Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence
Abstract
:1. Introduction
2. Autism Spectrum Disorder
2.1. Ketogenic Diet (KD)
2.2. Medium-Chain Triglyceride (MCT) Diet
2.3. Low Glycemic Index (LGI) Diet
2.4. Calorie Restriction Diet
2.5. Ketone Body Supplementation
2.6. Polyunsaturated Fatty Acid (PUFA) Supplementation
2.7. Triheptanoin Supplementation
3. Affective Disorders
3.1. Ketogenic Diet (KD)
3.2. Medium-Chain Triglyceride (MCT) Diet
3.3. Low Glycemic Index (LGI) Diet
3.4. Caloric Restriction
3.5. Ketone Body Supplementation
3.6. Polyunsaturated Fatty Acid (PUFA) Supplementation
3.7. Triheptanoin
4. Cognitive Impairment
4.1. Ketogenic Diet (KD)
4.2. Medium-Chain Triglyceride (MCT) Diet
4.3. Low Glycemic Index (LGI) Diet
4.4. Calorie Restriction
4.5. Ketone Body Supplementation
4.6. Polyunsaturated Fatty Acid (PUFA) Supplementation
4.7. Triheptanoin
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Strine, T.W.; Kobau, R.; Chapman, D.P.; Thurman, D.J.; Price, P.; Balluz, L.S. Psychological Distress, Comorbidities, and Health Behaviors among U.S. Adults with Seizures: Results from the 2002 National Health Interview Survey. Epilepsia 2005, 46, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Téllez-Zenteno, J.F.; Matijevic, S.; Wiebe, S. Somatic Comorbidity of Epilepsy in the General Population in Canada. Epilepsia 2005, 46, 1955–1962. [Google Scholar] [CrossRef] [PubMed]
- Gaitatzis, A.; Carroll, K.; Majeed, A.; Sander, J.W. The Epidemiology of the Comorbidity of Epilepsy in the General Population. Epilepsia 2004, 45, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Forsgren, L. Prevalence of Epilepsy in Adults in Northern Sweden. Epilepsia 1992, 33, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Jalava, M.; Sillanpää, M. Concurrent Illnesses in Adults with Childhood-Onset Epilepsy: A Population-Based 35-Year Follow-Up Study. Epilepsia 1996, 37, 1155–1163. [Google Scholar] [CrossRef]
- Kim, D.Y.; Simeone, K.A.; Simeone, T.A.; Pandya, J.D.; Wilke, J.C.; Ahn, Y.; Geddes, J.W.; Sullivan, P.G.; Rho, J.M. Ketone Bodies Mediate Antiseizure Effects through Mitochondrial Permeability Transition. Ann. Neurol. 2015, 78, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Aja, S.; Li, Q.; Degano, A.L.; Penati, J.; Zhuo, J.; Roe, C.R.; Ronnett, G.V. Anaplerotic Triheptanoin Diet Enhances Mitochondrial Substrate Use to Remodel the Metabolome and Improve Lifespan, Motor Function, and Sociability in MeCP2-Null Mice. PLoS ONE 2014, 9, e0109527. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Bonucci, A.; Maggi, E.; Corsi, M.; Businaro, R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer’s Disease. Antioxid. Basel Switz. 2018, 7, 63. [Google Scholar] [CrossRef]
- Yamanashi, T.; Iwata, M.; Kamiya, N.; Tsunetomi, K.; Kajitani, N.; Wada, N.; Iitsuka, T.; Yamauchi, T.; Miura, A.; Pu, S.; et al. Beta-Hydroxybutyrate, an Endogenic NLRP3 Inflammasome Inhibitor, Attenuates Stress-Induced Behavioral and Inflammatory Responses. Sci. Rep. 2017, 7, 7677. [Google Scholar] [CrossRef]
- Tiesset, H.; Pierre, M.; Desseyn, J.L.; Guery, B.; Beermann, C.; Galabert, C.; Gottrand, F.; Husson, M.O. Dietary (n-3) Polyunsaturated Fatty Acids Affect the Kinetics of pro- And Antiinflammatory Responses in Mice with Pseudomonas Aeruginosa Lung Infection. J. Nutr. 2009, 139, 82–89. [Google Scholar] [CrossRef]
- Zhao, G.; Etherton, T.D.; Martin, K.R.; Vanden Heuvel, J.P.; Gillies, P.J.; West, S.G.; Kris-Etherton, P.M. Anti-Inflammatory Effects of Polyunsaturated Fatty Acids in THP-1 Cells q. Biochem. Biophys. Res. Commun. 2005, 336, 909–917. [Google Scholar] [CrossRef]
- Newell, C.; Bomhof, M.R.; Reimer, R.A.; Hittel, D.S.; Rho, J.M.; Shearer, J. Ketogenic Diet Modifies the Gut Microbiota in a Murine Model of Autism Spectrum Disorder. Mol. Autism 2016, 7, 37. [Google Scholar] [CrossRef]
- Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 2018, 173, 1728–1741.e13. [Google Scholar] [CrossRef]
- Peng, A.; Qiu, X.; Lai, W.; Li, W.; Zhang, L.; Zhu, X.; He, S.; Duan, J.; Chen, L. Altered Composition of the Gut Microbiome in Patients with Drug-Resistant Epilepsy. Epilepsy Res. 2018, 147, 102–107. [Google Scholar] [CrossRef]
- Hughes, H.K.; Rose, D.; Ashwood, P. The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Curr. Neurol. Neurosci. Rep. 2018, 18, 81. [Google Scholar] [CrossRef]
- Tabouy, L.; Getselter, D.; Ziv, O.; Karpuj, M.; Tabouy, T.; Lukic, I.; Maayouf, R.; Werbner, N.; Ben-Amram, H.; Nuriel-Ohayon, M.; et al. Dysbiosis of Microbiome and Probiotic Treatment in a Genetic Model of Autism Spectrum Disorders. Brain Behav. Immun. 2018, 73, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-Ketogenic Diet Modulates Gut Microbiome and Short-Chain Fatty Acids in Association with Alzheimer’s Disease Markers in Subjects with Mild Cognitive Impairment. EBioMedicine 2019, 47, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Lang, Y.; Shu, H.; Shao, J.; Cui, L. Microbiota–Gut–Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Front. Immunol. 2021, 12, 742449. [Google Scholar] [CrossRef]
- Gong, X.; Cai, Q.; Liu, X.; An, D.; Zhou, D.; Luo, R.; Peng, R.; Hong, Z. Gut Flora and Metabolism Are Altered in Epilepsy and Partially Restored after Ketogenic Diets. Microb. Pathog. 2021, 155, 104899. [Google Scholar] [CrossRef]
- Arulsamy, A.; Shaikh, M.F. Epilepsy-Associated Comorbidities among Adults: A Plausible Therapeutic Role of Gut Microbiota. Neurobiol. Dis. 2022, 165, 105648. [Google Scholar] [CrossRef] [PubMed]
- Adıgüzel, E.; Çiçek, B.; Ünal, G.; Aydın, M.F.; Barlak-Keti, D. Probiotics and Prebiotics Alleviate Behavioral Deficits, Inflammatory Response, and Gut Dysbiosis in Prenatal VPA-Induced Rodent Model of Autism. Physiol. Behav. 2022, 256, 113961. [Google Scholar] [CrossRef]
- Cao, X.; Liu, K.; Liu, J.; Liu, Y.-W.; Xu, L.; Wang, H.; Zhu, Y.; Wang, P.; Li, Z.; Wen, J.; et al. Dysbiotic Gut Microbiota and Dysregulation of Cytokine Profile in Children and Teens With Autism Spectrum Disorder. Front. Neurosci. 2021, 15, 635925. [Google Scholar] [CrossRef]
- Williams, T.J.; Cervenka, M.C. The Role for Ketogenic Diets in Epilepsy and Status Epilepticus in Adults. Clin. Neurophysiol. Pract. 2017, 2, 154. [Google Scholar] [CrossRef]
- Muzykewicz, D.A.; Lyczkowski, D.A.; Memon, N.; Conant, K.D.; Pfeifer, H.H.; Thiele, E.A. Efficacy, Safety, and Tolerability of the Low Glycemic Index Treatment in Pediatric Epilepsy. Epilepsia 2009, 50, 1118–1126. [Google Scholar] [CrossRef]
- Bolton, P.F.; Carcani-Rathwell, I.; Hutton, J.; Goode, S.; Howlin, P.; Rutter, M. Epilepsy in Autism: Features and Correlates. Br. J. Psychiatry 2011, 198, 289–294. [Google Scholar] [CrossRef]
- Danielsson, S.; Gillberg, I.C.; Billstedt, E.; Gillberg, C.; Olsson, I. Epilepsy in Young Adults with Autism: A Prospective Population-based Follow-up Study of 120 Individuals Diagnosed in Childhood. Epilepsia 2005, 46, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Giovanardi Rossi, P.; Posar, A.; Parmeggiani, A. Epilepsy in Adolescents and Young Adults with Autistic Disorder. Brain Dev. 2000, 22, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Besag, F.M.C. Epilepsy in Patients with Autism: Links, Risks and Treatment Challenges. Neuropsychiatr. Dis. Treat. 2018, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Cekici, H.; Sanlier, N. Current Nutritional Approaches in Managing Autism Spectrum Disorder: A Review. Nutr. Neurosci. 2019, 22, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Simeone, T.A.; Simeone, K.A.; Rho, J.M. Ketone Bodies as Anti-Seizure Agents. Neurochem. Res. 2017, 42, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Żarnowska, I.; Chrapko, B.; Gwizda, G.; Nocuń, A.; Mitosek-Szewczyk, K.; Gasior, M. Therapeutic Use of Carbohydrate-Restricted Diets in an Autistic Child; a Case Report of Clinical and 18FDG PET Findings. Metab. Brain Dis. 2018, 33, 1187. [Google Scholar] [CrossRef] [PubMed]
- Napoli, E.; Dueñas, N.; Giulivi, C. Potential Therapeutic Use of the Ketogenic Diet in Autism Spectrum Disorders. Front. Pediatr. 2014, 2, 69. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.R.; Buckley, J.A. Autism and Dietary Therapy: Case Report and Review of the Literature. J. Child Neurol. 2013, 28, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Ruskin, D.N.; Svedova, J.; Cote, J.L.; Sandau, U.; Rho, J.M.; Kawamura, M.; Boison, D.; Masino, S.A. Ketogenic Diet Improves Core Symptoms of Autism in BTBR Mice. PLoS ONE 2013, 8, 65021. [Google Scholar] [CrossRef] [PubMed]
- Ruskin, D.N.; Murphy, M.I.; Slade, S.L.; Masino, S.A. Ketogenic Diet Improves Behaviors in a Maternal Immune Activation Model of Autism Spectrum Disorder. PLoS ONE 2017, 12, e0171643. [Google Scholar] [CrossRef] [PubMed]
- Ruskin, D.N.; Fortin, J.A.; Bisnauth, S.N.; Masino, S.A. Ketogenic Diets Improve Behaviors Associated with Autism Spectrum Disorder in a Sex-Specific Manner in the EL Mouse. Physiol. Behav. 2017, 168, 138. [Google Scholar] [CrossRef]
- Ahn, Y.; Narous, M.; Tobias, R.; Rho, J.M.; Mychasiuk, R. The Ketogenic Diet Modifies Social and Metabolic Alterations Identified in the Prenatal Valproic Acid Model of Autism Spectrum Disorder. Dev. Neurosci. 2014, 36, 371–380. [Google Scholar] [CrossRef]
- Ahn, Y.; Sabouny, R.; Villa, B.R.; Yee, N.C.; Mychasiuk, R.; Uddin, G.M.; Rho, J.M.; Shutt, T.E. Aberrant Mitochondrial Morphology and Function in the BTBR Mouse Model of Autism Is Improved by Two Weeks of Ketogenic Diet. Int. J. Mol. Sci. 2020, 21, 3266. [Google Scholar] [CrossRef]
- Citrigno, L.; Muglia, M.; Qualtieri, A.; Spadafora, P.; Cavalcanti, F.; Pioggia, G.; Cerasa, A. The Mitochondrial Dysfunction Hypothesis in Autism Spectrum Disorders: Current Status and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 5785. [Google Scholar] [CrossRef]
- Dunn, E.; Zhang, B.; Sahota, V.K.; Augustin, H. Potential Benefits of Medium Chain Fatty Acids in Aging and Neurodegenerative Disease. Front. Aging Neurosci. 2023, 15, 1230467. [Google Scholar] [CrossRef]
- Martin-McGill, K.J.; Bresnahan, R.; Levy, R.G.; Cooper, P.N. Ketogenic Diets for Drug-Resistant Epilepsy. Cochrane Database Syst. Rev. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Currais, A.; Farrokhi, C.; Dargusch, R.; Goujon-Svrzic, M.; Maher, P. Dietary Glycemic Index Modulates the Behavioral and Biochemical Abnormalities Associated with Autism Spectrum Disorder. Mol. Psychiatry 2016, 21, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Mantis, J.G.; Fritz, C.L.; Marsh, J.; Heinrichs, S.C.; Seyfried, T.N. Improvement in Motor and Exploratory Behavior in Rett Syndrome Mice with Restricted Ketogenic and Standard Diets. Epilepsy Behav. 2009, 15, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ciarlone, S.L.; Grieco, J.C.; D’Agostino, D.P.; Weeber, E.J. Ketone Ester Supplementation Attenuates Seizure Activity, and Improves Behavior and Hippocampal Synaptic Plasticity in an Angelman Syndrome Mouse Model. Neurobiol. Dis. 2016, 96, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Mazahery, H.; Stonehouse, W.; Delshad, M.; Kruger, M.C.; Conlon, C.A.; Beck, K.L.; von Hurst, P.R. Relationship between Long Chain N-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients 2017, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Tseng, P.T.; Chen, Y.W.; Stubbs, B.; Yang, W.C.; Chen, T.Y.; Wu, C.K.; Lin, P.Y. Supplementation of Omega 3 Fatty Acids May Improve Hyperactivity, Lethargy, and Stereotypy in Children with Autism Spectrum Disorders: A Meta-Analysis of Randomized Controlled Trials. Neuropsychiatr. Dis. Treat. 2017, 13, 2531. [Google Scholar] [CrossRef] [PubMed]
- Horvath, A.; Łukasik, J.; Szajewska, H. ω-3 Fatty Acid Supplementation Does Not Affect Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. J. Nutr. 2017, 147, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Bozzatello, P.; Brignolo, E.; De Grandi, E.; Bellino, S. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J. Clin. Med. 2016, 5, 67. [Google Scholar] [CrossRef]
- Doaei, S.; Bourbour, F.; Teymoori, Z.; Jafari, F.; Kalantari, N.; Abbas Torki, S.; Ashoori, N.; Nemat Gorgani, S.; Gholamalizadeh, M. The Effect of Omega-3 Fatty Acids Supplementation on Social and Behavioral Disorders of Children with Autism: A Randomized Clinical Trial. Pediatr. Endocrinol. Diabetes Metab. 2021, 27, 12–18. [Google Scholar] [CrossRef]
- Tartaglione, A.M.; Villani, A.; Ajmone-Cat, M.A.; Minghetti, L.; Ricceri, L.; Pazienza, V.; De Simone, R.; Calamandrei, G. Maternal Immune Activation Induces Autism-like Changes in Behavior, Neuroinflammatory Profile and Gut Microbiota in Mouse Offspring of Both Sexes. Transl. Psychiatry 2022, 12, 384. [Google Scholar] [CrossRef]
- Adiguzel, E.; Bozkurt, N.M.; Unal, G. Independent and Combined Effects of Astaxanthin and Omega-3 on Behavioral Deficits and Molecular Changes in a Prenatal Valproic Acid Model of Autism in Rats. Nutr. Neurosci. 2023, 1–17. [Google Scholar] [CrossRef]
- Fortunato, J.J.; da Rosa, N.; Martins Laurentino, A.O.; Goulart, M.; Michalak, C.; Borges, L.P.; da Cruz Cittadin Soares, E.; Reis, P.A.; de Castro Faria Neto, H.C.; Petronilho, F. Effects of ω-3 Fatty Acids on Stereotypical Behavior and Social Interactions in Wistar Rats Prenatally Exposed to Lipopolysaccarides. Nutrition 2017, 35, 119–127. [Google Scholar] [CrossRef]
- Weiser, M.J.; Mucha, B.; Denheyer, H.; Atkinson, D.; Schanz, N.; Vassiliou, E.; Benno, R.H. Dietary Docosahexaenoic Acid Alleviates Autistic-like Behaviors Resulting from Maternal Immune Activation in Mice. Prostaglandins Leukot. Essent. Fatty Acids 2016, 106, 27–37. [Google Scholar] [CrossRef]
- Omrani, S.; Taheri, M.; Omrani, M.D.; Arsang-Jang, S.; Ghafouri-Fard, S. The Effect of Omega-3 Fatty Acids on Clinical and Paraclinical Features of Intractable Epileptic Patients: A Triple Blind Randomized Clinical Trial. Clin. Transl. Med. 2019, 8, 3. [Google Scholar] [CrossRef]
- Kwon, O.-Y.; Park, S.-P. Depression and Anxiety in People with Epilepsy. J. Clin. Neurol. Seoul Korea 2014, 10, 175–188. [Google Scholar] [CrossRef]
- IJff, D.M.; Postulart, D.; Lambrechts, D.A.J.E.; Majoie, M.H.J.M.; de Kinderen, R.J.A.; Hendriksen, J.G.M.; Evers, S.M.A.A.; Aldenkamp, A.P. Cognitive and Behavioral Impact of the Ketogenic Diet in Children and Adolescents with Refractory Epilepsy: A Randomized Controlled Trial. Epilepsy Behav. 2016, 60, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.; Gibas, S.; Salisbury, M.; Gomer, J.; Gibas, K. Ketogenic Diets Potentially Reverse Type II Diabetes and Ameliorate Clinical Depression: A Case Study. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Danan, A.; Westman, E.C.; Saslow, L.R.; Ede, G. The Ketogenic Diet for Refractory Mental Illness: A Retrospective Analysis of 31 Inpatients. Front. Psychiatry 2022, 13, 1421. [Google Scholar] [CrossRef] [PubMed]
- Phelps, J.R.; Siemers, S.V.; El-Mallakh, R.S. The Ketogenic Diet for Type II Bipolar Disorder. Neurocase 2013, 19, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.; Likhodii, S.; Nylen, K.; Burnham, W.M. The Antidepressant Properties of the Ketogenic Diet. Biol. Psychiatry 2004, 56, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Sussman, D.; Germann, J.; Henkelman, M. Gestational Ketogenic Diet Programs Brain Structure and Susceptibility to Depression & Anxiety in the Adult Mouse Offspring. Brain Behav. 2015, 5, e00300. [Google Scholar] [CrossRef]
- Hollis, F.; Mitchell, E.S.; Canto, C.; Wang, D.; Sandi, C. Medium Chain Triglyceride Diet Reduces Anxiety-like Behaviors and Enhances Social Competitiveness in Rats. Neuropharmacology 2018, 138, 245–256. [Google Scholar] [CrossRef]
- Shoji, H.; Kunugi, H.; Miyakawa, T. Acute and Chronic Effects of Oral Administration of a Medium-chain Fatty Acid, Capric Acid, on Locomotor Activity and Anxiety-like and Depression-related Behaviors in Adult Male C57BL/6J Mice. Neuropsychopharmacol. Rep. 2022, 42, 59–69. [Google Scholar] [CrossRef]
- Yeap, S.K.; Beh, B.K.; Ali, N.M.; Yusof, H.M.; Ho, W.Y.; Koh, S.P.; Alitheen, N.B.; Long, K. Antistress and Antioxidant Effects of Virgin Coconut Oil in Vivo. Exp. Ther. Med. 2015, 9, 39–42. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, M.; Kim, E.H.; Choi, D.-W.; Jung, E.; Kim, K.Y.; Jung, I.; Ha, J. Risk of Depression and Anxiety Disorders According to Long-Term Glycemic Variability. J. Affect. Disord. 2023, 343, 50–58. [Google Scholar] [CrossRef]
- Hussin, N.M.; Shahar, S.; Teng, N.I.M.F.; Ngah, W.Z.W.; Das, S.K. Efficacy of Fasting and Calorie Restriction (FCR) on Mood and Depression among Ageing Men. J. Nutr. Health Aging 2013, 17, 674–680. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, R.; Martínez-Vizcaíno, V.; Mesas, A.E.; Notario-Pacheco, B.; Medrano, M.; Heilbronn, L.K. Does Intermittent Fasting Impact Mental Disorders? A Systematic Review with Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 11169–11184. [Google Scholar] [CrossRef]
- Lutter, M.; Krishnan, V.; Russo, S.J.; Jung, S.; McClung, C.A.; Nestler, E.J. Orexin Signaling Mediates the Antidepressant-Like Effect of Calorie Restriction. J. Neurosci. 2008, 28, 3071–3075. [Google Scholar] [CrossRef]
- Lutter, M.; Sakata, I.; Osborne-Lawrence, S.; Rovinsky, S.A.; Anderson, J.G.; Jung, S.; Birnbaum, S.; Yanagisawa, M.; Elmquist, J.K.; Nestler, E.J.; et al. The Orexigenic Hormone Ghrelin Defends against Depressive Symptoms of Chronic Stress. Nat. Neurosci. 2008, 11, 752–753. [Google Scholar] [CrossRef]
- Li, B.; Zhao, J.; Lv, J.; Tang, F.; Liu, L.; Sun, Z.; Wang, L.; Siwela, S.P.; Wang, Y.; Song, Y.; et al. Additive Antidepressant-like Effects of Fasting with Imipramine via Modulation of 5-HT2 Receptors in the Mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 199–206. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, Y.; Lin, S.; Wu, D.-Y.; Hu, J.; Huang, L.; Zang, W.-S.; Li, X.-W.; Yang, J.-M.; Gao, T.-M. The ATP Level in the MPFC Mediates the Antidepressant Effect of Calorie Restriction. Neurosci. Bull. 2021, 37, 1303–1313. [Google Scholar] [CrossRef]
- De Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Guiard, B.P.; Di Giovanni, G. Central Serotonin-2A (5-HT2A) Receptor Dysfunction in Depression and Epilepsy: The Missing Link? Front. Pharmacol. 2015, 6, 46. [Google Scholar] [CrossRef]
- Wada, Y.; Nakamura, M.; Hasegawa, H.; Yamaguchi, N. Role of Serotonin Receptor Subtype in Seizures Kindled from the Feline Hippocampus. Neurosci. Lett. 1992, 141, 21–24. [Google Scholar] [CrossRef]
- Wada, Y.; Shiraishi, J.; Nakamura, M.; Koshino, Y. Role of Serotonin Receptor Subtypes in the Development of Amygdaloid Kindling in Rats. Brain Res. 1997, 747, 338–342. [Google Scholar] [CrossRef]
- Ritz, M.C.; George, F.R. Cocaine-Induced Convulsions: Pharmacological Antagonism at Serotonergic, Muscarinic and Sigma Receptors. Psychopharmacology 1997, 129, 299–310. [Google Scholar] [CrossRef]
- Ari, C.; Kovács, Z.; Juhasz, G.; Murdun, C.; Goldhagen, C.R.; Koutnik, A.P.; Poff, A.M.; Kesl, S.L.; D’Agostino, D.P. Exogenous Ketone Supplements Reduce Anxiety-Related Behavior in Sprague-Dawley and Wistar Albino Glaxo/Rijswijk Rats. Front. Mol. Neurosci. 2016, 9, 137. [Google Scholar] [CrossRef]
- Huang, C.; Wang, P.; Xu, X.; Zhang, Y.; Gong, Y.; Hu, W.; Gao, M.; Wu, Y.; Ling, Y.; Zhao, X.; et al. The Ketone Body Metabolite Β-hydroxybutyrate Induces an Antidepression-associated Ramification of Microglia via HDACs Inhibition-triggered Akt-small RhoGTPase Activation. Glia 2018, 66, 256–278. [Google Scholar] [CrossRef]
- Pan, S.; Hu, P.; You, Q.; Chen, J.; Wu, J.; Zhang, Y.; Cai, Z.; Ye, T.; Xu, X.; Chen, Z.; et al. Evaluation of the Antidepressive Property of β-Hydroxybutyrate in Mice. Behav. Pharmacol. 2020, 31, 322–332. [Google Scholar] [CrossRef]
- Kajitani, N.; Iwata, M.; Miura, A.; Tsunetomi, K.; Yamanashi, T.; Matsuo, R.; Nishiguchi, T.; Fukuda, S.; Nagata, M.; Shibushita, M.; et al. Prefrontal Cortex Infusion of Beta-hydroxybutyrate, an Endogenous NLRP3 Inflammasome Inhibitor, Produces Antidepressant-like Effects in a Rodent Model of Depression. Neuropsychopharmacol. Rep. 2020, 40, 157–165. [Google Scholar] [CrossRef]
- Lin, P.Y.; Huang, S.Y.; Su, K.P. A Meta-Analytic Review of Polyunsaturated Fatty Acid Compositions in Patients with Depression. Biol. Psychiatry 2010, 68, 140–147. [Google Scholar] [CrossRef]
- Frasure-Smith, N.; Lespérance, F.; Julien, P. Major Depression Is Associated with Lower Omega-3 Fatty Acid Levels in Patients with Recent Acute Coronary Syndromes. Biol. Psychiatry 2004, 55, 891–896. [Google Scholar] [CrossRef]
- De Vriese, S.R.; Christophe, A.B.; Maes, M. Lowered Serum N-3 Polyunsaturated Fatty Acid (PUFA) Levels Predict the Occurrence of Postpartum Depression: Further Evidence That Lowered n-PUFAs Are Related to Major Depression. Life Sci. 2003, 73, 3181–3187. [Google Scholar] [CrossRef]
- Grosso, G.; Pajak, A.; Marventano, S.; Castellano, S.; Galvano, F.; Bucolo, C.; Drago, F.; Caraci, F. Role of Omega-3 Fatty Acids in the Treatment of Depressive Disorders: A Comprehensive Meta-Analysis of Randomized Clinical Trials. PLoS ONE 2014, 9, e96905. [Google Scholar] [CrossRef]
- Lu, Y.; Qiao, D.; Mi, G. Clinical Impacts of n -3 Fatty Acids Supplementation on Depression Symptoms: An Umbrella Review of Meta-Analyses. Br. J. Nutr. 2023, 1–10. [Google Scholar] [CrossRef]
- Venna, V.R.; Deplanque, D.; Allet, C.; Belarbi, K.; Hamdane, M.; Bordet, R. PUFA Induce Antidepressant-like Effects in Parallel to Structural and Molecular Changes in the Hippocampus. Psychoneuroendocrinology 2009, 34, 199–211. [Google Scholar] [CrossRef]
- Davis, D.J.; Hecht, P.M.; Jasarevic, E.; Beversdorf, D.Q.; Will, M.J.; Fritsche, K.; Gillespie, C.H. Sex-Specific Effects of Docosahexaenoic Acid (DHA) on the Microbiome and Behavior of Socially-Isolated Mice. Brain. Behav. Immun. 2017, 59, 38–48. [Google Scholar] [CrossRef]
- Di Miceli, M.; Martinat, M.; Rossitto, M.; Aubert, A.; Alashmali, S.; Bosch-Bouju, C.; Fioramonti, X.; Joffre, C.; Bazinet, R.P.; Layé, S. Dietary Long-Chain n-3 Polyunsaturated Fatty Acid Supplementation Alters Electrophysiological Properties in the Nucleus Accumbens and Emotional Behavior in Naïve and Chronically Stressed Mice. Int. J. Mol. Sci. 2022, 23, 6650. [Google Scholar] [CrossRef]
- Yao, J.; Lu, Y.; Zhi, M.; Hu, P.; Wu, W.; Gao, X. Dietary N-3 Polyunsaturated Fatty Acids Ameliorate Crohn’s Disease in Rats by Modulating the Expression of PPAR-γ/NFAT. Mol. Med. Rep. 2017, 16, 8315–8322. [Google Scholar] [CrossRef]
- Reichenberg, A.; Yirmiya, R.; Schuld, A.; Kraus, T.; Haack, M.; Morag, A.; Pollmächer, T. Cytokine-Associated Emotional and Cognitive Disturbances in Humans. Arch. Gen. Psychiatry 2001, 58, 445–452. [Google Scholar] [CrossRef]
- Simeone, T.A.; Matthews, S.A.; Samson, K.K.; Simeone, K.A. Regulation of Brain PPARgamma2 Contributes to Ketogenic Diet Anti-Seizure Efficacy. Exp. Neurol. 2017, 287, 54–64. [Google Scholar] [CrossRef]
- Simeone, T.A.; Matthews, S.A.; Simeone, K.A. Synergistic Protection against Acute Flurothyl-induced Seizures by Adjuvant Treatment of the Ketogenic Diet with the Type 2 Diabetes Drug Pioglitazone. Epilepsia 2017, 58, 1440–1450. [Google Scholar] [CrossRef]
- Vezzani, A.; Balosso, S.; Ravizza, T. The Role of Cytokines in the Pathophysiology of Epilepsy. Brain. Behav. Immun. 2008, 22, 797–803. [Google Scholar] [CrossRef]
- Gulati, S.; Yoganathan, S.; Chakrabarty, B. Epilepsy, Cognition and Behavior. Indian J. Pediatr. 2014, 81, 1056–1062. [Google Scholar] [CrossRef]
- Nickels, K.C.; Zaccariello, M.J.; Hamiwka, L.D.; Wirrell, E.C. Cognitive and Neurodevelopmental Comorbidities in Paediatric Epilepsy. Nat. Rev. Neurol. 2016, 12, 465–476. [Google Scholar] [CrossRef]
- Miller, L.A.; Galioto, R.; Tremont, G.; Davis, J.; Bryant, K.; Roth, J.; LaFrance, W.C.; Blum, A.S. Cognitive Impairment in Older Adults with Epilepsy: Characterization and Risk Factor Analysis. Epilepsy Behav. 2016, 56, 113–117. [Google Scholar] [CrossRef]
- Novak, A.; Vizjak, K.; Rakusa, M. Cognitive Impairment in People with Epilepsy. J. Clin. Med. 2022, 11, 267. [Google Scholar] [CrossRef]
- Phillips, M.C.L.; Deprez, L.M.; Mortimer, G.M.N.; Murtagh, D.K.J.; McCoy, S.; Mylchreest, R.; Gilbertson, L.J.; Clark, K.M.; Simpson, P.V.; McManus, E.J.; et al. Randomized Crossover Trial of a Modified Ketogenic Diet in Alzheimer’s Disease. Alzheimers Res. Ther. 2021, 13, 51. [Google Scholar] [CrossRef]
- Iacovides, S.; Goble, D.; Paterson, B.; Meiring, R.M. Three Consecutive Weeks of Nutritional Ketosis Has No Effect on Cognitive Function, Sleep, and Mood Compared with a High-Carbohydrate, Low-Fat Diet in Healthy Individuals: A Randomized, Crossover, Controlled Trial. Am. J. Clin. Nutr. 2019, 110, 349–357. [Google Scholar] [CrossRef]
- Mohorko, N.; Černelič-Bizjak, M.; Poklar-Vatovec, T.; Grom, G.; Kenig, S.; Petelin, A.; Jenko-Pražnikar, Z. Weight Loss, Improved Physical Performance, Cognitive Function, Eating Behavior, and Metabolic Profile in a 12-Week Ketogenic Diet in Obese Adults. Nutr. Res. 2019, 62, 64–77. [Google Scholar] [CrossRef]
- Morrison, S.A.; Fazeli, P.L.; Gower, B.; Willig, A.L.; Younger, J.; Sneed, N.M.; Vance, D.E. Cognitive Effects of a Ketogenic Diet on Neurocognitive Impairment in Adults Aging With HIV: A Pilot Study. J. Assoc. Nurses AIDS Care JANAC 2020, 31, 312–324. [Google Scholar] [CrossRef]
- Tian, X.; Chen, J.; Zhang, J.; Yang, X.; Ji, T.; Zhang, Y.; Wu, Y.; Fang, F.; Wu, X.; Zhang, Y. The Efficacy of Ketogenic Diet in 60 Chinese Patients With Dravet Syndrome. Front. Neurol. 2019, 10, 625. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Xin-Hua, W.; Lin-Mei, Z.; Yi-Ming, C.; Wen-Hui, L.; Yuan-Feng, Z.; Shui-Zhen, Z. Prospective Study of the Efficacy of a Ketogenic Diet in 20 Patients with Dravet Syndrome. Seizure 2018, 60, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Gumus, H.; Bayram, A.K.; Kardas, F.; Canpolat, M.; Çağlayan, A.O.; Kumandas, S.; Kendirci, M.; Per, H. The Effects of Ketogenic Diet on Seizures, Cognitive Functions, and Other Neurological Disorders in Classical Phenotype of Glucose Transporter 1 Deficiency Syndrome. Neuropediatrics 2015, 46, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, D.A.J.E.; Bovens, M.J.M.; De La Parra, N.M.; Hendriksen, J.G.M.; Aldenkamp, A.P.; Majoie, M.J.M. Ketogenic Diet Effects on Cognition, Mood, and Psychosocial Adjustment in Children. Acta Neurol. Scand. 2013, 127, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Nikanorova, M.; Miranda, M.J.; Atkins, M.; Sahlholdt, L. Ketogenic Diet in the Treatment of Refractory Continuous Spikes and Waves during Slow Sleep. Epilepsia 2009, 50, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- De Giorgis, V.; Masnada, S.; Varesio, C.; Chiappedi, M.A.; Zanaboni, M.; Pasca, L.; Filippini, M.; Macasaet, J.A.; Valente, M.; Ferraris, C.; et al. Overall Cognitive Profiles in Patients with GLUT1 Deficiency Syndrome. Brain Behav. 2019, 9, e01224. [Google Scholar] [CrossRef] [PubMed]
- Nordli, D.R.; Kuroda, M.M.; Carroll, J.; Koenigsberger, D.Y.; Hirsch, L.J.; Bruner, H.J.; Seidel, W.T.; De Vivo, D.C. Experience with the Ketogenic Diet in Infants. Pediatrics 2001, 108, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, L.-M.; Chai, Y.-M.; Wang, J.; Yu, L.-F.; Li, W.-H.; Zhou, Y.-F.; Zhou, S.-Z. Six-Month Efficacy of the Ketogenic Diet Is Predicted after 3 Months and Is Unrelated to Clinical Variables. Epilepsy Behav. EB 2016, 55, 165–169. [Google Scholar] [CrossRef]
- Włodarek, D. Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer’s Disease and Parkinson’s Disease). Nutrients 2019, 11, 169. [Google Scholar] [CrossRef]
- Simeone, K.A.; Matthews, S.A.; Rho, J.M.; Simeone, T.A. Ketogenic Diet Treatment Increases Longevity in Kcna1 -Null Mice, a Model of Sudden Unexpected Death in Epilepsy. Epilepsia 2016, 57, e178–e182. [Google Scholar] [CrossRef]
- Simeone, T.A.; Samson, K.K.; Matthews, S.A.; Simeone, K.A. In Vivo Ketogenic Diet Treatment Attenuates Pathologic Sharp Waves and High Frequency Oscillations in in Vitro Hippocampal Slices from Epileptic K v 1.1α Knockout Mice. Epilepsia 2014, 55, e44–e49. [Google Scholar] [CrossRef]
- Simeone, K.A.; Wilke, J.C.; Matthews, S.A.; Simeone, T.A.; Rho, J.M. Ketogenic Diet–Mediated Seizure Reduction Preserves CA1 Cell Numbers in Epileptic Kcna1-Null Mice: An Unbiased Stereological Assessment. Epilepsia 2021, 62, e123–e128. [Google Scholar] [CrossRef]
- Hansen, S.L.; Nielsen, A.H.; Knudsen, K.E.; Artmann, A.; Petersen, G.; Kristiansen, U.; Hansen, S.H.; Hansen, H.S. Ketogenic Diet Is Antiepileptogenic in Pentylenetetrazole Kindled Mice and Decrease Levels of N-Acylethanolamines in Hippocampus. Neurochem. Int. 2009, 54, 199–204. [Google Scholar] [CrossRef]
- Kim, D.Y.; Hao, J.; Liu, R.; Turner, G.; Shi, F.D.; Rho, J.M. Inflammation-Mediated Memory Dysfunction and Effects of a Ketogenic Diet in a Murine Model of Multiple Sclerosis. PLoS ONE 2012, 7, e35476. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, A.; Ogura, Y.; Furuta, M.; Kakehashi, C.; Funabashi, T.; Akema, T. Ketogenic Diet Does Not Impair Spatial Ability Controlled by the Hippocampus in Male Rats. Brain Res. 2015, 1622, 36–42. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y.; Jia, M.; Wang, X.; Zhang, Z.; Hou, Q.; Wang, B. Ketogenic Diet Attenuates Spatial and Item Memory Impairment in Pentylenetetrazol-Kindled Rats. Brain Res. 2016, 1646, 451–458. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Liu, Y.; Li, D.; Dang, Y.; Yang, L. Effects of Ketogenic Diet on Cognitive Function in Pentylenetetrazol-Kindled Rats. Epilepsy Res. 2021, 170, 106534. [Google Scholar] [CrossRef]
- Xu, K.; Sun, X.; Eroku, B.O.; Tsipis, C.P.; Puchowicz, M.A.; LaManna, J.C. Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats. Adv. Exp. Med. Biol. 2010, 662, 71–75. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, X.; Cheng, X.; Lin, X.; Zhao, T.; Wu, L.; Yu, X.; Wu, K.; Fan, M.; Zhu, L. Ketogenic Diet Improves the Spatial Memory Impairment Caused by Exposure to Hypobaric Hypoxia through Increased Acetylation of Histones in Rats. PLoS ONE 2017, 12, e0174477. [Google Scholar] [CrossRef]
- Brownlow, M.L.; Benner, L.; D’Agostino, D.; Gordon, M.N.; Morgan, D. Ketogenic Diet Improves Motor Performance but Not Cognition in Two Mouse Models of Alzheimer’s Pathology. PLoS ONE 2013, 8, e75713. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.-Q.; Wu, C.-H.; Zhang, Y.-L.; Zhao, S.-T.; Chen, Y.-J.; Deng, Y.-H.; Xuan, A.; Sun, X.-D. The Effect of Ketogenic Diet on Behaviors and Synaptic Functions of Naive Mice. Brain Behav. 2019, 9, e01246. [Google Scholar] [CrossRef]
- Kasprowska-Liśkiewicz, D.; Liśkiewicz, A.D.; Nowacka-Chmielewska, M.M.; Nowicka, J.; Małecki, A.; Barski, J.J. The Ketogenic Diet Affects the Social Behavior of Young Male Rats. Physiol. Behav. 2017, 179, 168–177. [Google Scholar] [CrossRef]
- Su, S.W.; Cilio, M.R.; Sogawa, Y.; Silveira, D.; Holmes, G.L.; Stafstrom, C.E. Timing of Ketogenic Diet Initiation in an Experimental Epilepsy Model. Dev. Brain Res. 2000, 125, 131–138. [Google Scholar] [CrossRef]
- Zhao, Q.; Stafstrom, C.E.; Fu, D.D.; Hu, Y.; Holmes, G.L. Detrimental Effects of the Ketogenic Diet on Cognitive Function in Rats. Pediatr. Res. 2004, 55, 498–506. [Google Scholar] [CrossRef]
- Lee, J.E.; Titcomb, T.J.; Bisht, B.; Rubenstein, L.M.; Louison, R.; Wahls, T.L. A Modified MCT-Based Ketogenic Diet Increases Plasma β-Hydroxybutyrate but Has Less Effect on Fatigue and Quality of Life in People with Multiple Sclerosis Compared to a Modified Paleolithic Diet: A Waitlist-Controlled, Randomized Pilot Study. J. Am. Coll. Nutr. 2021, 40, 13–25. [Google Scholar] [CrossRef]
- Ota, M.; Matsuo, J.; Ishida, I.; Takano, H.; Yokoi, Y.; Hori, H.; Yoshida, S.; Ashida, K.; Nakamura, K.; Takahashi, T.; et al. Effects of a Medium-Chain Triglyceride-Based Ketogenic Formula on Cognitive Function in Patients with Mild-to-Moderate Alzheimer’s Disease. Neurosci. Lett. 2019, 690, 232–236. [Google Scholar] [CrossRef]
- Henderson, S.T.; Vogel, J.L.; Barr, L.J.; Garvin, F.; Jones, J.J.; Costantini, L.C. Study of the Ketogenic Agent AC-1202 in Mild to Moderate Alzheimer’s Disease: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Nutr. Metab. 2009, 6, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.K.; Sullivan, D.K.; Mahnken, J.D.; Burns, J.M.; Swerdlow, R.H. Feasibility and Efficacy Data from a Ketogenic Diet Intervention in Alzheimer’s Disease. Alzheimers Dement. 2018, 4, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Mitchell, E.S. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides. PLoS ONE 2016, 11, e0160159. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Larson, B.; Araujo, J.A.; Lau, W.; De Rivera, C.; Santana, R.; Gore, A.; Milgram, N.W. Dietary Supplementation with Medium-Chain TAG Has Long-Lasting Cognition-Enhancing Effects in Aged Dogs. Br. J. Nutr. 2010, 103, 1746–1754. [Google Scholar] [CrossRef] [PubMed]
- Berk, B.A.; Packer, R.M.A.; Law, T.H.; Wessmann, A.; Bathen-Nöthen, A.; Jokinen, T.S.; Knebel, A.; Tipold, A.; Pelligand, L.; Volk, H.A. Medium-Chain Triglycerides Dietary Supplement Improves Cognitive Abilities in Canine Epilepsy. Epilepsy Behav. 2021, 114, 107608. [Google Scholar] [CrossRef] [PubMed]
- Witte, A.V.; Fobker, M.; Gellner, R.; Knecht, S.; Flöel, A. Caloric Restriction Improves Memory in Elderly Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 1255–1260. [Google Scholar] [CrossRef]
- Prehn, K.; Jumpertz von Schwartzenberg, R.; Mai, K.; Zeitz, U.; Witte, A.V.; Hampel, D.; Szela, A.-M.; Fabian, S.; Grittner, U.; Spranger, J.; et al. Caloric Restriction in Older Adults-Differential Effects of Weight Loss and Reduced Weight on Brain Structure and Function. Cereb. Cortex 2017, 27, 1765–1778. [Google Scholar] [CrossRef]
- Silver, R.E.; Roberts, S.B.; Kramer, A.F.; Chui, K.K.H.; Das, S.K. No Effect of Calorie Restriction or Dietary Patterns on Spatial Working Memory During a 2-Year Intervention: A Secondary Analysis of the CALERIE Trial. J. Nutr. 2023, 153, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, R.; Dong, W.; Zhao, Z. Caloric Restriction Can Improve Learning and Memory in C57/BL Mice Probably via Regulation of the AMPK Signaling Pathway. Exp. Gerontol. 2018, 102, 28–35. [Google Scholar] [CrossRef]
- Dias, G.P.; Murphy, T.; Stangl, D.; Ahmet, S.; Morisse, B.; Nix, A.; Aimone, L.J.; Aimone, J.B.; Kuro-O, M.; Gage, F.H.; et al. Intermittent Fasting Enhances Long-Term Memory Consolidation, Adult Hippocampal Neurogenesis, and Expression of Longevity Gene Klotho. Mol. Psychiatry 2021, 26, 6365–6379. [Google Scholar] [CrossRef]
- Parikh, I.; Guo, J.; Chuang, K.H.; Zhong, Y.; Rempe, R.G.; Hoffman, J.D.; Armstrong, R.; Bauer, B.; Hartz, A.M.S.; Lin, A.L. Caloric Restriction Preserves Memory and Reduces Anxiety of Aging Mice with Early Enhancement of Neurovascular Functions. Aging 2016, 8, 2814. [Google Scholar] [CrossRef]
- Ciobanu, O.; Elena Sandu, R.; Tudor Balseanu, A.; Zavaleanu, A.; Gresita, A.; Petcu, E.B.; Uzoni, A.; Popa-Wagner, A. Caloric Restriction Stabilizes Body Weight and Accelerates Behavioral Recovery in Aged Rats after Focal Ischemia. Aging Cell 2017, 16, 1394–1403. [Google Scholar] [CrossRef]
- Griffith, J.L.; Wong, M. The MTOR Pathway in Treatment of Epilepsy: A Clinical Update HHS Public Access. Future Neurol. 2018, 13, 49–58. [Google Scholar] [CrossRef]
- Meng, X.-F.; Yu, J.-T.; Song, J.-H.; Chi, S.; Tan, L. Role of the MTOR Signaling Pathway in Epilepsy. J. Neurol. Sci. 2013, 332, 4–15. [Google Scholar] [CrossRef]
- Goldstein, H.E.; Hauptman, J.S. The Putative Role of MTOR Inhibitors in Non-Tuberous Sclerosis Complex-Related Epilepsy. Front. Neurol. 2021, 12, 639319. [Google Scholar] [CrossRef]
- Johnson, S.C.; Yanos, M.E.; Kayser, E.B.; Quintana, A.; Sangesland, M.; Castanza, A.; Uhde, L.; Hui, J.; Wall, V.Z.; Gagnidze, A.; et al. MTOR Inhibition Alleviates Mitochondrial Disease in a Mouse Model of Leigh Syndrome. Science 2013, 342, 1524–1528. [Google Scholar] [CrossRef]
- McDaniel, S.S.; Rensing, N.R.; Thio, L.L.; Yamada, K.A.; Wong, M. The Ketogenic Diet Inhibits the Mammalian Target of Rapamycin (MTOR) Pathway. Epilepsia 2011, 52, e7–e11. [Google Scholar] [CrossRef]
- Sengupta, S.; Peterson, T.R.; Laplante, M.; Oh, S.; Sabatini, D.M. MTORC1 Controls Fasting-Induced Ketogenesis and Its Modulation by Ageing. Nature 2010, 468, 1100–1104. [Google Scholar] [CrossRef]
- Spilman, P.; Podlutskaya, N.; Hart, M.J.; Debnath, J.; Gorostiza, O.; Bredesen, D.; Richardson, A.; Strong, R.; Galvan, V. Inhibition of MTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-Beta Levels in a Mouse Model of Alzheimer’s Disease. PLoS ONE 2010, 5, e9979. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ho, L.; Qin, W.; Rocher, A.B.; Seror, I.; Humala, N.; Maniar, K.; Dolios, G.; Wang, R.; Hof, P.R.; et al. Caloric Restriction Attenuates β-Amyloid Neuropathology in a Mouse Model of Alzheimer’s Disease. FASEB J. 2005, 19, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, X.; Zhu, M.; Xu, K.; Yang, L.; Han, B.; Huang, R.; Zhang, A.; Yao, H. Metalloprotease Adam10 Suppresses Epilepsy through Repression of Hippocampal Neuroinflammation. J. Neuroinflamm. 2018, 15, 221. [Google Scholar] [CrossRef] [PubMed]
- Kashiwaya, Y.; Bergman, C.; Lee, J.H.; Wan, R.; King, M.T.; Mughal, M.R.; Okun, E.; Clarke, K.; Mattson, M.P.; Veech, R.L. A Ketone Ester Diet Exhibits Anxiolytic and Cognition-Sparing Properties, and Lessens Amyloid and Tau Pathologies in a Mouse Model of Alzheimer’s Disease. Neurobiol. Aging 2013, 34, 1530–1539. [Google Scholar] [CrossRef]
- He, X.; Yu, H.; Fang, J.; Qi, Z.; Pei, S.; Yan, B.; Liu, R.; Wang, Q.; Szeto, I.M.-Y.; Liu, B.; et al. The Effect of N-3 Polyunsaturated Fatty Acid Supplementation on Cognitive Function Outcomes in the Elderly Depends on the Baseline Omega-3 Index. Food Funct. 2023, 14, 9506–9517. [Google Scholar] [CrossRef] [PubMed]
- Cutuli, D.; De Bartolo, P.; Caporali, P.; Laricchiuta, D.; Foti, F.; Ronci, M.; Rossi, C.; Neri, C.; Spalletta, G.; Caltagirone, C.; et al. N-3 Polyunsaturated Fatty Acids Supplementation Enhances Hippocampal Functionality in Aged Mice. Front. Aging Neurosci. 2014, 6, 220. [Google Scholar] [CrossRef] [PubMed]
- Jost, T.; Nemeth, M.; Millesi, E.; Siutz, C. Effects of Dietary Polyunsaturated Fatty Acids on Corticosterone Concentrations and Spatial Learning in Rats. Behav. Process. 2022, 198, 104642. [Google Scholar] [CrossRef]
- Xia, J.; Yang, L.; Huang, C.; Deng, S.; Yang, Z.; Zhang, Y.; Zhang, C.; Song, C. Omega-3 Polyunsaturated Fatty Acid Eicosapentaenoic Acid or Docosahexaenoic Acid Improved Ageing-Associated Cognitive Decline by Regulating Glial Polarization. Mar. Drugs 2023, 21, 398. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, K.H.; Mayyas, F.; Abu Zamzam, H.I. Omega-3 Fatty Acids Protects against Chronic Sleep-Deprivation Induced Memory Impairment. Life Sci. 2019, 227, 1–7. [Google Scholar] [CrossRef]
- Roundtree, H.M.; Simeone, T.A.; Johnson, C.; Matthews, S.A.; Samson, K.K.; Simeone, K.A. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-Null Mice. Sleep 2016, 39, 357–368. [Google Scholar] [CrossRef]
- Iyer, S.H.; Matthews, S.A.; Simeone, T.A.; Maganti, R.; Simeone, K.A. Accumulation of Rest Deficiency Precedes Sudden Death of Epileptic Kv1.1 Knockout Mice, a Model of Sudden Unexpected Death in Epilepsy. Epilepsia 2018, 59, 92–105. [Google Scholar] [CrossRef]
- Simeone, K.A.; Martenz, D.M.; Iyer, S.H.; Booth, C.P.; Herr, S.E.; Matthews, S.A.; Draves, S.B.; Heinemann, L.L.; Greenberg, P.L.; Lhatoo, S.D.; et al. Personalization of SUDEP Risk: A Survey of Transient Subclinical Comorbid Changes. Epilepsy Res. 2024, 199, 107259. [Google Scholar] [CrossRef]
- Liu, W.K.; Kothare, S.; Jain, S. Sleep and Epilepsy. Semin. Pediatr. Neurol. 2023, 48, 101087. [Google Scholar] [CrossRef]
- Pascual, J.M.; Liu, P.; Mao, D.; Kelly, D.I.; Hernandez, A.; Sheng, M.; Good, L.B.; Ma, Q.; Marin-Valencia, I.; Zhang, X.; et al. Triheptanoin for Glucose Transporter Type I Deficiency (G1D): Modulation of Human Ictogenesis, Cerebral Metabolic Rate, and Cognitive Indices by a Food Supplement. JAMA Neurol. 2014, 71, 1255. [Google Scholar] [CrossRef]
- Aso, E.; Semakova, J.; Joda, L.; Semak, V.; Halbaut, L.; Calpena, A.; Escolano, C.; Perales, J.C.; Ferrer, I. Triheptanoin Supplementation to Ketogenic Diet Curbs Cognitive Impairment in APP/PS1 Mice Used as a Model of Familial Alzheimer’s Disease. Curr. Alzheimer Res. 2013, 10, 290–297. [Google Scholar] [CrossRef]
Therapy | Autism | Affective | Cognitive | Possible Mechanism of Action |
---|---|---|---|---|
Ketogenic Diet | P: + C: + | P: + C: + | P: +/− C: +/− |
|
Medium-Chain Triglyceride | P: NA C: + | P: +/− C: NA | P: + C: +/− |
|
Low Glycemic Index | P: + C: NA | P: NA C: NA | P: NA C: NA |
|
Caloric Restriction | P: + C: NA | P: + C: + | P: + C: +/− |
|
Supplementation Strategies | ||||
Ketone Bodies | P: + C: NA | P: + C: NA | P: + C: NA |
|
PUFAs | P: + C: + | P: + C: + | P: + C: + |
|
Triheptanoin | P: + C: NA | P: NA C: NA | P: + C: + |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iyer, S.H.; Yeh, M.Y.; Netzel, L.; Lindsey, M.G.; Wallace, M.; Simeone, K.A.; Simeone, T.A. Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence. Nutrients 2024, 16, 553. https://doi.org/10.3390/nu16040553
Iyer SH, Yeh MY, Netzel L, Lindsey MG, Wallace M, Simeone KA, Simeone TA. Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence. Nutrients. 2024; 16(4):553. https://doi.org/10.3390/nu16040553
Chicago/Turabian StyleIyer, Shruthi H., Mary Y. Yeh, Lauren Netzel, Molly G. Lindsey, McKenzie Wallace, Kristina A. Simeone, and Timothy A. Simeone. 2024. "Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence" Nutrients 16, no. 4: 553. https://doi.org/10.3390/nu16040553
APA StyleIyer, S. H., Yeh, M. Y., Netzel, L., Lindsey, M. G., Wallace, M., Simeone, K. A., & Simeone, T. A. (2024). Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence. Nutrients, 16(4), 553. https://doi.org/10.3390/nu16040553