Antenatal Growth, Gestational Age, Birth, Enteral Feeding, and Blood Citrulline Levels in Very Low Birth Weight Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Sampling, Assay, and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Crude Dependence of Citrulline Levels on Clinical Variables
3.3. Dependence of Citrulline Levels on Postnatal Age, Clinical Variables, and Their Interactions
3.4. Independent Variables of Citrulline Levels during Early and Late Postnatal Ages
4. Discussion
4.1. Gestational and Postnatal Age and Citrulline Levels
4.2. Body Size, Enteral Nutrition, and Citrulline Levels
4.3. Other Independent Variables of Citrulline Levels
4.4. Clinical Implication
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Regression Coefficient | p | |||
---|---|---|---|---|---|
Mean | 95% CI | ||||
Lower | Upper | ||||
Maternal variables | |||||
Antenatal glucocorticoid | −0.060 | −0.138 | 0.018 | 0.133 | |
Premature rupture of membranes | −0.010 | −0.047 | −0.128 | 0.035 | |
Hypertensive disorders of pregnancy | −0.063 | −0.036 | −0.126 | 0.054 | |
Chorioamnionitis | −0.086 | −0.243 | 0.071 | 0.280 | |
Variables at birth | |||||
Male sex | −0.019 | −0.092 | 0.055 | 0.619 | |
Gestational age (week) | 0.022 | 0.009 | 0.034 | 0.001 | |
Birth weight (per 100 g) | 0.014 | 0.000 | 0.029 | 0.050 | |
Standard score of birth weight | −0.005 | −0.029 | −0.058 | 0.000 | |
Apgar score (1 min) | 0.003 | −0.012 | 0.019 | 0.677 | |
Apgar score (5 min) | 0.008 | −0.014 | 0.031 | 0.476 | |
Cesarean delivery | 0.104 | 0.018 | 0.189 | 0.017 | |
Multiple birth | −0.073 | −0.170 | 0.023 | 0.134 | |
Cord blood pH at birth (per 0.1) | −0.047 | −0.030 | −0.067 | 0.008 | |
Base Excess at birth (mEq/L) | −0.013 | −0.007 | −0.018 | 0.003 | |
Clinical events during hospitalization | |||||
Parenteral nutrition | −0.033 | −0.133 | 0.066 | 0.509 | |
Antibiotics | −0.099 | −0.187 | −0.010 | 0.029 | |
Patent ductus arteriosus requiring pharmacotherapy | −0.146 | −0.237 | −0.054 | 0.002 | |
Necrotizing enterocolitis | −0.139 | −0.671 | 0.393 | 0.608 | |
Any intestinal disease | −0.160 | −0.338 | 0.017 | 0.077 | |
Establishment of enteral nutrition | <1 week | 0.361 | 0.135 | 0.586 | 0.002 |
<2 weeks | 0.301 | 0.071 | 0.530 | 0.010 | |
<3 weeks | 0.379 | 0.137 | 0.621 | 0.002 | |
≥3 weeks | Reference | ||||
Postnatal age at blood sampling (day) | 0.021 | 0.018 | 0.024 | <0.001 | |
Amount of enteral nutrition at blood sampling (per 10 mL/kg) | 0.025 | 0.019 | 0.031 | <0.001 |
References
- WHO Recommendations for Care of the Preterm or Low-Birth-Weight Infant. WHO Guidelines 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/363697/9789240058262-eng.pdf (accessed on 22 January 2024).
- Watkins, W.J.; Kotecha, S.J.; Kotecha, S. All-Cause Mortality of Low Birthweight Infants in Infancy, Childhood, and Adolescence: Population Study of England and Wales. PLoS Med. 2016, 13, e1002018. [Google Scholar] [CrossRef]
- Kono, Y. Neurodevelopmental outcomes of very low birth weight infants in the Neonatal Research Network of Japan: Importance of neonatal intensive care unit graduate follow-up. Clin. Exp. Pediatr. 2021, 64, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, H.P.; Diamanti, E.; Piretzi, K.; Drossou-Agakidou, V.; Augoustides-Savvopoulou, P. Plasma citrulline levels in preterm neonates with necrotizing enterocolitis. Early Hum. Dev. 2012, 88, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Perez, K.; Valentine, G.C.; Nangia, S.; Burrin, D.G.; Abayneh, M.; Workneh, R.; Jerome, M.; Dinerstein, N.A.; Salas, A. Advancement of Enteral Feeding in Very-low-birth-weight Infants: Global Issues and Challenges. Newborn 2022, 1, 306–313. [Google Scholar] [CrossRef]
- Chien, H.-C.; Chen, C.-H.; Wang, T.-M.; Hsu, Y.-C.; Lin, M.-C. Neurodevelopmental outcomes of infants with very low birth weights are associated with the severity of their extra-uterine growth retardation. Pediatr. Neonatol. 2018, 59, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Neonatal Parenteral Nutrition. NICE Guideline 2020; p. 154. Available online: https://www.nice.org.uk/guidance/ng154/resources/neonatal-parenteral-nutrition-pdf-66141840283333 (accessed on 22 December 2023).
- Ohnishi, S.; Ichiba, H.; Tanaka, Y.; Harada, S.; Matsumura, H.; Kan, A.; Asada, Y.; Shintaku, H. Early and intensive nutritional strategy combining parenteral and enteral feeding promotes neurodevelopment and growth at 18 months of corrected age and 3 years of age in extremely low birth weight infants. Early Hum. Dev. 2016, 100, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Btaiche, I.F.; Khalidi, N. Parenteral nutrition-associated liver complications in children. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2002, 22, 188–211. [Google Scholar] [CrossRef] [PubMed]
- Hartman, C.; Shamir, R.; Simchowitz, V.; Lohner, S.; Cai, W.; Decsi, T. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Complications. Clin. Nutr. 2018, 37, 2418–2429. [Google Scholar] [CrossRef]
- Yoon, S.A.; Lee, M.H.; Chang, Y.S. Impact of time to full enteral feeding on long-term neurodevelopment without mediating by postnatal growth failure in very-low-birth-weight-infants. Sci. Rep. 2023, 13, 2990. [Google Scholar] [CrossRef]
- Henderson, G.; Craig, S.; Brocklehurst, P.; McGuire, W. Enteral feeding regimens and necrotising enterocolitis in preterm infants: A multicentre case-control study. Arch. Dis. Child.-Fetal Neonatal Ed. 2009, 94, F120–F123. [Google Scholar] [CrossRef]
- Ng, P.C.; Chan, K.Y.Y.; Lam, H.S.; Wong, R.P.O.; Ma, T.P.Y.; Sit, T.; Leung, K.T.; Chan, L.C.N.; Pang, Y.L.I.; Cheung, H.M.; et al. A Prospective Cohort Study of Fecal miR-223 and miR-451a as Noninvasive and Specific Biomarkers for Diagnosis of Necrotizing Enterocolitis in Preterm Infants. Neonatology 2020, 117, 555–561. [Google Scholar] [CrossRef]
- Abiramalatha, T.; Thanigainathan, S.; Ramaswamy, V.V.; Rajaiah, B.; Ramakrishnan, S. Routine monitoring of gastric residual for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2023, 6, CD012937. [Google Scholar] [CrossRef]
- Tam, A.L.; Camberos, A.; Applebaum, H. Surgical decision making in necrotizing enterocolitis and focal intestinal perforation: Predictive value of radiologic findings. J. Pediatr. Surg. 2002, 37, 1688–1691. [Google Scholar] [CrossRef]
- Rovamo, L.; A Nikkilä, E.; Taskinen, M.R.; O Raivio, K. Postheparin Plasma Lipoprotein and Hepatic Lipases in Preterm Neonates. Pediatr. Res. 1984, 18, 1104–1107. [Google Scholar] [CrossRef]
- Ng, P.C.; Ang, I.L.; Chiu, R.W.K.; Li, K.; Lam, H.S.; Wong, R.P.O.; Chui, K.M.; Cheung, H.M.; Ng, E.W.Y.; Fok, T.F.; et al. Host-response biomarkers for diagnosis of late-onset septicemia and necrotizing enterocolitis in preterm infants. J. Clin. Investig. 2010, 120, 2989–3000. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Chan, K.Y.Y.; Yuen, T.P.; Sit, T.; Lam, H.S.; Leung, K.T.; Wong, R.P.O.; Chan, L.C.N.; Pang, Y.L.I.; Cheung, H.M.; et al. Plasma miR-1290 Is a Novel and Specific Biomarker for Early Diagnosis of Necrotizing Enterocolitis—Biomarker Discovery with Prospective Cohort Evaluation. J. Pediatr. 2019, 205, 83–90.e10. [Google Scholar] [CrossRef]
- Howarth, C.; Banerjee, J.; Eaton, S.; Aladangady, N. Biomarkers of gut injury in neonates–Where are we in predicting necrotising enterocolitis? Front. Pediatr. 2022, 10, 1048322. [Google Scholar] [CrossRef] [PubMed]
- Albanna, E.; Ahmed, H.; Awad, H. Stool calprotectin in necrotizing enterocolitis. J. Clin. Neonatol. 2014, 3, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; A Jaeger, L.; Bazer, F.W.; Rhoads, J. Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications. J. Nutr. Biochem. 2004, 15, 442–451. [Google Scholar] [CrossRef]
- Crenn, P.; Coudray–Lucas, C.; Thuillier, F.; Cynober, L.; Messing, B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 2000, 119, 1496–1505. [Google Scholar] [CrossRef]
- Rhoads, J.M.; Plunkett, E.; Galanko, J.; Lichtman, S.; Taylor, L.; Maynor, A.; Weiner, T.; Freeman, K.; Guarisco, J.L.; Wu, G.Y. Serum citrulline levels correlate with enteral tolerance and bowel length in infants with short bowel syndrome. J. Pediatr. 2005, 146, 542–547. [Google Scholar] [CrossRef]
- Rabier, D.; Kamoun, P. Metabolism of citrulline in man. Amino Acids 1995, 9, 299–316. [Google Scholar] [CrossRef]
- Nakano, M.; Uemura, O.; Honda, M.; Ito, T.; Nakajima, Y.; Saitoh, S. Development of tandem mass spectrometry-based creatinine measurement using dried blood spot for newborn mass screening. Pediatr. Res. 2017, 82, 237–243. [Google Scholar] [CrossRef]
- Detry, M.A.; Ma, Y. Analyzing Repeated Measurements Using Mixed Models. JAMA 2016, 315, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Leona, S.; Aiken, S.G.W.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; SAGE: New York, NY, USA, 1991. [Google Scholar]
- Reid, D.W.; Campbell, D.J.; Yakymyshyn, L.Y. Quantitative amino acids in amniotic fluid and maternal plasma in early and late pregnancy. Preliminary report. Am. J. Obstet. Gynecol. 1971, 111, 251–258. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, R.T.; Morrow, G., 3rd; Hammel, D.; Auerbach, V.H.; Barness, L.A. Diagnostic significance of amniotic fluid amino acids. Obstet Gynecol. 1971, 37, 550–554. [Google Scholar] [PubMed]
- Kang, E.S.; Scanlon, J. Concentrations of the free amino acids in human amniotic fluid during normal and abnormal pregnancies. Am. J. Obstet. Gynecol. 1974, 119, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Touloukian, R.J.; Smith, G.W. Normal intestinal length in preterm infants. J. Pediatr. Surg. 1983, 18, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Amiel-Tison, C.; Pettigrew, A.G. Adaptive changes in the developing brain during intrauterine stress. Brain Dev. 1991, 13, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-X.; Cui, H. The brain development of infants with intrauterine growth restriction: Role of glucocorticoids. Horm. Mol. Biol. Clin. Investig. 2019, 39, 20190016. [Google Scholar] [CrossRef]
- Ainonen, S.; Tejesvi, M.V.; Mahmud, R.; Paalanne, N.; Pokka, T.; Li, W.; E Nelson, K.; Salo, J.; Renko, M.; Vänni, P.; et al. Antibiotics at birth and later antibiotic courses: Effects on gut microbiota. Pediatr. Res. 2021, 91, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilizand, R.; Shah, P.S.; Seshia, M.; Yee, W.; Yoon, E.W.; Dow, K.; Harrison, A.; Synnes, A.; Sokoran, T.; Aziz, K.; et al. Antibiotic exposure and development of necrotizing enterocolitis in very preterm neonates. Paediatr. Child Health 2017, 23, e56–e61. [Google Scholar] [CrossRef] [PubMed]
Variables | n = 248 |
---|---|
Maternal variables | |
Antenatal glucocorticoid | 155 (63%) |
Premature rupture of membranes | 72 (29%) |
Hypertensive disorders of pregnancy | 47 (19%) |
Chorioamnionitis | 16 (6.5%) |
Variables at birth | |
Male sex | 129 (52%) |
Gestational age (week) | 29.3 (26.9 to 31.1) |
Birth weight (g) | 1158 (840 to 1338) |
Standard score of birth weight | −0.90 (−1.86 to −0.01) |
Apgar score (1 min) | 6 (3 to 8) |
Apgar score (5 min) | 8 (7 to 9) |
Cesarean delivery | 189 (76%) |
Multiple birth | 46 (19%) |
Cord blood pH at birth | 7.31 (7.25 to 7.38) |
Base Excess at birth (mEq/L) | −2.95 (−4.90 to −0.63) |
Clinical events during hospitalization | |
Parenteral nutrition | 213 (86%) |
Antibiotics | 202 (82%) |
Patent ductus arteriosus requiring pharmacotherapy | 60 (24%) |
Grade III/IV intraventricular hemorrhage | 12 (4.8%) |
Septicemia | 36 (15%) |
Intestinal diseases | |
Necrotizing enterocolitis | 10 (4.0%) |
Intestinal perforation | 6 (2.4%) |
Meconium ileus | 1 (0.4%) |
Other intestinal diseases | 11 (4.4%) |
Requiring surgical intervention | 3 (1.2%) |
Any of above | 28 (11.3%) |
Postnatal age at full enteral feeding (day) | 9 (7 to 14) |
Establishment of enteral nutrition | |
<1 week | 109 (44%) |
<2 weeks | 74 (30%) |
<3 weeks | 37 (15%) |
≥3 weeks | 28 (11%) |
Death | 14 (5.6%) |
Variables | Regression Coefficient | p | |||
---|---|---|---|---|---|
Mean | 95% CI | ||||
Lower | Upper | ||||
Maternal variables | |||||
Antenatal glucocorticoid | −0.032 | −0.108 | 0.043 | 0.396 | |
Premature rupture of membranes | −0.010 | −0.090 | 0.069 | 0.796 | |
Hypertensive disorders of pregnancy | −0.063 | −0.157 | 0.031 | 0.187 | |
Chorioamnionitis | −0.041 | −0.146 | 0.063 | 0.436 | |
Variables at birth | |||||
Male sex | −0.032 | −0.105 | 0.041 | 0.384 | |
Gestational age (week) | 0.008 | −0.004 | 0.020 | 0.191 | |
Birth weight (per 100 g) | 0.006 | −0.006 | 0.019 | 0.327 | |
Standard score of birth weight | −0.005 | −0.033 | 0.024 | 0.742 | |
Apgar score (1 min) | −0.003 | −0.018 | 0.012 | 0.716 | |
Apgar score (5 min) | −0.005 | −0.026 | 0.016 | 0.672 | |
Cesarean delivery | 0.052 | −0.032 | 0.136 | 0.227 | |
Multiple birth | −0.106 | −0.197 | −0.014 | 0.024 | |
Cord blood pH at birth (per 0.1) | −0.047 | −0.083 | −0.011 | 0.010 | |
Base Excess at birth (mEq/L) | −0.013 | −0.023 | −0.003 | 0.012 | |
Clinical events during hospitalization | |||||
Parenteral nutrition | −0.022 | −0.128 | 0.084 | 0.679 | |
Antibiotics | −0.103 | −0.196 | −0.010 | 0.029 | |
Patent ductus arteriosus requiring pharmacotherapy | −0.080 | −0.165 | 0.004 | 0.063 | |
Grade Ⅲ/Ⅳ intraventricular hemorrhage | 0.281 | 0.103 | 0.460 | 0.002 | |
Septicemia | 0.048 | −0.057 | 0.153 | 0.369 | |
Necrotizing enterocolitis | −0.157 | −0.348 | 0.033 | 0.105 | |
Any intestinal disease | −0.156 | −0.273 | −0.039 | 0.009 | |
Establishment of enteral nutrition | <1 week | 0.139 | 0.012 | 0.266 | 0.032 |
<2 weeks | 0.096 | −0.036 | 0.228 | 0.155 | |
<3 weeks | 0.212 | 0.065 | 0.360 | 0.005 | |
≥3 weeks | Reference | ||||
Postnatal age at blood sampling (day) | 0.017 | 0.014 | 0.020 | <0.001 | |
Amount of enteral nutrition at blood sampling (per 10 mL/kg) | 0.019 | 0.013 | 0.025 | <0.001 | |
Death | 0.173 | 0.000 | 0.346 | 0.050 |
Variables | Regression Coefficient | p | ||
---|---|---|---|---|
Mean | 95% CI | |||
Lower | Upper | |||
Variables at birth | ||||
Gestational age (week) | 0.008 | −0.003 | 0.020 | 0.150 |
Postnatal age (day) | 0.016 | 0.014 | 0.019 | <0.001 |
Gestational age × Postnatal age | 0.004 | 0.003 | 0.004 | <0.001 |
Birth weight (per 100 g) | 0.008 | −0.004 | 0.021 | 0.201 |
Postnatal age (day) | 0.016 | 0.013 | 0.019 | <0.001 |
Birth weight × Postnatal age | 0.004 | 0.003 | 0.005 | <0.001 |
pH at birth (per 0.1) | −0.050 | −0.085 | −0.014 | 0.006 |
Postnatal age (day) | 0.017 | 0.014 | 0.020 | <0.001 |
pH at birth × Postnatal age | 0.002 | −0.001 | 0.005 | 0.136 |
Postnatal variables | ||||
Amount of enteral nutrition at blood sampling (per 10 mL/kg) | 0.009 | 0.003 | 0.016 | 0.006 |
Postnatal age (day) | 0.009 | 0.005 | 0.013 | <0.001 |
Amount of enteral nutrition × Postnatal age | 0.003 | 0.003 | 0.004 | <0.001 |
Postnatal antibiotics | −0.099 | −0.191 | −0.006 | 0.036 |
Postnatal age (day) | 0.024 | 0.018 | 0.030 | <0.001 |
Postnatal antibiotics × Postnatal age | −0.009 | −0.016 | −0.002 | 0.010 |
Necrotizing enterocolitis | −0.189 | −0.378 | −0.001 | 0.049 |
Postnatal age (day) | −0.013 | −0.028 | 0.002 | 0.100 |
Necrotizing enterocolitis × Postnatal age | −0.031 | −0.047 | −0.015 | <0.001 |
Any intestinal disease | −0.176 | −0.293 | −0.059 | 0.003 |
Postnatal age (day) | 0.019 | 0.016 | 0.022 | <0.001 |
Any of Intestinal disease × Postnatal age | −0.022 | −0.032 | −0.012 | <0.001 |
Variables | Early (Day 5.1) | Late (Day 24.3) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | 95% CI | p | Mean | 95% CI | p | |||
Lower | Upper | Lower | Upper | |||||
Gestational age (week) | −0.025 | −0.040 | −0.011 | 0.011 | 0.042 | 0.029 | 0.056 | <0.001 |
Birth weight (per 100 g) | −0.030 | −0.046 | −0.015 | <0.001 | 0.047 | 0.031 | 0.062 | <0.001 |
Amount of enteral nutrition at blood sampling (per 10 mL/kg) | −0.021 | −0.028 | −0.014 | <0.001 | 0.040 | 0.030 | 0.050 | <0.001 |
Postnatal antibiotics | −0.012 | −0.128 | 0.104 | 0.843 | −0.185 | −0.295 | −0.075 | 0.001 |
Necrotizing enterocolitis | 0.109 | −0.131 | 0.350 | 0.373 | −0.488 | −0.728 | −0.247 | <0.001 |
Any intestinal disease | 0.037 | −0.111 | 0.185 | 0.625 | −0.389 | −0.548 | −0.230 | <0.001 |
Variables | Early (Day 5.1) | Late (Day 24.3) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | 95% CI | p | Mean | 95% CI | p | |||
Lower | Upper | Lower | Upper | |||||
Birth weight (per 100 g) | −0.038 | −0.060 | −0.016 | 0.001 | 0.039 | 0.016 | 0.061 | 0.001 |
Amount of enteral nutrition at blood sampling (per 10 mL/kg) | −0.022 | −0.030 | −0.015 | <0.001 | 0.038 | 0.027 | 0.049 | <0.001 |
Postnatal antibiotics | 0.007 | −0.116 | 0.129 | 0.913 | −0.165 | −0.280 | −0.050 | 0.005 |
Necrotizing enterocolitis | 0.142 | −0.106 | 0.390 | 0.262 | −0.453 | −0.692 | −0.213 | <0.001 |
Any intestinal disease | 0.053 | −0.099 | 0.201 | 0.492 | −0.370 | −0.527 | −0.213 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obayashi, M.; Iwata, S.; Okuda, T.; Mori, I.; Nakane, S.; Togawa, Y.; Sugimoto, M.; Togawa, T.; Muramatsu, K.; Saitoh, S.; et al. Antenatal Growth, Gestational Age, Birth, Enteral Feeding, and Blood Citrulline Levels in Very Low Birth Weight Infants. Nutrients 2024, 16, 476. https://doi.org/10.3390/nu16040476
Obayashi M, Iwata S, Okuda T, Mori I, Nakane S, Togawa Y, Sugimoto M, Togawa T, Muramatsu K, Saitoh S, et al. Antenatal Growth, Gestational Age, Birth, Enteral Feeding, and Blood Citrulline Levels in Very Low Birth Weight Infants. Nutrients. 2024; 16(4):476. https://doi.org/10.3390/nu16040476
Chicago/Turabian StyleObayashi, Midori, Sachiko Iwata, Tomoya Okuda, Ichita Mori, Shigeharu Nakane, Yasuko Togawa, Mari Sugimoto, Takao Togawa, Kanji Muramatsu, Shinji Saitoh, and et al. 2024. "Antenatal Growth, Gestational Age, Birth, Enteral Feeding, and Blood Citrulline Levels in Very Low Birth Weight Infants" Nutrients 16, no. 4: 476. https://doi.org/10.3390/nu16040476
APA StyleObayashi, M., Iwata, S., Okuda, T., Mori, I., Nakane, S., Togawa, Y., Sugimoto, M., Togawa, T., Muramatsu, K., Saitoh, S., Sugiura, T., & Iwata, O. (2024). Antenatal Growth, Gestational Age, Birth, Enteral Feeding, and Blood Citrulline Levels in Very Low Birth Weight Infants. Nutrients, 16(4), 476. https://doi.org/10.3390/nu16040476