Macro-B12 and Unexpectedly High Levels of Plasma B12: A Critical Review
Abstract
:1. Introduction
2. Plasma B12 and Its Binding Proteins
3. Measurement of Plasma B12
4. “Macro-B12” as an Explanation for an Unexpectedly High Plasma Total B12
5. Methods Used to Identify Macro-B12
5.1. PEG Precipitation
5.2. Silica Gel Precipitation
5.3. Ammonium Sulfate Precipitation
5.4. Size Exclusion Chromatography
5.5. Gamma Globulin Specific Agents
5.6. ELISA Methods
5.7. Conclusions on the Occurrence of Macro-B12
6. Other Possible Explanations for an Unexpectedly High Level of Plasma B12
6.1. Autoantibodies against Intrinsic Factor
6.2. Heterophilic Antibodies
6.3. Extreme Concentrations of Haptocorrin
7. Recommendations for Handling of Unexpectedly Normal/High Levels of Plasma Total B12
Author Contributions
Funding
Conflicts of Interest
References
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.-L.; Brito, A.; Guéant, J.-L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.-H.; et al. Vitamin B12 deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef]
- Wolffenbuttel, B.H.; Owen, P.J.; Ward, M.; Green, R. Vitamin B12. BMJ 2023, 383, e071725. [Google Scholar] [CrossRef] [PubMed]
- Yetley, E.A.; Pfeiffer, C.M.; Phinney, K.W.; Bailey, R.L.; Blackmore, S.; Bock, J.L.; Brody, L.C.; Carmel, R.; Curtin, L.R.; Durazo-Arvizu, R.A.; et al. Biomarkers of vitamin B-12 status in NHANES: A roundtable summary. Am. J. Clin. Nutr. 2011, 94, 313S–321S. [Google Scholar] [CrossRef]
- Jarquin Campos, A.; Risch, L.; Nydegger, U.; Wiesner, J.; Van Dyck, M.V.; Renz, H.; Stanga, Z.; Risch, M. Diagnostic Accuracy of Holotranscobalamin, Vitamin B12, Methylmalonic Acid, and Homocysteine in Detecting B12 Deficiency in a Large, Mixed Patient Population. Dis. Markers 2020, 2020, 7468506. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.F.; Nexo, E. Unexpected high plasma cobalamin: Proposal for a diagnostic strategy. Clin. Chem. Lab. Med. 2013, 51, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.A.D.; García, M.I.P.; Bauça, J.M.; Mullor, R.V.; Barceló, A. Persistently increased vitamin B12 concentration due to cobalamin macrocomplexes: A case report and review of the literature. Clin. Chem. Lab. Med. 2020, 58, e237–e239. [Google Scholar] [CrossRef] [PubMed]
- Belkhouribchia, J. Macro-Vitamin B12 as Cause of Falsely Elevated Cobalamin Levels. Eur. J. Case Rep. Intern. Med. 2023, 11, 004188. [Google Scholar] [CrossRef]
- Jeffery, J.; Millar, H.; Mackenzie, P.; Fahie-Wilson, M.; Hamilton, M.; Ayling, R.M. An IgG complexed form of vitamin B12 is a common cause of elevated serum concentrations. Clin. Biochem. 2010, 43, 82–88. [Google Scholar] [CrossRef]
- Delgado, J.A.; Pastor García, M.I.; Jiménez, N.M.; Petit, G.C.; Cànaves, J.A.P.; Robles, J.; Bauça, J.M. Challenges in the diagnosis of hypervitaminemia B12. Interference by immunocomplexes. Clin. Chim. Acta 2023, 541, 117267. [Google Scholar] [CrossRef]
- Öncel Van, T.; Demir, L. Presence of macroproteins on the measurement of vitamin B12: Studying high vitamin B12 levels using polyethylene glycol and heterophile antibody blocking tubes. Scand. J. Clin. Lab. Investig. 2023, 83, 125–132. [Google Scholar] [CrossRef]
- Soleimani, R.; Favresse, J.; Roy, T.; Gruson, D.; Fillée, C. Macro vitamin B12: An underestimated threat. Clin. Chem. Lab. Med. 2020, 58, 408–415. [Google Scholar] [CrossRef]
- Fernandes-Costa, F.; Metz, J. Vitamin B12 binders (transcobalamins) in serum. Crit. Rev. Clin. Lab. Sci. 1982, 18, 1–30. [Google Scholar] [CrossRef]
- Abildgaard, A.; Knudsen, C.S.; Hoejskov, C.S.; Greibe, E.; Parkner, T. Reference intervals for plasma vitamin B12 and plasma/serum methylmalonic acid in Danish children, adults and elderly. Clin. Chim. Acta 2022, 525, 62–68. [Google Scholar] [CrossRef]
- MacDonald, C.M.; Farquharson, J.; Bessent, R.G.; Adams, J.F. The forms of vitamin B12 on the transcobalamins. Clin. Sci. Mol. Med. 1977, 52, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Lindenstrand, K. On vitamin B12 forms in human plasma. Acta Med. Scand. 1963, 174, 665–669. [Google Scholar] [CrossRef]
- Kolhouse, J.F.; Kondo, H.; Allen, N.C.; Podell, E.; Allen, R.H. Cobalamin analogues are present in human plasma and can mask cobalamin deficiency because current radioisotope dilution assays are not specific for true cobalamin. N. Engl. J. Med. 1978, 299, 785–792. [Google Scholar] [CrossRef]
- Knudsen, C.S.; Parkner, T.; Hoffmann-Lücke, E.; Abildgaard, A.; Greibe, E. Reference intervals and stability of haptocorrin and holotranscobalamin in Danish children and elderly. Clin. Chim. Acta 2023, 546, 117394. [Google Scholar] [CrossRef] [PubMed]
- Fedosov, S.N. Physiological and molecular aspects of cobalamin transport. Subcell. Biochem. 2012, 56, 347–367. [Google Scholar] [CrossRef] [PubMed]
- Burger, R.L.; Schneider, R.J.; Mehlman, C.S.; Allen, R.H. Human plasma R-type vitamin B12-binding proteins. II. The role of transcobalamin I, transcobalamin III, and the normal granulocyte vitamin B12-binding protein in the plasma transport of vitamin B12. J. Biol. Chem. 1975, 250, 7707–7713. [Google Scholar] [CrossRef]
- Refsum, H.; Johnston, C.; Guttormsen, A.B.; Nexo, E. Holotranscobalamin and total transcobalamin in human plasma: Determination, determinants, and reference values in healthy adults. Clin. Chem. 2006, 52, 129–137. [Google Scholar] [CrossRef]
- Devi, S.; Pasanna, R.M.; Shamshuddin, Z.; Bhat, K.; Sivadas, A.; Mandal, A.K.; Kurpad, A.V. Measuring vitamin B-12 bioavailability with [13C]-cyanocobalamin in humans. Am. J. Clin. Nutr. 2020, 112, 1504–1515. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.F.; Nexo, E. Cobalamin related parameters and disease patterns in patients with increased serum cobalamin levels. PLoS ONE 2012, 7, e45979. [Google Scholar] [CrossRef] [PubMed]
- Hift, W. Serum binding of hydroxocobalamin. S. Afr. Med. J. 1968, 42, 104–107. [Google Scholar] [PubMed]
- Sokoloff, M.F.; Sanneman, E.H., Jr.; Beard, M.F. Urinary excretion of vitamin B12. Blood 1952, 7, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.F. The urinary excretion and tissue retention of cyanocobalamin by subjects given repeated parenteral doses. J. Clin. Pathol. 1964, 17, 31–38. [Google Scholar] [CrossRef]
- Carmel, R.; Hollander, D. Extreme elevation of transcobalamin II levels in multiple myeloma and other disorders. Blood 1978, 51, 1057–1063. [Google Scholar] [CrossRef]
- Hom, B.L.; Olesen, H.; Schwartz, M. Turnover of 57Co-labelled vitamin B12-transcobalamin II and autologous 131-I-labelled IgG in a patient with antibody to transcobalamin II. Scand. J. Haematol. 1968, 5, 107–115. [Google Scholar] [CrossRef]
- Tsiminis, G.; Schartner, E.P.; Brooks, J.L.; Hutchinson, M.R. Measuring and tracking vitamin B12: A review of current methods with a focus on optical spectroscopy. Appl. Spectrosc. Rev. 2017, 52, 439–455. [Google Scholar] [CrossRef]
- İspir, E.; Serdar, M.A.; Ozgurtas, T.; Gulbahar, O.; Akın, K.O.; Yesildal, F.; Kurt, I. Comparison of four automated serum vitamin B12 assays. Clin. Chem. Lab. Med. 2015, 53, 1205–1213. [Google Scholar] [CrossRef]
- Glezer, A.; Bronstein, M.D. Hyperprolactinemia. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; Bookshelf ID: NBK278984; MDText.com, Inc.: South Dartmouth, MA, USA, 2020. [Google Scholar]
- Sturk, A.; Sanders, G.T. Macro enzymes: Prevalence, composition, detection and clinical relevance. J. Clin. Chem. Clin. Biochem. 1990, 28, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Jacob, E.; Herbert, V.; Burger, R.L.; Allen, R.H. Atypical plasma factor associated with bronchogenic carcinoma and complexing with R-type vitamin B12-binding proteins. N. Engl. J. Med. 1977, 296, 915–917. [Google Scholar] [CrossRef]
- Olesen, H.; Hom, B.L.; Schwartz, M. Antibody to Transcobalamin II in Patients Treated with Long Acting Vitamin B12 Preparations. Scand. J. Haematol. 1968, 5, 5–16. [Google Scholar] [CrossRef]
- Schneider, Z.; Stroinski, A. Comprehensive B12: Chemistry, Biochemistry, Nutrition, Ecology, Medicine; De Gruyter: Berlin, Germany, 1987. [Google Scholar]
- Wolffenbuttel, B.H.R.; Muller Kobold, A.C.; Sobczyńska-Malefora, A.; Harrington, D.J. Macro-B12 masking B12 deficiency. BMJ Case Rep. 2022, 15, e247660. [Google Scholar] [CrossRef]
- van Rossum, A.P.; Vlasveld, L.T.; Castel, A. Falsely elevated cobalamin concentration in multiple assays in a patient with pernicious anemia: A case study. Clin. Chem. Lab. Med. 2013, 51, e217–e219. [Google Scholar] [CrossRef] [PubMed]
- Carmel, R.; Tatsis, B.; Baril, L. Circulating antibody to transcobalamin II causing retention of vitamin B12 in the blood. Blood 1977, 49, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Skouby, A.P.; Hippe, E.; Olesen, H. Antibody to transcobalamin II and B12 binding capacity in patients treated with hydroxocobalamin. Blood 1971, 38, 769–774. [Google Scholar] [CrossRef]
- Abuyaman, O.; Andreasen, B.H.; Kronborg, C.; Vittinghus, E.; Nexo, E. The soluble receptor for vitamin B12 uptake (sCD320) increases during pregnancy and occurs in higher concentration in urine than in serum. PLoS ONE 2013, 8, e73110. [Google Scholar] [CrossRef]
- Hoffmann-Lücke, E.; Arendt, J.F.; Nissen, P.H.; Mikkelsen, G.; Aasly, J.O.; Nexo, E. Three family members with elevated plasma cobalamin, transcobalamin and soluble transcobalamin receptor (sCD320). Clin. Chem. Lab. Med. 2013, 51, 677–682. [Google Scholar] [CrossRef]
- Marcoullis, G.; Parmentier, Y.; Nicolas, J.P. Blocking and binding type antibodies against all major vitamin B12-binders in a pernicious anaemia serum. Br. J. Haematol. 1979, 43, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Carmel, R.; Baril, L. Circulating immunoglobulin-transcobalamin I (R binder) complexes. J. Lab. Clin. Med. 1978, 91, 769–779. [Google Scholar] [PubMed]
- Bowen, R.A.; Drake, S.K.; Vanjani, R.; Huey, E.D.; Grafman, J.; Horne, M.K., 3rd. Markedly increased vitamin B12 concentrations attributable to IgG-IgM-vitamin B12 immune complexes. Clin. Chem. 2006, 52, 2107–2114. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.L.; He, T.; Tscheliessnig, A.; Mueller, M.; Tan, R.B.; Jungbauer, A. Protein precipitation by polyethylene glycol: A generalized model based on hydrodynamic radius. J. Biotechnol. 2012, 157, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Fahie-Wilson, M.; Halsall, D. Polyethylene glycol precipitation: Proceed with care. Ann. Clin. Biochem. 2008, 45, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Fedosov, S.N.; Fedosova, N.U.; Nexø, E.; Petersen, T.E. Conformational changes of transcobalamin induced by aquocobalamin binding. Mechanism of substitution of the cobalt-coordinated group in the bound ligand. J. Biol. Chem. 2000, 275, 11791–11798. [Google Scholar] [CrossRef]
- Greibe, E.; Arendt, J.; Nexo, E. More on failures of cobalamin assays in pernicious anemia. N. Engl. J. Med. 2012, 367, 1569–1571. [Google Scholar] [CrossRef]
- Jacob, E.; Herbert, V. Measurement of unsaturated “granulocyte-related” (TC I and TC III) and “liver-related” (TC II) B12 binders by instant batch separation using a microfine precipitate of silica (QUSO G32). J. Lab. Clin. Med. 1975, 86, 505–512. [Google Scholar] [CrossRef]
- Hansen, M.; Nexø, E. Isoelectric focusing of apo- and holo-transcobalamin present in human blood. Identification of a protein complexing with transcobalamin. Biochim. Biophys. Acta 1989, 992, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Guéant, J.L.; Hambaba, L.; Vidailhet, M.; Schaefer, C.; Wahlstedt, V.; Nicolas, J.P. Concentration and physicochemical characterisation of unsaturated cobalamin binding proteins in amniotic fluid. Clin. Chim. Acta 1989, 181, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Begley, J.A.; Hall, C.A. Measurement of vitamin B12-binding proteins of plasma. I. Technique. Blood 1975, 45, 281–286. [Google Scholar] [CrossRef]
- Duim, S.N.; Vlasveld, L.T.; Mezger, S.T.; Mingels, A.M.; Ramakers, C.R.; de Boer, D.; Heil, S.G.; Nexo, E.; van Rossum, A.P. Macro transcobalamin causing raised vitamin B12: Case-based laboratory investigation. Ann. Clin. Biochem. 2022, 59, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Grodzki, A.C.; Berenstein, E. Antibody purification: Ammonium sulfate fractionation or gel filtration. Methods Mol. Biol. 2010, 588, 15–26. [Google Scholar] [CrossRef]
- Olesen, H.; Rehfeld, J.; Hom, B.L.; Hippe, E. Stokes radius of 57Co-labelled vitamin B 12-transcobalamin I and II and 125-I-labelled insulin estimated by sephadex G-200 gel filtration in human plasma at 37 degrees. Biochim. Biophys. Acta 1969, 194, 67–70. [Google Scholar] [CrossRef]
- Hom, B.L. Demonstration of transcobalamin II complex formation and binding to Sephadex G-200 at low ionic strength. Clin. Chim. Acta 1967, 18, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Avram, M.J.; Fragen, R.J.; Caldwell, N.J. Dose-finding and pharmacokinetic study of intramuscular midazolam. J. Clin. Pharmacol. 1987, 27, 314–317. [Google Scholar] [CrossRef]
- Carmel, R.; Agrawal, Y.P. Failures of cobalamin assays in pernicious anemia. N. Engl. J. Med. 2012, 367, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, S.D.; Yang, D.T.; Straseski, J.A. Intrinsic factor blocking antibody interference is not detected in five automated cobalamin immunoassays. Am. J. Clin. Pathol. 2014, 141, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Lildballe, D.L.; Hardlei, T.F.; Allen, L.H.; Nexo, E. High concentrations of haptocorrin interfere with routine measurement of cobalamins in human serum and milk. A problem and its solution. Clin. Chem. Lab. Med. 2009, 47, 182–187. [Google Scholar] [CrossRef]
Description | Siemens: Advia, Centauer, Immulite | Roche: Cobas | Abbott: Architect | Beckman Coulter: Access |
---|---|---|---|---|
Type of B12 tracer (* B12) | Acridium labeled | Biotin coupled | Acridium labeled | Not labeled |
Intrinsic factor (IF) | On paramagnetic particles, IF~▒ | Ruthium labeled, * IF | On paramagnetic particles, IF~▒ | Alkaline phosphatase-IF, * IF |
Additional key reagent | None | Streptavidin, solid-phase | None | Solid goat anti-mouse, mouse anti-IF, does not bind to IF-B12 |
Assay design | Plasma B12 + * B12 + IF~▒ | Plasma B12 + B12~▒ + * IF + streptavidin | Plasma B12 + IF~▒ washing + * B12 | Plasma B12 + * IF + mouse antibody~▒ (recognizes apo-* IF) |
Reference interval pmol/L | 156–672 | 145–569 | 138–652 | 133–675 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedosov, S.N.; Nexo, E. Macro-B12 and Unexpectedly High Levels of Plasma B12: A Critical Review. Nutrients 2024, 16, 648. https://doi.org/10.3390/nu16050648
Fedosov SN, Nexo E. Macro-B12 and Unexpectedly High Levels of Plasma B12: A Critical Review. Nutrients. 2024; 16(5):648. https://doi.org/10.3390/nu16050648
Chicago/Turabian StyleFedosov, Sergey N., and Ebba Nexo. 2024. "Macro-B12 and Unexpectedly High Levels of Plasma B12: A Critical Review" Nutrients 16, no. 5: 648. https://doi.org/10.3390/nu16050648
APA StyleFedosov, S. N., & Nexo, E. (2024). Macro-B12 and Unexpectedly High Levels of Plasma B12: A Critical Review. Nutrients, 16(5), 648. https://doi.org/10.3390/nu16050648