Zinc Supplementation Enhances the Hematopoietic Activity of Erythropoiesis-Stimulating Agents but Not Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitors
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Data Collection
2.3. Statistical Analysis
2.4. Treatment Protocol
3. Results
3.1. Characteristics of Participants
3.2. Data for Patients Using Darbepoetin Alfa or Roxadustat without Zinc Supplements
3.3. Data for Participants Using Darbepoetin Alfa with and without Zinc Supplements
3.4. Data for Participants Using Roxadustat with and without Zinc Supplements
3.5. Relationship between Zinc Supplementation Dose and HRI
3.6. Relationship between Serum Zinc Concentrations and HRI
3.7. Serum Copper and Zinc Concentrations in Participants Using Darbepoetin Alfa or Roxadustat
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kobayashi, H.; Abe, M.; Okada, K.; Tei, R.; Maruyama, N.; Kikuchi, F.; Higuchi, T.; Soma, M. Oral zinc supplementation reduces the erythropoietin responsiveness index in patients on hemodialysis. Nutrients 2015, 15, 3783–3795. [Google Scholar] [CrossRef]
- Sato, E.; Sato, S.; Degawa, M.; Ono, T.; Lu, H.; Matsumura, D.; Nomura, M.; Moriyama, N.; Amaha, M.; Nakamura, T. Effects of Zinc Acetate Hydrate Supplementation on Renal Anemia with Hypozincemia in Hemodialysis Patients. Toxins 2022, 14, 746. [Google Scholar] [CrossRef]
- Bozalioğlu, S.; Ozkan, Y.; Turan, M.; Simşek, B. Prevalence of zinc deficiency and immune response in short-term hemodialysis. J. Trace Elem. Med. Biol. 2005, 18, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Yap, D.Y.H.; McMahon, L.P.; Hao, C.; Hu, N.; Okada, H.; Suzuki, Y.; Kim, S.G.; Lim, S.K.; Vareesangthip, K.; Hung, C.; et al. APSN HIF-PHI Recommendation Committee. Recommendations by the Asian Pacific society of nephrology (APSN) on the appropriate use of HIF-PH inhibitors. Nephrology 2021, 26, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Jiang, L.; Wei, X.; Long, M.; Du, Y. Roxadustat: Not just for anemia. Front. Pharmacol. 2022, 13, 971795. [Google Scholar] [CrossRef] [PubMed]
- Mokas, S.; Larivière, R.; Lamalice, L.; Gobeil, S.; Cornfield, D.N.; Agharazii, M.; Richard, D.E. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification. Kidney Int. 2016, 90, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Pethő, D.; Gáll, T.; Zavaczki, E.; Nyitrai, M.; Posta, J.; Zarjou, A.; Agarwal, A.; Balla, G.; Balla, J. Zinc inhibits HIF-prolyl hydroxylase inhibitor-aggravated VSMC calcification induced by high phosphate. Front. Physiol. 2020, 10, 1584. [Google Scholar] [CrossRef] [PubMed]
- Ichii, M.; Mori, K.; Miyaoka, D.; Sonoda, M.; Tsujimoto, Y.; Nakatani, S.; Shoji, T.; Emoto, M. Suppression of thyrotropin secretion during Roxadustat treatment for renal anemia in a patient undergoing hemodialysis. BMC Nephrol. 2021, 22, 104. [Google Scholar] [CrossRef] [PubMed]
- Kouki, Y.; Okada, N.; Saga, K.; Ozaki, M.; Saisyo, A.; Kitahara, T. Disproportionality Analysis on Hypothyroidism With Roxadustat Using the Japanese Adverse Drug Event Database. J. Clin. Pharmacol. 2023, 63, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, A.; Kadoya, H.; Obata, A.; Obata, T.; Sasaki, T.; Kashihara, N. Roxadustat and thyroid-stimulating hormone suppression. Clin. Kidney J. 2021, 14, 1472–1474. [Google Scholar] [CrossRef]
- Betsy, A.; Binitha, M.; Sarita, S. Zinc deficiency associated with hypothyroidism: An overlooked cause of severe alopecia. Int. J. Trichology 2013, 5, 40–42. [Google Scholar] [CrossRef]
- Pathak, R.; Pathak, A. Effectiveness of zinc supplementation on lithium-induced alterations in thyroid functions. Biol. Trace Elem. Res. 2021, 199, 2266–2271. [Google Scholar] [CrossRef]
- Takahashi, A. Co-Administration of Roxadustat and Zinc Stabilizes Both Serum Copper and Zinc Concentrations in Patients Undergoing Hemodialysis. Nutrients 2023, 15, 4887. [Google Scholar] [CrossRef]
- Duncan, A.; Yacoubian, C.; Watson, N.; Morrison, I. The risk of copper deficiency in patients prescribed zinc supplements. J. Clin. Pathol. 2015, 68, 723–725. [Google Scholar] [CrossRef]
- Takahashi, A. Role of Zinc and Copper in Erythropoiesis in Patients on Hemodialysis. J. Ren. Nutr. 2022, 32, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Nishime, K.; Kondo, M.; Saito, K.; Miyawaki, H.; Nakagawa, T. Zinc Burden Evokes Copper Deficiency in the Hypoalbuminemic Hemodialysis Patients. Nutrients 2020, 12, 577. [Google Scholar] [CrossRef]
- Takao, T.; Yanagisawa, H.; Suka, M.; Yoshida, Y.; Onishi, Y.; Tahara, T.; Kikuchi, T.; Kushiyama, A.; Anai, M.; Takahashi, K.; et al. Synergistic association of the copper/zinc ratio under inflammatory conditions with diabetic kidney disease in patients with type 2 diabetes: The Asahi Diabetes Complications Study. J. Diabetes Investig. 2022, 13, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Laouali, N.; MacDonald, C.J.; Shah, S.; El Fatouhi, D.; Mancini, F.R.; Fagherazzi, G.; Boutron-Ruault, M.C. Dietary Copper/Zinc Ratio and Type 2 Diabetes Risk in Women: The E3N Cohort Study. Nutrients 2021, 13, 2502. [Google Scholar] [CrossRef]
- Takubo, K.; Nagamatsu, G.; Kobayashi, C.I.; Nakamura-Ishizu, A.; Kobayashi, H.; Ikeda, E.; Goda, N.; Rahimi, Y.; Johnson, R.S.; Soga, T.; et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013, 12, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, K.U.; Kurtz, A. Regulation of erythropoietin production. Eur. J. Clin. Investig. 2005, 35, 13–19. [Google Scholar] [CrossRef]
- Imeri, F.; Nolan, K.A.; Bapst, A.M.; Santambrogio, S.; Abreu-Rodríguez, I.; Spielmann, P.; Pfundstein, S.; Libertini, S.; Crowther, L.; Orlando, I.M.C.; et al. Generation of renal Epo-producing cell lines by conditional gene tagging reveals rapid HIF-2 driven Epo kinetics, cell autonomous feedback regulation, and a telocyte phenotype. Kidney Int. 2019, 95, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Nardinocchi, L.; Pantisano, V.; Puca, R.; Porru, M.; Aiello, A.; Grasselli, A.; Leonetti, C.; Safran, M.; Rechavi, G.; Givol, D.; et al. Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS ONE 2010, 5, e15048. [Google Scholar] [CrossRef] [PubMed]
- Musanovic, A.; Trnacevic, S.; Mekic, M.; Musanovic, A. The influence of inflammatory markers and CRP predictive value in relation to the target hemoglobin level in patients on chronic hemodialysis. Med. Arch. 2013, 67, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Hirokawa, M. Diagnosis and treatment of macrocytic anemias in adults. J. Gen. Fam. Med. 2017, 18, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Tomosugi, N.; Koshino, Y. Tips for erythropoiesis-stimulating agent treatment of renal anemia. Clin. Exp. Nephrol. 2020, 24, 105–106. [Google Scholar] [CrossRef]
- Drüeke, T. Hyporesponsiveness to recombinant human erythropoietin. Nephrol. Dial. Transplant. 2001, 7, 25–28. [Google Scholar] [CrossRef]
- Watanabe, Y.; Kawanishi, H.; Suzuki, K.; Nakai, S.; Tsuchida, K.; Tabei, K.; Akiba, T.; Masakane, I.; Takemoto, Y.; Tomo, T.; et al. “Maintenance Hemodialysis: Hemodialysis Prescriptions” Guideline Working Group, Japanese Society for Dialysis Therapy. Japanese society for dialysis therapy clinical guideline for “Maintenance hemodialysis: Hemodialysis prescriptions”. Ther. Apher. Dial. 2015, 19, 67–92. [Google Scholar] [CrossRef]
- Zaiontz, C. Real Statistics Using Excel. Shapiro-Wilk Original Test. Available online: https://real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/shapiro-wilk-test/ (accessed on 3 February 2024).
- Yamamoto, H.; Nishi, S.; Tomo, T.; Masakane, I.; Saito, K.; Nangaku, M.; Hattori, M.; Suzuki, T.; Morita, S.; Ashida, A.; et al. 2015 Japanese Society for Dialysis Therapy: Guidelines for renal anemia in chronic kidney disease. Ren. Replace. Ther. 2017, 3, 36. [Google Scholar] [CrossRef]
- Shibata, S.; Kitamura, M. Modern diagnostic testing system. In Routine Clinical Biochemical Quantitative Methods; Nakayama Shoten Co., Ltd.: Tokyo, Japan, 1964; pp. 159–162. (In Japanese) [Google Scholar]
- Nakamura, H.; Kurihara, S.; Anayama, M.; Makino, Y.; Nagasaw, M. Four cases of serum copper excess in patients with renal anemia receiving a hypoxia-inducible factor-prolyl hydroxylase inhibitor: A possible safety concern. Case Rep. Nephrol. Dial. 2022, 12, 124–131. [Google Scholar] [CrossRef]
- Jeng, S.S.; Chen, Y.H. Association of Zinc with Anemia. Nutrients 2022, 14, 4918. [Google Scholar] [CrossRef] [PubMed]
- Kling, P.J.; Taing, K.M.; Dvorak, B.; Woodward, S.S.; Philipps, A.F. Insulin-like growth factor-I stimulates erythropoiesis when administered enterally. Growth Factors 2006, 24, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Lytras, A.; Tolis, G. Assessment of endocrine and nutritional status in age-related catabolic states of muscle and bone. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 604–610. [Google Scholar] [CrossRef]
- Katsumura, K.R.; DeVilbiss, A.W.; Pope, N.J.; Johnson, K.D.; Bresnick, E.H. Transcriptional mechanisms underlying hemoglobin synthesis. Cold Spring Harb. Perspect. Med. 2013, 3, a015412. [Google Scholar] [CrossRef]
- Bresnick, E.H.; Martowicz, M.L.; Pal, S.; Johnson, K.D. Developmental control via GATA factor interplay at chromatin domains. J. Cell. Physiol. 2005, 205, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.K.; Smyth, M.J.; Stennicke, H.R.; Salvesen, G.S.; Duriez, P.; Poirier, G.G.; Hannun, Y.A. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J. Biol. Chem. 1997, 272, 18530–18533. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.N.; Zhang, Z.F.; Wang, Z.Y.; Yoshida, A.; Ueda, T. L-carnitine inhibits apoptotic DNA fragmentation induced by a new spin-labeled derivative of podophyllotoxin via caspase-3 in Raji cells. Oncol. Rep. 2006, 15, 119–122. [Google Scholar] [CrossRef]
- Bonomini, M.; Zammit, V.; Pusey, C.D.; De Vecchi, A.; Arduini, A. Pharmacological use of L-carnitine in uremic anemia: Has its full potential been exploited? Pharmacol. Res. 2011, 63, 157–164. [Google Scholar] [CrossRef]
- Deicher, R.; Hörl, W.H. Hormonal adjuvants for the treatment of renal anaemia. Eur. J. Clin. Investig. 2005, 35, 75–84. [Google Scholar] [CrossRef]
- Wan, L.Y.; Zhang, Y.Q.; Chen, M.D.; Liu, C.B.; Wu, J.F. Relationship of structure and function of DNA-binding domain in vitamin D receptor. Molecules 2015, 20, 12389–12399. [Google Scholar] [CrossRef]
- Koskenkorva-Frank, T.S.; Weiss, G.; Koppenol, W.H.; Burckhardt, S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 2013, 65, 1174–1194. [Google Scholar] [CrossRef]
- Haase, V.H. Hypoxic regulation of erythropoiesis and iron metabolism. Am. J. Physiol. Renal Physiol. 2010, 299, F1–F13. [Google Scholar] [CrossRef]
- Zhang, F.L.; Shen, G.M.; Liu, X.L.; Wang, F.; Zhao, Y.Z.; Zhang, J.W. Hypoxia-inducible factor 1–mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions. J. Cell. Mol. Med. 2012, 16, 1889–1899. [Google Scholar] [CrossRef]
- Tolonen, J.P.; Heikkila, M.; Malinen, M.; Lee, H.M.; Palvimo, J.J.; Wei, G.H.; Myllyharju, J. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell. Mol. Life Sci. 2020, 77, 3627–3642. [Google Scholar] [CrossRef]
- Ferreira, G.C. Heme synthesis. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Ed.; Elsevier Inc.: London, UK, 2013; pp. 539–542. [Google Scholar]
- Kaferle, J.; Strzoda, C.E. Evaluation of macrocytosis. Am. Fam. Physician. 2009, 79, 203–208. [Google Scholar]
- Koury, M.J.; Ponka, P. New insights into erythropoiesis: The roles of folate, vitamin B12, and iron. Annu. Rev. Nutr. 2004, 24, 105–131. [Google Scholar] [CrossRef]
- Vinton, N.E.; Dahlstrom, K.A.; Strobel, C.T.; Ament, M.E. Macrocytosis and pseudoalbinism: Manifestations of selenium deficiency. J. Pediatr. 1987, 111, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Faull, R.J.; Ranieri, E.; Evans, A.M. Endogenous plasma carnitine pool composition and response to erythropoietin treatment in chronic haemodialysis patients. Nephrol. Dial. Transplant. 2009, 24, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Abe, M.; Yamazaki, T.; Mizuno, M.; Okawa, E.; Ando, H.; Oikawa, O.; Okada, K.; Kikuchi, F.; Soma, M. Effects of levocarnitine on brachial-ankle pulse wave velocity in hemodialysis patients: A randomized controlled trial. Nutrients 2014, 6, 5992–6004. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A. The pathophysiology of leg cramping during dialysis and the use of carnitine in its treatment. Physiol. Rep. 2021, 9, e15114. [Google Scholar] [CrossRef] [PubMed]
- Date, T. Carnitine management. Pharm. Mon. 2020, 62, 3154–3158. (In Japanese) [Google Scholar]
- Petrak, J.; Vyoral, D. Hephaestin—A ferroxidase of cellular iron export. Int. J. Biochem. Cell Biol. 2005, 37, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- De Souza, L.V.; Hoffmann, A.; Fischer, C.; Petzer, V.; Asshoff, M.; Theurl, I.; Tymoszuk, P.; Seifert, M.; Brigo, N.; Hilbe, R.; et al. Comparative analysis of oral and intravenous iron therapy in rat models of inflammatory anemia and iron deficiency. Haematologica 2023, 108, 135–149. [Google Scholar] [CrossRef]
- Brookhart, M.A.; Freburger, J.K.; Ellis, A.R.; Wang, L.; Winkelmayer, W.C.; Kshirsagar, A.V. Infection Risk with Bolus versus Maintenance Iron Supplementation in Hemodialysis Patients. J. Am. Soc. Nephrol. 2013, 24, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Mastrogiannaki, M.; Matak, P.; Mathieu, J.R.; Delga, S.; Mayeux, P.; Vaulont, S.; Peyssonnaux, C. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica 2012, 97, 827–834. [Google Scholar] [CrossRef]
- Mukhopadhyay, C.K.; Mazumder, B.; Fox, P.L. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 2000, 275, 21048–21054. [Google Scholar] [CrossRef]
- Rolfs, A.; Kvietikova, I.; Gassmann, M.; Wenger, R.H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J. Biol. Chem. 1997, 272, 20055–20062. [Google Scholar] [CrossRef]
- Sakajiri, T.; Nakatsuji, M.; Teraoka, Y.; Furuta, K.; Ikuta, K.; Shibusa, K.; Sugano, E.; Tomita, H.; Inui, T.; Yamamura, T. Zinc mediates the interaction between ceruloplasmin and apo-transferrin for the efficient transfer of Fe(III) ions. Metallomics 2021, 13, mfab065. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Qu, A.; Anderson, E.R.; Matsubara, T.; Martin, A.; Gonzalez, F.J.; Shah, Y.M. Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 2011, 140, 2044–2055. [Google Scholar] [CrossRef]
- Koury, M.J.; Haase, V.H. Anaemia in kidney disease: Harnessing hypoxia responses for therapy. Nat. Rev. Nephrol. 2015, 11, 394–410. [Google Scholar] [CrossRef]
- White, C.; Kambe, T.; Fulcher, Y.G.; Sachdev, S.W.; Bush, A.I.; Fritsche, K.; Lee, J.; Quinn, T.P.; Petris, M.J. Copper transport into the secretory pathway is regulated by oxygen in macrophages. J. Cell Sci. 2009, 122, 1315–1321. [Google Scholar] [CrossRef]
- Pourvali, K.; Matak, P.; Latunde-Dada, G.O.; Solomou, S.; Mastrogiannaki, M.; Peyssonnaux, C.; Sharp, P.A. Basal expression of copper transporter 1 in intestinal epithelial cells is regulated by hypoxia-inducible factor 2α. FEBS Lett. 2012, 586, 2423–2427. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Collins, J.F. Transcriptional regulation of the Menkes copper ATPase (Atp7a) gene by hypoxia-inducible factor (HIF2α) in intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 2011, 300, C1298–C1305. [Google Scholar] [CrossRef] [PubMed]
- Desai, V.; Kaler, S.G. Role of copper in human neurological disorders. Am. J. Clin. Nutr. 2008, 88, 855S–858S. [Google Scholar] [CrossRef] [PubMed]
- Klevay, L.M. Alzheimer’s disease as copper deficiency. Med. Hypotheses 2008, 70, 802–807. [Google Scholar] [CrossRef]
- Siotto, M.; Simonelli, I.; Pasqualetti, P.; Mariani, S.; Caprara, D.; Bucossi, S.; Ventriglia, M.; Molinario, R.; Antenucci, M.; Rongioletti, M.; et al. Association Between Serum Ceruloplasmin Specific Activity and Risk of Alzheimer’s Disease. J. Alzheimers Dis. 2016, 50, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Royer, A.; Sharman, T. Copper Toxicity. [Updated 2023 Dec 27]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557456/ (accessed on 11 February 2024).
- Squitti, R.; Simonelli, I.; Ventriglia, M.; Siotto, M.; Pasqualetti, P.; Rembach, A.; Doecke, J.; Bush, A.I. Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease. J. Alzheimers Dis. 2014, 38, 809–822. [Google Scholar] [CrossRef]
- Garai, K.; Sahoo, B.; Kaushalya, S.K.; Desai, R.; Maiti, S. Zinc lowers amyloid-beta toxicity by selectively precipitating aggregation intermediates. Biochemistry 2007, 46, 10655–10663. [Google Scholar] [CrossRef]
- Miller, Y.; Ma, B.; Nussinov, R. Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states. Proc. Natl. Acad. Sci. USA 2010, 107, 9490–9495. [Google Scholar] [CrossRef]
- Lee, M.C.; Yu, W.C.; Shih, Y.H.; Chen, C.Y.; Guo, Z.H.; Huang, S.J.; Chan, J.C.C.; Chen, Y.R. Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer’s disease. Sci. Rep. 2018, 8, 4772. [Google Scholar] [CrossRef]
ESA | HIF-PHI | p Value | |
---|---|---|---|
Number of participants | 9 | 9 | |
Male sex, n (%) | 5 (55.5) | 4 (44.4) | 0.637 |
Age, mean ± SD (years) | 74.5 ± 11.4 | 77.6 ± 11.9 | 0.608 |
Duration of dialysis, mean ± SD (years) | 7.8 ± 4.3 | 5.2 ± 2.2 | 0.187 |
Etiology, n (%) | 0.776 | ||
Diabetic nephropathy | 4 (44.4) | 4 (44.4) | |
Nephrosclerosis | 3 (33.3) | 4 (44.4) | |
Chronic glomerulonephritis | 1 (11.1) | 1 (11.1) | |
Other | 1 (11.1) | 0 (0.0) |
Normal Range | Unit | Zinc (−) | Zinc (+) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Zinc | mg/day | 0.0 | ± | 0.0 | 36.5 | ± | 8.9 | ||
ERI | μg/week/kg/g/L | 0.0034 | ± | 0.0023 | 0.0018 | ± | 0.0017 | 0.046 | |
ESA | μg | 18.1 | ± | 10.9 | 9.9 | ± | 8.1 | 0.028 | |
ESA/week | μg/week | 18.1 | ± | 10.9 | 9.9 | ± | 8.1 | 0.028 | |
Dry weight | kg | 54.7 | ± | 10.0 | 54.1 | ± | 8.2 | 0.857 | |
CRP | 0.0–1.4 | mg/L | 0.83 | ± | 0.59 | 0.66 | ± | 0.55 | 0.441 |
White blood cell | 3.3–8.6 | 109/L | 6.26 | ± | 1.47 | 5.73 | ± | 1.44 | 0.327 |
Red blood cell | 4.35–5.55 | 1012/L | 3.36 | ± | 0.33 | 3.41 | ± | 0.27 | 0.636 |
Hemoglobin | 137–168 | g/L | 106.2 | ± | 9.9 | 106.0 | ± | 6.3 | 0.939 |
Hematocrit | 0.41–0.50 | 0.326 | ± | 0.031 | 0.326 | ± | 0.022 | 0.978 | |
MCV | 83.6–98.2 | µm3 | 97.4 | ± | 4.4 | 95.9 | ± | 3.7 | 0.336 |
MCH | 1.71–2.06 | fmol | 1.97 | ± | 0.07 | 1.94 | ± | 0.07 | 0.255 |
Platelet | 158–348 | 109/L | 185.5 | ± | 52.7 | 194.1 | ± | 52.7 | 0.659 |
RDW-SD | 39–46 | fL | 48.4 | ± | 4.7 | 45.8 | ± | 2.9 | 0.159 |
RDW-CV | 0.116–0.146 | 0.144 | ± | 0.018 | 0.138 | ± | 0.008 | 0.351 | |
Reticulocytes | 0.50–2.00 | % | 1.80 | ± | 1.00 | 1.38 | ± | 0.82 | 0.220 |
Serum iron | 7.2–33.7 | μmol/L | 12.8 | ± | 5.2 | 13.3 | ± | 2.8 | 0.522 |
TIBC | 43.9–72.0 | μmol/L | 42.2 | ± | 6.4 | 45.3 | ± | 7.6 | 0.254 |
TSAT | % | 33.21 | ± | 8.62 | 29.45 | ± | 6.21 | 0.196 | |
Serum ferritin | 13–277 | μg/L | 160.1 | ± | 192.2 | 92.5 | ± | 65.0 | 0.222 |
Serum copper | 11.2–20.8 | μmol/L | 13.25 | ± | 2.43 | 12.4 | ± | 2.8 | 0.872 |
Serum zinc | 12.2–19.9 | μmol/L | 9.48 | ± | 1.59 | 12.7 | ± | 3.0 | 0.00081 |
Normal Range | Unit | Zinc (−) | Zinc (+) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Zinc | mg/day | 0.0 | ± | 0.0 | 35.9 | ± | 10.2 | ||
HRI | mg/week/kg/g/L | 0.025 | ± | 0.017 | 0.025 | ± | 0.010 | 0.957 | |
HIF-PHI | mg | 49.2 | ± | 26.4 | 50.3 | ± | 16.9 | 0.874 | |
HIF-PHI/week | mg/week | 147.7 | ± | 79.3 | 151.0 | ± | 50.7 | 0.874 | |
Dry weight | kg | 57.4 | ± | 8.4 | 58.2 | ± | 11.6 | 0.820 | |
CRP | 0.0–1.4 | mg/L | 1.09 | ± | 1.42 | 1.01 | ± | 0.90 | 0.830 |
White blood cell | 3.3–8.6 | 109/L | 6.93 | ± | 1.48 | 6.83 | ± | 1.32 | 0.655 |
Red blood cell | 4.35–5.55 | 1012/L | 3.22 | ± | 0.21 | 3.29 | ± | 0.21 | 0.317 |
Hemoglobin | 137–168 | g/L | 101.1 | ± | 6.6 | 105.5 | ± | 6.5 | 0.050 |
Hematocrit | 0.41–0.50 | 0.31 | ± | 0.02 | 0.32 | ± | 0.02 | 0.231 | |
MCV | 83.6–98.2 | µm3 | 96.3 | ± | 3.3 | 96.3 | ± | 3.3 | 0.760 |
MCH | 1.71–2.06 | fmol | 1.95 | ± | 0.08 | 1.99 | ± | 0.08 | 0.203 |
Platelet | 158–348 | 109/L | 191.0 | ± | 53.5 | 188.2 | ± | 44.3 | 0.862 |
RDW-SD | 39–46 | fL | 48.5 | ± | 7.1 | 50.9 | ± | 8.5 | 0.436 |
RDW-CV | 0.116–0.146 | 0.14 | ± | 0.02 | 0.15 | ± | 0.03 | 0.576 | |
Reticulocytes | 0.50–2.00 | % | 2.01 | ± | 1.19 | 1.73 | ± | 0.69 | 0.359 |
Serum iron | 7.2–33.7 | μmol/L | 11.9 | ± | 2.9 | 13.6 | ± | 5.0 | 0.297 |
TIBC | 43.9–72.0 | μmol/L | 45.8 | ± | 6.6 | 46.9 | ± | 8.4 | 0.697 |
TSAT | % | 27.0 | ± | 7.7 | 28.5 | ± | 7.5 | 0.571 | |
Serum ferritin | 13–277 | μg/L | 148.0 | ± | 120.3 | 120.3 | ± | 105.5 | 0.212 |
Serum copper | 11.2–20.8 | μmol/L | 17.8 | ± | 3.7 | 17.8 | ± | 3.3 | 0.849 |
Serum zinc | 12.2–19.9 | μmol/L | 8.0 | ± | 1.9 | 11.8 | ± | 3.7 | 0.0016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, A. Zinc Supplementation Enhances the Hematopoietic Activity of Erythropoiesis-Stimulating Agents but Not Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitors. Nutrients 2024, 16, 520. https://doi.org/10.3390/nu16040520
Takahashi A. Zinc Supplementation Enhances the Hematopoietic Activity of Erythropoiesis-Stimulating Agents but Not Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitors. Nutrients. 2024; 16(4):520. https://doi.org/10.3390/nu16040520
Chicago/Turabian StyleTakahashi, Akira. 2024. "Zinc Supplementation Enhances the Hematopoietic Activity of Erythropoiesis-Stimulating Agents but Not Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitors" Nutrients 16, no. 4: 520. https://doi.org/10.3390/nu16040520
APA StyleTakahashi, A. (2024). Zinc Supplementation Enhances the Hematopoietic Activity of Erythropoiesis-Stimulating Agents but Not Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitors. Nutrients, 16(4), 520. https://doi.org/10.3390/nu16040520