y.; Yoon, C.H.; Kim, S.Y.; Kim, O.J.; Choi, E.K.; Youn, T.J.; et al. Associate of short- and long-term exposure to air pollution with atrial fibrillation. Eur. J. Prev. Cardiol. 2019, 26, 1208–1216. [Google Scholar] [CrossRef]
- Lee, H.H.; Pan, S.C.; Chen, B.Y.; Lo, S.H.; Guo, Y.L. Atrial fibrillation hospitalization is associated with exposure to fine particulate air pollutants. Environ. Health 2019, 18, 117. [Google Scholar] [CrossRef]
- Sagris, M.; Vardas, E.P.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tousoulis, D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int. J. Mol. Sci. 2021, 23, 6. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Fish, long-chain omega-3 polyunsaturated fatty acid intake and incidence of atrial fibrillation: A pooled analysis of two prospective studies. Clin. Nutr. 2017, 36, 537–541. [Google Scholar] [CrossRef]
- Rix, T.A.; Joensen, A.M.; Riahi, S.; Lundbye-Christensen, S.; Tjønneland, A.; Schmidt, E.B.; Overvad, K. A U-shaped association between consumption of marine n-3 fatty acids and development of atrial fibrillation/atrial flutter-a Danish cohort study. Europace 2014, 16, 1554–1561. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.; Raju, H.; Nalliah, C. Association of diet with atrial fibrillation: Villain or sidekick. Heart 2023, 109, 1657–1658. [Google Scholar] [CrossRef] [PubMed]
- Biccirè, F.G.; Bucci, T.; Menichelli, D.; Cammisotto, V.; Pignatelli, P.; Carnevale, R.; Pastori, D. Mediterranean Diet: A Tool to Break the Relationship of Atrial Fibrillation with the Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease. Nutrients 2022, 14, 1260. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.Á.; Toledo, E.; Arós, F.; Fiol, M.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Covas, M.I.; Fernández-Crehuet, J.; Lapetra, J.; et al. Extravirgin olive oil consumption reduces risk of atrial fibrillation: The PREDIMED (Prevención con Dieta Mediterránea) trial. Circulation 2014, 130, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Storz, M.A.; Helle, P. Atrial fibrillation risk factor management with a plant-based diet: A review. J. Arrhythm. 2019, 35, 781–788. [Google Scholar] [CrossRef]
- Monagas, M.; Khan, N.; Andrés-Lacueva, C.; Urpí-Sardá, M.; Vázquez-Agell, M.; Lamuela-Raventós, R.M.; Estruch, R. Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells. Br. J. Nutr. 2009, 102, 201–206. [Google Scholar] [CrossRef]
- Gawałko, M.; Agbaedeng, T.A.; Saljic, A.; Müller, D.N.; Wilck, N.; Schnabel, R.; Penders, J.; Rienstra, M.; van Gelder, I.; Jespersen, T.; et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc. Res. 2022, 118, 2415–2427. [Google Scholar] [CrossRef]
- Khawaja, O.; Sesso, H.D.; Chen, J.; Yamasaki, H.; Hassan, S.A.; Gaziano, J.M.; Djoussé, L. Consumption of fried foods and risk of atrial fibrillation in the Physicians’ Health Study. Eur. J. Nutr. 2020, 59, 935–940. [Google Scholar] [CrossRef]
- Wuopio, J.; Orho-Melander, M.; Ärnlöv, J.; Nowak, C. Estimated salt intake and risk of atrial fibrillation in a prospective community-based cohort. J. Intern. Med. 2021, 289, 700–708. [Google Scholar] [CrossRef]
- D’Souza, M.S.; Dong, T.A.; Ragazzo, G.; Dhindsa, D.S.; Mehta, A.; Sandesara, P.B.; Freeman, A.M.; Taub, P.; Sperling, L.S. From Fad to Fact: Evaluating the Impact of Emerging Diets on the Prevention of Cardiovascular Disease. Am. J. Med. 2020, 133, 1126–1134. [Google Scholar] [CrossRef]
- Dyńka, D.; Kowalcze, K.; Charuta, A.; Paziewska, A. The Ketogenic Diet and Cardiovascular Diseases. Nutrients 2023, 15, 3368. [Google Scholar] [CrossRef]
- Xu, S.; Tao, H.; Cao, W.; Cao, L.; Lin, Y.; Zhao, S.M.; Xu, W.; Cao, J.; Zhao, J.Y. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct. Target. Ther. 2021, 6, 54. [Google Scholar] [CrossRef]
- Dilsizian, M.; Antonios, L.; Rassouli, N.; Amir, R.; Zhan, M.; Dickfeld, T.M.; Chen, W. Association between atrial FDG uptake and atrial fibrillation in patients with PET/CT performed under strict ketogenic dietary preparation. J. Nucl. Med. 2022, 63, 3364. [Google Scholar]
- Zhang, S.; Zhuang, X.; Lin, X.; Zhong, X.; Zhou, H.; Sun, X.; Xiong, Z.; Huang, Y.; Fan, Y.; Guo, Y.; et al. Low-Carbohydrate Diets and Risk of Incident Atrial Fibrillation: A Prospective Cohort Study. J. Am. Heart Assoc. 2019, 8, e011955. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, F.; Gong, H.; Fu, Y.; Liu, B.; Qin, X.; Zheng, Q. Intermittent fasting attenuates obesity-related atrial fibrillation via SIRT3-mediated insulin resistance mitigation. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166638. [Google Scholar] [CrossRef] [PubMed]
- Naous, E.; Achkar, A.; Mitri, J. Intermittent Fasting and Its Effects on Weight, Glycemia, Lipids, and Blood Pressure: A Narrative Review. Nutrients 2023, 15, 3661. [Google Scholar] [CrossRef] [PubMed]
- Solianik, R.; Židonienė, K.; Eimantas, N.; Brazaitis, M. Prolonged fasting outperforms short-term fasting in terms of glucose tolerance and insulin release: A randomised controlled trial. Br. J. Nutr. 2023, 130, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Allaf, M.; Elghazaly, H.; Mohamed, O.G.; Fareen, M.F.K.; Zaman, S.; Salmasi, A.M.; Tsilidis, K.; Dehghan, A. Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2021, 1, CD013496. [Google Scholar] [CrossRef] [PubMed]
- Thelle, D.S. Coffee, caffeine and atrial fibrillation. Eur. J. Prev. Cardiol. 2018, 25, 1053–1054. [Google Scholar] [CrossRef] [PubMed]
- Klatsky, A.L.; Hasan, A.S.; Armstrong, M.A.; Udaltsova, N.; Morton, C. Coffee, caffeine, and risk of hospitalization for arrhythmias. Perm. J. 2011, 15, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Voskoboinik, A.; Kalman, J.M.; Kistler, P.M. Caffeine and Arrhythmias: Time to Grind the Data. JACC Clin. Electrophysiol. 2018, 4, 425–432. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Farinetti, A.; Miloro, C.; Pedrazzi, P.; Mattioli, G. Influence of coffee and caffeine consumption on atrial fibrillation in hypertensive patients. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 412–417. [Google Scholar] [CrossRef]
- Voskoboinik, A.; Prabhu, S.; Ling, L.H.; Kalman, J.M.; Kistler, P.M. Alcohol and Atrial Fibrillation: A Sobering Review. J. Am. Coll. Cardiol. 2016, 68, 2567–2576. [Google Scholar] [CrossRef]
- Balbão, C.E.; de Paola, A.A.; Fenelon, G. Effects of alcohol on atrial fibrillation: Myths and truths. Ther. Adv. Cardiovasc. Dis. 2009, 3, 53–63. [Google Scholar] [CrossRef]
- Gillis, A.M. A Sober Reality? Alcohol, Abstinence, and Atrial Fibrillation. N. Engl. J. Med. 2020, 382, 83–84. [Google Scholar] [CrossRef]
- Gallagher, C.; Hendriks, J.M.L.; Elliott, A.D.; Wong, C.X.; Rangnekar, G.; Middeldorp, M.E.; Mahajan, R.; Lau, D.H.; Sanders, P. Alcohol and incident atrial fibrillation—A systematic review and meta-analysis. Int. J. Cardiol. 2017, 246, 46–52. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Sullivan, L.M.; Levy, D.; Pencina, M.J.; Massaro, J.M.; D’Agostino RBSr Newton-Cheh, C.; Yamamoto, J.F.; Magnani, J.W.; Tadros TM et, al. Development of a risk score for atrial fibrillation (Framingham Heart Study): A community-based cohort study. Lancet 2009, 373, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, A.M.; Agarwal, S.K.; Folsom, A.R.; Soliman, E.Z.; Chambless, L.E.; Crow, R.; Ambrose, M.; Alonso, A. A clinical risk score for atrial fibrillation in a biracial prospective cohort (from the Atherosclerosis Risk in Communities [ARIC] study). Am. J. Cardiol. 2011, 107, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Segan, L.; Canovas, R.; Nanayakkara, S.; Chieng, D.; Prabhu, S.; Voskoboinik, A.; Sugumar, H.; Ling, L.H.; Lee, G.; Morton, J.; et al. New-onset atrial fibrillation prediction: The HARMS2-AF risk score. Eur. Heart J. 2023, 44, 3443–3452. [Google Scholar] [CrossRef] [PubMed]
Type of Training | Paper | Training Program | Duration and Frequency | AF Type |
---|---|---|---|---|
MICT | Reed et al. (2018) [37] | (1) 10–15 min aerobic warm-up; (2) 30 min continuous aerobic training (e.g., elliptical trainers, jogging, walking, and cycling) with 67% to 95% of peak heart rate; and (3) 15 min strengthening and stretching exercises | 60 min twice a week | Persistent or permanent |
HIIT | Reed et al. (2018) [37] | (1) a 2 min warm-up at 50% of peak power output; (2) two 8 min interval training blocks of 30 s work periods at 80%to 100% of peak power output interspersed with 30 s active recovery (16 min conditioning phase), and 4 min of recovery between the blocks; and (3) a 1 min cooldown at 25% of peak power output on an upright cycle ergometer. | 23 min twice a week | Persistent or permanent |
AIT | Malmo et al. (2016) [39] | walking or running on a treadmill: (1) 10 min warm-up at 60% to 70% of peak heart rate, (2) four 4 min intervals at 85% to 95% of HR peak with 3 min of active recovery at 60% to 70% of HR peak between intervals, and (3) 5 min cooldown | 43 min 3 times a week | Paroxysmal or persistent |
MICT | HIIT | AIT | ||||
---|---|---|---|---|---|---|
Baseline | Change | Baseline | Change | Baseline | Change | |
Physical functioning a | 43.8 (8.8) | 2.7 (6.2) | 41.8 (9.2) | 1.9 (5.8) | 50.6 (6.7) | 1.2 (3.9) |
Bodily pain a | 37.3 (7.3) | −1.5 (8.5) | 38.5 (7.0) | −1.5 (9.0) | 53.1 (9.2) | 1.3 (6.8) |
General health a | 42.5 (10.0) | 1.4 (7.2) | 44.5 (9.2) | 0.7 (6.1) | 49.0 (8.7) | 4.4 (7.0) |
Vitality a | 45.6 (9.3) | 3.1 (8.7) | 45.6 (10.5) | 4.4 (10.2) | 47.1 (9.8) | 8.2 (8.2) |
Social functioning a | 49.4 (9.6) | 0.9 (6.7) | 49.2 (10.4) | 2.2 (6.1) | 50.9 (9.4) | 0.9 (12.0) |
Mental health a | 52.4 (7.6) | −0.4 (6.1) | 51.8 (8.7) | 2.4 (8.1) | 52.5 (6.8) | 3.0 (6.9) |
Physical component score a | 37.9 (8.8) | 1.1 (4.9) | 38.4 (7.1) | 0.5 (6.1) | 50.3 (8.8) | 2.2 (4.4) |
Mental component score a | 53.4 (10.7) | −0.2 (7.6) | 53.0 (10.3) | 2.8 (8.4) | 50.6 (8.4) | 3.6 (6.5) |
Time in AF, % b | 98.1 (4.8) | −6.2 (23.2) | 93.8 (15.7) | 0.1 (0.5) | 8.1 (11.2) | −3.3 (7.2) |
Body mass index c | 29.9 (6.2) | −0.3 (0.9) | 30.9 (5.7) | −0.1 (1.0) | 28.2 (4.8) | −0.5 (0.9) |
Systolic blood pressure, mm Hg | 127.5 (15.6) | −1.8 (11.8) | 123.8 (18.3) | 1.1 (14.9) | 135.0 (11.0) | −3.0 (10.3) |
Diastolic blood pressure, mm Hg | 79.6 (9.4) | −2.7 (7.0) | 77.2 (11.2) | −0.3 (11.2) | 81.0 (8.0) | −2.0 (7.0) |
Points (0–14) | ||
---|---|---|
H | Hypertension | 4 |
A | Age | |
(60–64 years) | 1 | |
(≥65 years) | 2 | |
R | Raised BMI (≥30 kg/m2) | 1 |
M | Male sex | 2 |
S | Sleep apnea | 2 |
S | Smoking | 1 |
AF | Alcohol | |
(7–14 standard drinks/week) | 1 | |
(≥15 standard drinks/week) | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leszto, K.; Frąk, W.; Kurciński, S.; Sinkowska, J.; Skwira, S.; Młynarska, E.; Rysz, J.; Franczyk, B. Associations of Dietary and Lifestyle Components with Atrial Fibrillation. Nutrients 2024, 16, 456. https://doi.org/10.3390/nu16030456
Leszto K, Frąk W, Kurciński S, Sinkowska J, Skwira S, Młynarska E, Rysz J, Franczyk B. Associations of Dietary and Lifestyle Components with Atrial Fibrillation. Nutrients. 2024; 16(3):456. https://doi.org/10.3390/nu16030456
Chicago/Turabian StyleLeszto, Klaudia, Weronika Frąk, Szymon Kurciński, Julia Sinkowska, Sylwia Skwira, Ewelina Młynarska, Jacek Rysz, and Beata Franczyk. 2024. "Associations of Dietary and Lifestyle Components with Atrial Fibrillation" Nutrients 16, no. 3: 456. https://doi.org/10.3390/nu16030456
APA StyleLeszto, K., Frąk, W., Kurciński, S., Sinkowska, J., Skwira, S., Młynarska, E., Rysz, J., & Franczyk, B. (2024). Associations of Dietary and Lifestyle Components with Atrial Fibrillation. Nutrients, 16(3), 456. https://doi.org/10.3390/nu16030456