Thermodynamic Analysis to Evaluate the Effect of Diet on Brain Glucose Metabolism: The Case of Fish Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermodynamic Assessment of Brain Glucose Metabolism
2.2. Grey Mouse Lemur Model
2.3. Human Model
2.4. Statistical Analysis of Data
3. Results
3.1. Case Study 1: Grey Mouse Lemur Model
3.2. Case Study 2: Human Ageing Model
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Brain Areas | Functions |
---|---|
Cerebellum | Coordinating voluntary movement, motor control, motor learning, reflex adaptation, balance, and the processing of executive, emotional, and social functions [47,48,49]. |
Hippocampus | Learning and processing memory (affecting memory formation, information retention, behavioural responses, spatial navigation), as well as mood regulation [49]. |
Anterior cingulate | Emotion assessment, emotion-related learning, social cognition, and autonomic regulation [50]. |
Posterior cingulate | Demanding cognitive tasks, controlling attentional focus, and shifting the balance of attention [51]. |
Thalamus | Integrating sensory information (except smell) and the performance of voluntary movement. Also plays a role in the pathway of subjective feeling states, the individual’s personality, consciousness, alertness in an individual, cognition, and memory [49]. |
Caudate nucleus | Learning, memory tasks, processing spatial mnemonics, controlling muscular movements, assisting in the regulation of voluntary movement, executive functioning, regulation of sleep, and emotional responses [49]. |
Frontal lobe | Processing information, controlling voluntary muscle movements and the execution of movements, speech, the makeup of an individual’s personality, the regulation of deep feelings, and determining initiative and judgment [49]. |
Occipital lobe | Spatial processing, recognizing and appreciating what is being seen, perception of distance and depth, colour processing, reflex actions. Also associated with eye movement and controlling voluntary scanning eye movement independent of visual stimuli [49]. |
Temporal lobe | Processing auditory information, understanding written and spoken language, processing visual and object recognition, encoding memory, and processing emotions [49]. |
References
- Camandola, S.; Mattson, M.P. Brain Metabolism in Health, Aging, and Neurodegeneration. EMBO J. 2017, 36, 1474–1492. [Google Scholar] [CrossRef]
- Bouteldja, N.; Andersen, L.T.; Møller, N.; Gormsen, L.C. Using Positron Emission Tomography to Study Human Ketone Body Metabolism: A Review. Metabolism 2014, 63, 1375–1384. [Google Scholar] [CrossRef]
- Zoccoli, G.; Silvani, A.; Franzini, C. Sleep and the Peripheral Vascular System. In Encyclopedia of Sleep; Elsevier: Amsterdam, The Netherlands, 2013; pp. 563–567. [Google Scholar]
- Genc, S.; Kurnaz, I.A.; Ozilgen, M. Astrocyte—Neuron Lactate Shuttle May Boost More ATP Supply to the Neuron under Hypoxic Conditions—In Silico Study Supported by in Vitro Expression Data. BMC Syst. Biol. 2011, 5, 162. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the Brain: The Role of Glucose in Physiological and Pathological Brain Function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Magistretti, P.J.; Allaman, I. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. Neuron 2015, 86, 883–901. [Google Scholar] [CrossRef] [PubMed]
- Stoessl, A.J. Glucose Utilization: Still in the Synapse. Nat. Neurosci. 2017, 20, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.S.; Hawrylycz, M.; Miller, J.A.; Snyder, A.Z.; Raichle, M.E. Aerobic Glycolysis in the Human Brain Is Associated with Development and Neotenous Gene Expression. Cell Metab. 2014, 19, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.S.; Vlassenko, A.G.; Blazey, T.M.; Su, Y.; Couture, L.E.; Durbin, T.J.; Bateman, R.J.; Benzinger, T.L.S.; Morris, J.C.; Raichle, M.E. Loss of Brain Aerobic Glycolysis in Normal Human Aging. Cell Metab. 2017, 26, 353–360.e3. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.S.; Blazey, T.M.; Su, Y.; Couture, L.E.; Durbin, T.J.; Bateman, R.J.; Benzinger, T.L.S.; Morris, J.C.; Raichle, M.E.; Vlassenko, A.G. Persistent Metabolic Youth in the Aging Female Brain. Proc. Natl. Acad. Sci. USA 2019, 116, 3251–3255. [Google Scholar] [CrossRef] [PubMed]
- Deery, H.A.; Di Paolo, R.; Moran, C.; Egan, G.F.; Jamadar, S.D. Lower Brain Glucose Metabolism in Normal Ageing Is Predominantly Frontal and Temporal: A Systematic Review and Pooled Effect Size and Activation Likelihood Estimates Meta-analyses. Hum. Brain Mapp. 2023, 44, 1251–1277. [Google Scholar] [CrossRef] [PubMed]
- Keshmiri, S. Entropy and the Brain: An Overview. Entropy 2020, 22, 917. [Google Scholar] [CrossRef]
- Yildiz, C.; Özilgen, M. Why Brain Functions May Deteriorate with Aging: A Thermodynamic Evaluation. Int. J. Exergy 2022, 37, 87–101. [Google Scholar] [CrossRef]
- Hayflick, L. Entropy Explains Aging, Genetic Determinism Explains Longevity, and Undefined Terminology Explains Misunderstanding Both. PLoS Genet. 2007, 3, e220. [Google Scholar] [CrossRef]
- Silva, C.; Annamalai, K. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level. Entropy 2008, 10, 100–123. [Google Scholar] [CrossRef]
- Annamalai, K.; Silva, C. Entropy Stress and Scaling of Vital Organs over Life Span Based on Allometric Laws. Entropy 2012, 14, 2550–2577. [Google Scholar] [CrossRef]
- Silva, C.A.; Annamalai, K. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Diet Composition and Caloric Restriction Diets. J. Thermodyn. 2009, 2009, 186723. [Google Scholar] [CrossRef]
- Semerciöz-Oduncuoğlu, A.S.; Mitchell, S.E.; Özilgen, M.; Yilmaz, B.; Speakman, J.R. A Step toward Precision Gerontology: Lifespan Effects of Calorie and Protein Restriction Are Consistent with Predicted Impacts on Entropy Generation. Proc. Natl. Acad. Sci. USA 2023, 120, e2300624120. [Google Scholar] [CrossRef] [PubMed]
- Öngel, M.E.; Yıldız, C.; Akpınaroğlu, C.; Yilmaz, B.; Özilgen, M. Why Women May Live Longer than Men Do? A Telomere-Length Regulated and Diet-Based Entropic Assessment. Clin. Nutr. 2021, 40, e2300624120. [Google Scholar] [CrossRef]
- Pifferi, F.; Cunnane, S.C.; Guesnet, P. Evidence of the Role of Omega-3 Polyunsaturated Fatty Acids in Brain Glucose Metabolism. Nutrients 2020, 12, 1382. [Google Scholar] [CrossRef]
- Elizabeth Sublette, M.; Milak, M.S.; Hibbeln, J.R.; Freed, P.J.; Oquendo, M.A.; Malone, K.M.; Parsey, R.V.; John Mann, J. Plasma Polyunsaturated Fatty Acids and Regional Cerebral Glucose Metabolism in Major Depression. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 57–64. [Google Scholar] [CrossRef]
- Jackson, P.A.; Reay, J.L.; Scholey, A.B.; Kennedy, D.O. DHA-Rich Oil Modulates the Cerebral Haemodynamic Response to Cognitive Tasks in Healthy Young Adults: A near IR Spectroscopy Pilot Study. Br. J. Nutr. 2012, 107, 1093–1098. [Google Scholar] [CrossRef]
- Casquero-Veiga, M.; Romero-Miguel, D.; MacDowell, K.S.; Torres-Sanchez, S.; Garcia-Partida, J.A.; Lamanna-Rama, N.; Gómez-Rangel, V.; Romero-Miranda, A.; Berrocoso, E.; Leza, J.C.; et al. Omega-3 Fatty Acids during Adolescence Prevent Schizophrenia-Related Behavioural Deficits: Neurophysiological Evidences from the Prenatal Viral Infection with PolyI:C. Eur. Neuropsychopharmacol. 2021, 46, 14–27. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. The Importance of Marine Omega-3s for Brain Development and the Prevention and Treatment of Behavior, Mood, and Other Brain Disorders. Nutrients 2020, 12, 2333. [Google Scholar] [CrossRef]
- Chalon, S. Omega-3 Fatty Acids and Monoamine Neurotransmission. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 259–269. [Google Scholar] [CrossRef]
- Pifferi, F.; Dorieux, O.; Castellano, C.-A.; Croteau, E.; Masson, M.; Guillermier, M.; Van Camp, N.; Guesnet, P.; Alessandri, J.-M.; Cunnane, S.; et al. Long-Chain n-3 PUFAs from Fish Oil Enhance Resting State Brain Glucose Utilization and Reduce Anxiety in an Adult Nonhuman Primate, the Grey Mouse Lemur. J. Lipid Res. 2015, 56, 1511–1518. [Google Scholar] [CrossRef]
- Nugent, S.; Croteau, E.; Pifferi, F.; Fortier, M.; Tremblay, S.; Turcotte, E.; Cunnane, S.C. Brain and Systemic Glucose Metabolism in the Healthy Elderly Following Fish Oil Supplementation. Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 287–291. [Google Scholar] [CrossRef]
- Voss, H.; Schiff, N. Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging. Entropy 2014, 16, 3689–3709. [Google Scholar] [CrossRef]
- Kuddusi, L. Thermodynamics and Life Span Estimation. Energy 2015, 80, 227–238. [Google Scholar] [CrossRef]
- Reichle, D.E. Energy Processing by Animals. In The Global Carbon Cycle and Climate Change; Elsevier: Amsterdam, The Netherlands, 2023; pp. 77–105. [Google Scholar]
- Collell, G.; Fauquet, J. Brain Activity and Cognition: A Connection from Thermodynamics and Information Theory. Front. Psychol. 2015, 6, 818. [Google Scholar] [CrossRef] [PubMed]
- Rietman, E.A.; Taylor, S.; Siegelmann, H.T.; Deriu, M.A.; Cavaglia, M.; Tuszynski, J.A. Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age. Int. J. Mol. Sci. 2020, 21, 1116. [Google Scholar] [CrossRef] [PubMed]
- Öngel, M.E.; Yildiz, C.; Yilmaz, B.; Özilgen, M. Nutrition and Disease-Related Entropy Generation in Cancer. Int. J. Exergy 2021, 34, 114091. [Google Scholar] [CrossRef]
- Öngel, M.E.; Yildiz, C.; Başer, Ö.; Yilmaz, B.; Özilgen, M. Thermodynamic Assessment of the Effects of Intermittent Fasting and Fatty Liver Disease Diets on Longevity. Entropy 2023, 25, 227. [Google Scholar] [CrossRef] [PubMed]
- Semerciöz, A.S.; Yılmaz, B.; Özilgen, M. Thermodynamic Assessment of Allocation of Energy and Exergy of the Nutrients for the Life Processes during Pregnancy. Br. J. Nutr. 2020, 124, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, E.; Hurtado-Carneiro, V.; LeBaut-Ayuso, Y.; Velázquez, E.; García-García, L.; Gómez-Oliver, F.; Ruiz-Albusac, J.M.; Ávila, J.; Pozo, M.Á. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Front. Endocrinol. 2022, 13, 873301. [Google Scholar] [CrossRef] [PubMed]
- Hammond, T.C.; Lin, A.-L. Glucose Metabolism Is a Better Marker for Predicting Clinical Alzheimer’s Disease than Amyloid or Tau. J. Cell Immunol. 2022, 4, 15–18. [Google Scholar] [PubMed]
- Yildiz, C.; Öngel, M.E.; Yilmaz, B.; Özilgen, M. Diet-Dependent Entropic Assessment of Athletes’ Lifespan. J. Nutr. Sci. 2021, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Hershey, D.; Lee, W.E. Entropy, Aging and Death. Syst. Res. 1987, 4, 269–281. [Google Scholar] [CrossRef]
- Haynie, D.T. Biological Thermodynamics, 2nd ed.; Canbrige University Press: New York, NY, USA, 2008; ISBN 9780521884464. [Google Scholar]
- Matthäus, F.; Schmidt, J.-P.; Banerjee, A.; Schulze, T.G.; Demirakca, T.; Diener, C. Effects of Age on the Structure of Functional Connectivity Networks During Episodic and Working Memory Demand. Brain Connect. 2012, 2, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Dhikav, V.; Anand, K. Hippocampal Atrophy May Be a Predictor of Seizures in Alzheimer’s Disease. Med. Hypotheses 2007, 69, 234–235. [Google Scholar] [CrossRef]
- Liang, K.J.; Carlson, E.S. Resistance, Vulnerability and Resilience: A Review of the Cognitive Cerebellum in Aging and Neurodegenerative Diseases. Neurobiol. Learn. Mem. 2020, 170, 106981. [Google Scholar] [CrossRef]
- Bemrah, N.; Sirot, V.; Leblanc, J.C.; Volatier, J.L. Fish and Seafood Consumption and Omega 3 Intake in French Coastal Populations: CALIPSO Survey. Public Health Nutr. 2009, 12, 599–608. [Google Scholar] [CrossRef]
- Languille, S.; Blanc, S.; Blin, O.; Canale, C.I.; Dal-Pan, A.; Devau, G.; Dhenain, M.; Dorieux, O.; Epelbaum, J.; Gomez, D.; et al. The Grey Mouse Lemur: A Non-Human Primate Model for Ageing Studies. Ageing Res. Rev. 2012, 11, 150–162. [Google Scholar] [CrossRef]
- Fritz, R.G.; Zimmermann, E.; Meier, M.; Mestre-Francés, N.; Radespiel, U.; Schmidtke, D. Neurobiological Substrates of Animal Personality and Cognition in a Nonhuman Primate (Microcebus murinus). Brain Behav. 2020, 10, e01752. [Google Scholar] [CrossRef]
- Beuriat, P.-A.; Cristofori, I.; Gordon, B.; Grafman, J. The Shifting Role of the Cerebellum in Executive, Emotional and Social Processing across the Lifespan. Behav. Brain Funct. 2022, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Glickstein, M.; Doron, K. Cerebellum: Connections and Functions. Cerebellum 2008, 7, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Snell, R.S. Clinical Neuroanatomy, 7th ed.; Wolters Kluwer: New York, NY, USA, 2010. [Google Scholar]
- Stevens, F.L.; Hurley, R.A.; Taber, K.H. Anterior Cingulate Cortex: Unique Role in Cognition and Emotion. J. Neuropsychiatry Clin. Neurosci. 2011, 23, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.; Sharp, D.J. The Role of the Posterior Cingulate Cortex in Cognition and Disease. Brain 2014, 137, 12–32. [Google Scholar] [CrossRef]
Chemical | (kJ/kmol) | (kJ/kmol) | (kJ/kmol) | * (kJ/kmol K) |
---|---|---|---|---|
Glucose C6H12O6 | −1.260 × 103 | - | - | 212 (at 298 K) |
O2 | 0 | 8682 | 9030 | 218.02 (at 298 K) 219.68 (at 310 K) |
H2O | −241,820 | 9904 | 10,302 | 218.9 (at 310 K) |
CO2, | −393,520 | 9364 | 9807 | 243.64 (at 310 K) |
N2 | 0 | 8669 | 9014 | 193.66 (at 310 K) |
Brain Area | Control CMRGLc (µmol/100 g/min) | Intervention CMRGLc (µmol/100 g/min) |
---|---|---|
Whole brain | 13.9 | 20.5 |
Hippocampus | 11.4 | 19.2 |
Thalamus | 16.8 | 25.5 |
Cerebellum | 19.4 | 24.1 |
Caudate nucleus | 12.8 | 20.0 |
Temporal lobe | 12.1 | 17.7 |
Occipital lobe | 9.6 | 17.1 |
Frontal lobe | 14.0 | 20.8 |
Before | After | |||
---|---|---|---|---|
Brain Area | Young CMRGLc (µmol/100 g/min) | Elderly CMRGLc (µmol/100 g/min) | Young CMRGlc (µmol/100 g/min) | Elderly CMRGlc (µmol/100 g/min) |
Cerebellum | 42.7 | 42.3 | 42.6 | 42.6 |
Hippocampus | 38.6 | 37.0 | 38.0 | 35.5 |
Anterior cingulate | 50.4 | 40.2 | 45.1 | 46.7 |
Posterior cingulate | 57.3 | 54.5 | 55.4 | 48.2 |
Frontal lobe | 53.3 | 50.4 | 51.0 | 49.5 |
Parietal lobe | 49.5 | 49.2 | 49.2 | 48.3 |
Occipital lobe | 50.4 | 53.5 | 52.0 | 50.1 |
Temporal lobe | 47.6 | 46.1 | 47.0 | 45.4 |
Whole brain | 49.2 | 48.9 | 48.9 | 47.9 |
Entropy Generation | |||
Brain Area | Control (kJ/100 g/K kg Glucose per Year) | Intervention (kJ/100 g/K kg per Year) | Difference (%) |
Whole brain | 3.84 × 105 | 5.66 × 105 | 47.4 |
Hippocampus | 3.15 × 105 | 5.30 × 105 | 68.2 |
Thalamus | 4.64 × 105 | 7.04 × 105 | 51.7 |
Cerebellum | 5.36 × 105 | 6.65 × 105 | 24.1 |
Caudate nucleus | 3.53 × 105 | 5.52 × 105 | 56.2 |
Temporal lobe | 3.34 × 105 | 4.89 × 105 | 46.4 |
Occipital lobe | 2.65 × 105 | 4.47 × 105 | 68.7 |
Frontal lobe | 3.87 × 105 | 5.74 × 105 | 48.3 |
Gibbs Free Energy | |||
Brain Area | Control (kJ/100 g/K kg Glucose per Year) | Intervention (kJ/100 g/K kg per Year) | Difference (%) |
Whole brain | −6.47 × 104 | −9.54 × 104 | 47.4 |
Hippocampus | −5.30 × 104 | −8.93 × 104 | 68.5 |
Thalamus | −7.82 × 104 | −1.19 × 105 | 52.2 |
Cerebellum | −9.03 × 104 | −1.12 × 105 | 24.0 |
Caudate nucleus | −5.96 × 104 | −9.30 × 104 | 56.0 |
Temporal lobe | −5.63 × 104 | −8.23 × 104 | 46.2 |
Occipital lobe | −4.47 × 104 | −7.54 × 104 | 68.7 |
Frontal lobe | −2.21 × 105 | −2.14 × 105 | 48.7 |
Entropy Generation | ||||
Before | After | |||
Brain Area | Young (kJ/100 g/K kg Glucose per 3w) | Elderly (kJ/100 g/K kg per 3w) | Young (kJ/100 g/K kg per Glucose 3w) | Elderly (kJ/100 g/K kg per Glucose 3w) |
Cerebellum | 1.22 × 107 | 1.21 × 107 | 1.22 × 107 | 1.22 × 107 |
Hippocampus | 1.10 × 107 | 1.06 × 107 | 1.09 × 107 | 1.01 × 107 |
Anterior cingulate | 1.44 × 107 | 1.15 × 107 | 1.29 × 107 | 1.34 × 107 |
Posterior cingulate | 1.64 × 107 | 1.56 × 107 | 1.58 × 107 | 1.38 × 107 |
Frontal lobe | 1.52 × 107 | 1.44 × 107 | 1.46 × 107 | 1.42 × 107 |
Parietal lobe | 1.42 × 107 | 1.41 × 107 | 1.41 × 107 | 1.38 × 107 |
Occipital lobe | 1.44 × 107 | 1.53 × 107 | 1.49 × 107 | 1.43 × 107 |
Temporal lobe | 1.36 × 107 | 1.32 × 107 | 1.34 × 107 | 1.30 × 107 |
Whole brain | 1.41 × 104 | 1.40 × 104 | 1.40 × 104 | 1.37 × 104 |
Gibbs Free Energy | ||||
Before | After | |||
Brain Area | Young (kJ/100 g/K kg Glucose per 3w) | Elderly (kJ/100 g/K kg per 3w) | Young (kJ/100 g/K kg per glucose 3w) | Elderly (kJ/100 g/K kg per glucose 3w) |
Cerebellum | −1.99 × 105 | −1.97 × 105 | −1.98 × 105 | −1.98 × 105 |
Hippocampus | −1.80 × 105 | −1.72 × 105 | −1.77 × 105 | −1.65 × 105 |
Anterior cingulate | −2.34 × 105 | −1.87 × 105 | −2.10 × 105 | −2.17 × 105 |
Posterior cingulate | −2.67 × 105 | −2.54 × 105 | −2.58 × 105 | −2.24 × 105 |
Frontal lobe | −2.48 × 105 | −2.34 × 105 | −2.37 × 105 | −2.30 × 105 |
Parietal lobe | −2.30 × 105 | −2.29 × 105 | −2.29 × 105 | −2.25 × 105 |
Occipital lobe | −2.34 × 105 | −2.49 × 105 | −2.42 × 105 | −2.33 × 105 |
Temporal lobe | −2.21 × 105 | −2.14 × 105 | −2.19 × 105 | −2.11 × 105 |
Whole brain | −2.29 × 105 | −2.28 × 105 | −2.28 × 105 | −2.23 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yildiz, C.; Medina, I. Thermodynamic Analysis to Evaluate the Effect of Diet on Brain Glucose Metabolism: The Case of Fish Oil. Nutrients 2024, 16, 631. https://doi.org/10.3390/nu16050631
Yildiz C, Medina I. Thermodynamic Analysis to Evaluate the Effect of Diet on Brain Glucose Metabolism: The Case of Fish Oil. Nutrients. 2024; 16(5):631. https://doi.org/10.3390/nu16050631
Chicago/Turabian StyleYildiz, Cennet, and Isabel Medina. 2024. "Thermodynamic Analysis to Evaluate the Effect of Diet on Brain Glucose Metabolism: The Case of Fish Oil" Nutrients 16, no. 5: 631. https://doi.org/10.3390/nu16050631
APA StyleYildiz, C., & Medina, I. (2024). Thermodynamic Analysis to Evaluate the Effect of Diet on Brain Glucose Metabolism: The Case of Fish Oil. Nutrients, 16(5), 631. https://doi.org/10.3390/nu16050631