Effects of Caffeinated Coffee on Cross-Country Cycling Performance in Recreational Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Protocol
Course Characteristics
2.4. Analysis
3. Results
3.1. Complete Course
3.2. Course Sectors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heckman, M.A.; Weil, J.; de Mejia, E.G. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, R77–R87. [Google Scholar] [CrossRef] [PubMed]
- Gonglach, A.R.; Ade, C.J.; Bemben, M.G.; Larson, R.D.; Black, C.D. Muscle pain as a regulator of cycling intensity: Effect of caffeine ingestion. Med. Sci. Sports Exerc. 2016, 48, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B. Adenosine, Adenosine Receptors and the Actions of Caffeine. Pharmacol. Toxicol. 1995, 76, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Biddulph, C.; Devlin, B.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. The effects of different doses of caffeine on endurance cycling time trial performance. J. Sports Sci. 2012, 30, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Pitchford, N.W.; Fell, J.W.; Leveritt, M.D.; Desbrow, B.; Shing, C.M. Effect of caffeine on cycling time-trial performance in the heat. J. Sci. Med. Sport 2014, 17, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E. Caffeine and exercise metabolism, endurance and performance. Sport. Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Nabuco, L.L.; Saunders, B.; Da Silva, R.A.S.; Molina, G.E. Caffeine mouth rinse does not improve time to exhaustion in male trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 412–419. [Google Scholar] [CrossRef]
- Smirmaul, B.P.C.; de Moraes, A.C.; Angius, L.; Marcora, S.M. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur. J. Appl. Physiol. 2017, 117, 27–38. [Google Scholar] [CrossRef]
- Clarke, N.D.; Kirwan, N.A.; Richardson, D.L. Coffee ingestion improves 5 km cycling performance in men and women by a similar magnitude. Nutrients 2019, 11, 2575. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Grgic, J. Is coffee a useful source of caffeine preexercise? Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Leveritt, M. Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Muros, J.J.; Sánchez-Muñoz, C.; Campos, D.; Hinojosa-Nogueira, D.; Rufián-Henares, J.Á.; Mateo-March, M.; Zabala, M. Nutritional Habits of Professional Cyclists during Pre-Season. Nutrients 2022, 14, 3695. [Google Scholar] [CrossRef] [PubMed]
- US Deparment of Agriculture. Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/540260/nutrients (accessed on 6 January 2024).
- Samoggia, A.; Riedel, B. Consumers’ Perceptions of Coffee Health Benefits and Motives for Coffee Consumption and Purchasing. Nutrients 2019, 11, 653. [Google Scholar] [CrossRef] [PubMed]
- Lowery, L.M.; Anderson, D.E.; Scanlon, K.F.; Stack, A.; Escalante, G.; Campbell, S.C.; Kerksick, C.M.; Nelson, M.T.; Ziegenfuss, T.N.; VanDusseldorp, T.A.; et al. International society of sports nutrition position stand: Coffee and sports performance. J. Int. Soc. Sports Nutr. 2023, 20, 2237952. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Salinero, J.J.; Lara, B. Effects of Caffeine and Coffee on Human Functioning. Nutrients 2020, 12, 125. [Google Scholar] [CrossRef]
- Costill, D.L.; Dalsky, G.P.; Fink, W.J. Effects of caffeine ingestion on metabolism and exercise performance. Med. Sci. Sports 1978, 10, 155–158. [Google Scholar]
- Hoffman, J.R.; Kang, J.; Ratamess, N.A.; Jennings, P.F.; Mangine, G.T.; Faigenbaum, A.D. Effect of nutritionally enriched coffee consumption on aerobic and anaerobic exercise performance. J. Strength Cond. Res. 2007, 21, 456–459. [Google Scholar] [CrossRef]
- Hodgson, A.B.; Randell, R.K.; Jeukendrup, A.E. The Metabolic and Performance Effects of Caffeine Compared to Coffee during Endurance Exercise. PLoS ONE 2013, 8, e59561. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Roelofs, E.J.; Hirsch, K.R.; Mock, M.G. Effects of coffee and caffeine anhydrous on strength and sprint performance. Eur. J. Sport Sci. 2016, 16, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Higgins, S.; Straight, C.R.; Lewis, R.D. The effects of preexercise caffeinated coffee ingestion on endurance performance: An evidence-based review. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 221–239. [Google Scholar] [CrossRef]
- Graham, T.E.; Hibbert, E.; Sathasivam, P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J. Appl. Physiol. 1998, 85, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis. Sport. Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Potgieter, S.; Wright, H.H.; Smith, C. Caffeine Improves Triathlon Performance: A Field Study in Males and Females. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 228–237. [Google Scholar] [CrossRef] [PubMed]
- MacIntosh, B.R.; Wright, B.M. Caffeine ingestion and performance of a 1500-metre swim. Can. J. Appl. Physiol. 1995, 20, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Mirizio, G.G.; Muñoz, R.; Muñoz, L.; Ahumada, F.; Del Coso, J. Race Performance Prediction from the Physiological Profile in National Level Youth Cross-Country Cyclists. Int. J. Environ. Res. Public Health 2021, 18, 5535. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M. The physiology of mountain biking. Sport. Med. 2007, 37, 59–71. [Google Scholar] [CrossRef]
- Skinner, T.L.; Desbrow, B.E.N.; Arapova, J.; Schaumberg, M.A.; Osborne, J.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. Women Experience the Same Ergogenic Response to Caffeine as Men. Med. Sci. Sports Exerc. 2019, 51, 1195–1202. [Google Scholar] [CrossRef]
- Lara, B.; Salinero, J.J.; Giráldez-Costas, V.; Del Coso, J. Similar ergogenic effect of caffeine on anaerobic performance in men and women athletes. Eur. J. Nutr. 2021, 60, 4107–4114. [Google Scholar] [CrossRef]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahrungs Umschau 2014, 61, 58–63. [Google Scholar]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Del Coso, J. Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: Is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef]
- Nestlé, NESCAFÉ Clásico Instant Coffee. Available online: https://www.nestleprofessional.ca/nescafe/nescafe-clasico-instant-coffee (accessed on 6 January 2024).
- Borg, G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Bang, H.; Ni, L.; Davis, C.E. Assessment of blinding in clinical trials. Control. Clin. Trials 2004, 25, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Spriet, L.L. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J. Appl. Physiol. 1991, 71, 2292–2298. [Google Scholar] [CrossRef] [PubMed]
- Talanian, J.L.; Spriet, L.L. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl. Physiol. Nutr. Metab. 2016, 41, 850–855. [Google Scholar] [CrossRef]
- Astorino, T.A.; Cottrell, T.; Lozano, A.T.; Aburto-Pratt, K.; Duhon, J. Increases in cycling performance in response to caffeine ingestion are repeatable. Nutr. Res. 2012, 32, 78–84. [Google Scholar] [CrossRef]
- Astorino, T.A.; Cottrell, T.; Lozano, A.T.; Aburto-Pratt, K.; Duhon, J. Ergogenic Effects of Caffeine on Simulated Time-Trial Performance Are Independent of Fitness Level. J. Caffeine Res. 2011, 1, 179–185. [Google Scholar] [CrossRef]
- Miller, M.C.; Macdermid, P.W.; Fink, P.W.; Stannard, S.R. Performance and physiological effects of different descending strategies for cross-country mountain biking. Eur. J. Sport Sci. 2017, 17, 279–285. [Google Scholar] [CrossRef]
- Gregory, J.; Johns, D.P.; Walls, J.T. Relative vs. absolute physiological measures as predictors of mountain bike cross-country race performance. J. Strength Cond. Res. 2007, 21, 17–22. [Google Scholar] [CrossRef]
- Magkos, F.; Kavouras, S.A. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef]
- Ruiz-Moreno, C.; Lara, B.; Gutiérrez-Hellín, J.; González-García, J.; Del Coso, J. Time Course and Magnitude of Tolerance to the Ergogenic Effect of Caffeine on the Second Ventilatory Threshold. Life 2020, 10, 343. [Google Scholar] [CrossRef]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef]
Mean (SD) | |||
---|---|---|---|
Total | Men | Women | |
Age | 22 (3) | 20 (3) | 22 (4) |
Min. | 18 | 18 | 19 |
Max. | 27 | 27 | 24 |
Height (cm) | 177.2 (8.2) | 180.1 (5.6) | 164.0 (0) |
Min. | 164.0 | 173.5 | 164.0 |
Max. | 189.0 | 189.0 | 164.0 |
Body mass (kg) | 70.91 (9.15) | 73.20 (8.18) | 60.55 (6.43) |
Min. | 56.00 | 62.80 | 56.00 |
Max. | 84.00 | 84.00 | 65.10 |
Body mass index (kg/m2) | 22.59 (2.54) | 22.61 (2.73) | 22.51 (2.39) |
Min. | 19.66 | 19.66 | 20.82 |
Max. | 26.79 | 26.79 | 24.2 |
Resting heart rate (bpm) | 60 (11) | 57 (9) | 72 (16) |
Min. | 43 | 43 | 60 |
Max. | 83 | 73 | 83 |
Daily caffeine intake (mg/kg/day) | 0.79 (0.64) | 0.72 (0.70) | 1.11 (0.01) |
Min. | 0.12 | 0.12 | 1.10 |
Max. | 2.19 | 2.19 | 1.12 |
Sector | Description | Technical Difficulty | ||||
---|---|---|---|---|---|---|
1 | Intense uphill (32.1% gradient peak) with roots and sandbanks on the ground. | 1 | 2 | 3 | 4 | 5 |
2 | Moderate uphill (~4% gradient), linking with a path (gradient between −2.5 and 2.5) that starts with a jump. There are several roots and sandbanks, but the route is relatively straight and easy. | 1 | 2 | 3 | 4 | 5 |
3 | Combination of fast curves and steep jumps in the most complex section of the circuit. The negative gradient is approximately −5 to −9%. The path turns into a short uphill section followed by a descent with a −16.6% negative gradient peak. | 1 | 2 | 3 | 4 | 5 |
4 | This section starts with a very narrow descent (−6% gradient) which turns into a steady uphill section with minimal technical difficulty (gradient between 2.5 and 7.2%). | 1 | 2 | 3 | 4 | 5 |
5 | Downhill section that connects with a relatively complex descent with short curves with a gradient of −17.0–35.8%. | 1 | 2 | 3 | 4 | 5 |
6 | Climb on a wide track without technical difficulty. Constant gradient of ~4.5% with a peak gradient of 12%. | 1 | 2 | 3 | 4 | 5 |
7 | Steep descent (between −12 and −17.6%) with 2 complex turns followed by an uphill section (9.4% gradient) then descends again with a −20.9% negative slope. | 1 | 2 | 3 | 4 | 5 |
8 | Continuation of the descent of the previous section followed by an easy but narrow uphill section of between 2.5 and 10% to the finish line. | 1 | 2 | 3 | 4 | 5 |
Trials | Answer | ||
---|---|---|---|
Caffeine | Placebo | Do Not Know | |
Caffeine | 4 | 4 | 3 |
Placebo | 4 | 4 | 3 |
Total | 8 | 8 | 6 |
Bang index | 0.0 | 0.0 |
CAF | PLA | t | d | p | |
---|---|---|---|---|---|
Sector 1 | 4.22 ± 0.77 | 4.59 ± 0.70 | 4.571 | 0.498 | 0.001 * |
Sector 2 | 9.34 ± 1.20 | 9.81 ± 1.22 | 3.152 | 0.386 | 0.010 * |
Sector 3 | 4.04 ± 0.64 | 4.52 ± 0.73 | 3.601 | 0.701 | 0.005 * |
Sector 4 | 2.64 ± 0.36 | 2.82 ± 0.37 | 3.215 | 0.475 | 0.009 * |
Sector 5 | 3.64 ± 0.91 | 3.62 ± 1.03 | 0.044 z | 0.023 | 0.965 |
Sector 6 | 8.91 ± 1.57 | 9.21 ± 1.73 | 1.956 z | 0.182 | 0.050 |
Sector 7 | 2.78 ± 0.51 | 3.03 ± 0.96 | 1.476 | 0.346 | 0.171 |
Sector 8 | 5.50 ± 0.80 | 5.69 ± 1.11 | 1.406 | 0.201 | 0.190 |
CAF | PLA | t | d | p | |
---|---|---|---|---|---|
Heart rate (bpm) | |||||
Sector 1 | 129 ± 18 | 129 ± 22 | 0.133 z | 0.005 | 0.894 |
Sector 2 | 170 ± 11 | 159 ± 17 | 1.512 z | 0.657 | 0.130 |
Sector 3 | 171 ± 11 | 168 ± 11 | 0.714 z | 0.310 | 0.475 |
Sector 4 | 171 ± 12 | 166 ± 12 | 1.601 z | 0.535 | 0.109 |
Sector 5 | 173 ± 8 | 169 ± 10 | 1.602 z | 0.436 | 0.109 |
Sector 6 | 173 ± 10 | 171 ± 10 | 0.313 z | 0.232 | 0.754 |
Sector 7 | 172 ± 10 | 171 ± 7 | 1.072 z | 0.195 | 0.284 |
Sector 8 | 173 ± 8 | 171 ± 9 | 1.386 z | 0.511 | 0.166 |
Peak speed (km/h) | |||||
Sector 1 | 37.25 ± 6.16 | 35.2 ± 4.6 | 2.575 | 0.380 | 0.028 * |
Sector 2 | 32.85 ± 3.60 | 31.08 ± 3.53 | 3.202 | 0.497 | 0.009 * |
Sector 3 | 47.38 ± 8.24 | 45.42 ± 9.34 | 3.084 | 0.223 | 0.012 * |
Sector 4 | 36.44 ± 3.64 | 36.35 ± 3.96 | 0.157 | 0.024 | 0.879 |
Sector 5 | 38.69 ± 5.46 | 37.87 ± 6.76 | 1.156 z | 0.134 | 0.258 |
Sector 6 | 24.77 ± 3.49 | 25.29 ± 3.83 | 0.704 | 0.141 | 0.497 |
Sector 7 | 44.05 ± 6.74 | 43.87 ± 7.52 | 0.154 | 0.024 | 0.881 |
Sector 8 | 41.70 ± 8.94 | 42.30 ± 9.30 | 0.749 | 0.066 | 0.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo-Colmena, D.; Fernández-Sánchez, J.; Rodríguez-Castaño, A.; Casado, A.; Del Coso, J. Effects of Caffeinated Coffee on Cross-Country Cycling Performance in Recreational Cyclists. Nutrients 2024, 16, 668. https://doi.org/10.3390/nu16050668
Trujillo-Colmena D, Fernández-Sánchez J, Rodríguez-Castaño A, Casado A, Del Coso J. Effects of Caffeinated Coffee on Cross-Country Cycling Performance in Recreational Cyclists. Nutrients. 2024; 16(5):668. https://doi.org/10.3390/nu16050668
Chicago/Turabian StyleTrujillo-Colmena, Daniel, Javier Fernández-Sánchez, Adrián Rodríguez-Castaño, Arturo Casado, and Juan Del Coso. 2024. "Effects of Caffeinated Coffee on Cross-Country Cycling Performance in Recreational Cyclists" Nutrients 16, no. 5: 668. https://doi.org/10.3390/nu16050668
APA StyleTrujillo-Colmena, D., Fernández-Sánchez, J., Rodríguez-Castaño, A., Casado, A., & Del Coso, J. (2024). Effects of Caffeinated Coffee on Cross-Country Cycling Performance in Recreational Cyclists. Nutrients, 16(5), 668. https://doi.org/10.3390/nu16050668