Dietary Factors and the Risk of Depression among Women with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
- Having no clinical diagnosis related to eating disorders;
- Having no clinical diagnosis linked to food allergy or digestive ailments like irritable bowel syndrome, ulcerative colitis, Crohn’s disease, or celiac disease;
- Not being pregnant and not breastfeeding;
- Not using contraceptive pills;
- Not using medications that may affect carbohydrate metabolism;
- Having a PCOS diagnosis that excludes alternative origins of hyperandrogenism, such as Cushing’s syndrome or hyperprolactinemia.
2.2. Nutritional Habits
- Pro-Healthy-Diet-Index-10 (pHDI-10, Prohealthy-Diet-Index-10), which is determined by tallying the frequency of intake (number of times per day) of fruit, vegetables, whole (brown)/bread rolls, buckwheat, oats, wholegrain pasta or other coarse-ground groats, milk (including flavored varieties), fermented milk products (like yogurt and kefir), cottage cheese (including processed cheese), fish products and dishes, legume dishes, and meals prepared from white meat (such as chicken, turkey, rabbit, and similar options);
- Non-Healthy-Diet-Index-14 (nHDI-14, Non-Healthy-Diet-Index-14), determined by totaling the frequency of consumption (number of times per day) of confectionery items, fried foods, alcoholic beverages, sweetened and energy drinks, powdered and instant soups, fast food (such as potato chips, fries, pizza, hot-dogs), energy beverages, white bread and bakery products, “white” grain products (such as white rice, regular pasta, semolina, couscous), butter, animal fat, yellow and blue cheese, and dishes containing red meat (such as veal, mutton, lamb, beef, pork, venison, and smoked sausages).
2.3. The Beck Depression Inventory
- -
- 0–9: absence of depression;
- -
- 10–18: mild depression;
- -
- 19–29: moderate depression;
- -
- 30–63: severe depression.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fauser, B.C.J.M.; Tarlatzis, B.C.; Rebar, R.W.; Legro, R.S.; Balen, A.H.; Lobo, R.; Carmina, E.; Chang, J.; Yildiz, B.O.; Laven, J.S.E.; et al. Consensus on Women’s Health Aspects of Polycystic Ovary Syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012, 97, 28–38. [Google Scholar] [CrossRef]
- Zeng, B.; Lai, Z.; Sun, L.; Zhang, Z.; Yang, J.; Li, Z.; Lin, J.; Zhang, Z. Structural and Functional Profiles of the Gut Microbial Community in Polycystic Ovary Syndrome with Insulin Resistance (IR-PCOS): A Pilot Study. Res. Microbiol. 2019, 170, 43–52. [Google Scholar] [CrossRef]
- Hollinrake, E.; Abreu, A.; Maifeld, M.; Voorhis, B.J.V.; Dokras, A. Increased Risk of Depressive Disorders in Women with Polycystic Ovary Syndrome. Fertil. Steril. 2007, 87, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Ilie, I.R. Neurotransmitter, Neuropeptide and Gut Peptide Profile in PCOS-Pathways Contributing to the Pathophysiology, Food Intake and Psychiatric Manifestations of PCOS. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 96, pp. 85–135. ISBN 978-0-12-821166-3. [Google Scholar]
- Depression and Other Common Mental Disorders. Available online: https://www.who.int/publications/i/item/depression-global-health-estimates (accessed on 6 February 2024).
- Kitzinger, C.; Willmott, J. “The Thief of Womanhood”: Women’s Experience of Polycystic Ovarian Syndrome. Soc. Sci. Med. 2002, 54, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, E.A.; Pasch, L.A.; Cedars, M.I.; Legro, R.S.; Eisenberg, E.; Huddleston, H.G. Insulin Resistance Is Associated with Depression Risk in Polycystic Ovary Syndrome. Fertil. Steril. 2018, 110, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Angin, P.; Yoldemir, T.; Atasayan, K. Quality of Life among Infertile PCOS Patients. Arch. Gynecol. Obstet. 2019, 300, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Sobczyk, K.; Grot, M.; Kowalski, O.; Staśkiewicz, W. Nutrition and Mental Health: A Review of Current Knowledge about the Impact of Diet on Mental Health. Front. Nutr. 2022, 9, 943998. [Google Scholar] [CrossRef] [PubMed]
- Jiskoot, G.; de Loos, A.D.; Timman, R.; Beerthuizen, A.; Laven, J.; Busschbach, J. Changes in Eating Behavior through Lifestyle Treatment in Women with Polycystic Ovary Syndrome (PCOS): A Randomized Controlled Trial. J. Eat. Disord. 2022, 10, 69. [Google Scholar] [CrossRef]
- Song, Y.-M.; Lee, K. Eating Behavior and Metabolic Syndrome over Time. Eat. Weight Disord. EWD 2020, 25, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Simmons, W.K.; van Rossum, E.F.C.; Penninx, B.W. Depression and Obesity: Evidence of Shared Biological Mechanisms. Mol. Psychiatry 2019, 24, 18–33. [Google Scholar] [CrossRef]
- Wang, A.; Wan, X.; Zhuang, P.; Jia, W.; Ao, Y.; Liu, X.; Tian, Y.; Zhu, L.; Huang, Y.; Yao, J.; et al. High Fried Food Consumption Impacts Anxiety and Depression Due to Lipid Metabolism Disturbance and Neuroinflammation. Proc. Natl. Acad. Sci. USA 2023, 120, e2221097120. [Google Scholar] [CrossRef]
- Aslam, H.; Green, J.; Jacka, F.N.; Collier, F.; Berk, M.; Pasco, J.; Dawson, S.L. Fermented Foods, the Gut and Mental Health: A Mechanistic Overview with Implications for Depression and Anxiety. Nutr. Neurosci. 2020, 23, 659–671. [Google Scholar] [CrossRef]
- Berk, M.; Williams, L.J.; Jacka, F.N.; O’Neil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; et al. So Depression Is an Inflammatory Disease, but Where Does the Inflammation Come From? BMC Med. 2013, 11, 200. [Google Scholar] [CrossRef]
- Leonard, B.E. Inflammation and Depression: A Causal or Coincidental Link to the Pathophysiology? Acta Neuropsychiatr. 2018, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tolkien, K.; Bradburn, S.; Murgatroyd, C. An Anti-Inflammatory Diet as a Potential Intervention for Depressive Disorders: A Systematic Review and Meta-Analysis. Clin. Nutr. 2019, 38, 2045–2052. [Google Scholar] [CrossRef]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 Consensus on Diagnostic Criteria and Long-Term Health Risks Related to Polycystic Ovary Syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- McCarron, R.M.; Shapiro, B.; Rawles, J.; Luo, J. Depression. Ann. Intern. Med. 2021, 174, ITC65–ITC80. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Hahn, S.; Benson, S.; Janssen, O.E.; Dietz, T.; Kimmig, R.; Hesse-Hussain, J.; Mann, K.; Schedlowski, M.; Arck, P.C.; et al. Psychological Implications of Infertility in Women with Polycystic Ovary Syndrome. Hum. Reprod. 2008, 23, 2064–2071. [Google Scholar] [CrossRef] [PubMed]
- Cooney, L.G.; Lee, I.; Sammel, M.D.; Dokras, A. High Prevalence of Moderate and Severe Depressive and Anxiety Symptoms in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Hum. Reprod. 2017, 32, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ni, Z.; Li, K. The Prevalence of Anxiety and Depression of Different Severity in Women with Polycystic Ovary Syndrome: A Meta-Analysis. Gynecol. Endocrinol. 2021, 37, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Ji, Y.; Chan, C.L.W.; Chan, C.H.Y. The Mental Health of Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Arch. Womens Ment. Health 2021, 24, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Paris, D.; Remlinger-Molenda, A.; Kurzawa, R.; Głowińska, A.; Spaczyński, R.; Rybakowski, F.; Pawełczyk, L.; Banaszewska, B. Psychiatric Disorders in Women with Polycystic Ovary Syndrome. Psychiatr. Pol. 2019, 53, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, I.J.; Teede, H.; Lucke, J.; Dobson, A.J.; Mishra, G.D. Young Women’s Psychological Distress after a Diagnosis of Polycystic Ovary Syndrome or Endometriosis. Hum. Reprod. 2016, 31, 2072–2081. [Google Scholar] [CrossRef]
- Cooney, L.G.; Dokras, A. Depression and Anxiety in Polycystic Ovary Syndrome: Etiology and Treatment. Curr. Psychiatry Rep. 2017, 19, 83. [Google Scholar] [CrossRef]
- Maya, J.; Siegel, J.; Cheng, T.Q.; Rousseau-Pierre, T. Prevalence and Risk Factors of Polycystic Ovarian Syndrome among an Ethnically Diverse Overweight/Obese Adolescent Population. Int. J. Adolesc. Med. Health 2022, 34, 20190109. [Google Scholar] [CrossRef]
- Speed, M.S.; Jefsen, O.H.; Børglum, A.D.; Speed, D.; Østergaard, S.D. Investigating the Association between Body Fat and Depression via Mendelian Randomization. Transl. Psychiatry 2019, 9, 184. [Google Scholar] [CrossRef]
- Deng, M.-G.; Liu, F.; Liang, Y.; Wang, K.; Nie, J.-Q.; Liu, J. Association between Frailty and Depression: A Bidirectional Mendelian Randomization Study. Sci. Adv. 2023, 9, eadi3902. [Google Scholar] [CrossRef]
- Tyrrell, J.; Mulugeta, A.; Wood, A.R.; Zhou, A.; Beaumont, R.N.; Tuke, M.A.; Jones, S.E.; Ruth, K.S.; Yaghootkar, H.; Sharp, S.; et al. Using Genetics to Understand the Causal Influence of Higher BMI on Depression. Int. J. Epidemiol. 2019, 48, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Xu, J.; Wei, Y.; Chen, Y.; Zhuang, H.; Tang, W.; Yu, S.; Zhang, J.; Yin, G.; Wang, R.; et al. Depression in Polycystic Ovary Syndrome: Focusing on Pathogenesis and Treatment. Front. Psychiatry 2022, 13, 1001484. [Google Scholar] [CrossRef]
- Szczuko, M.; Skowronek, M.; Zapałowska-Chwyć, M.; Starczewski, A. Quantitative Assessment of Nutrition in Patients with Polycystic Ovary Syndrome (PCOS). Rocz. Panstw. Zakl. Hig. 2016, 67, 419–426. [Google Scholar] [PubMed]
- Bykowska-Derda, A.; Czlapka-Matyasik, M.; Kaluzna, M.; Ruchala, M.; Ziemnicka, K. Diet Quality Scores in Relation to Fatness and Nutritional Knowledge in Women with Polycystic Ovary Syndrome: Case-Control Study. Public Health Nutr. 2021, 24, 3389–3398. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, M.; Łuszczki, E.; Dereń, K. Dietary Nutrient Deficiencies and Risk of Depression (Review Article 2018–2023). Nutrients 2023, 15, 2433. [Google Scholar] [CrossRef]
- Kang, D.; Kim, Y.; Je, Y. Non-Alcoholic Beverage Consumption and Risk of Depression: Epidemiological Evidence from Observational Studies. Eur. J. Clin. Nutr. 2018, 72, 1506–1516. [Google Scholar] [CrossRef]
- Harrell, C.S.; Burgado, J.; Kelly, S.D.; Johnson, Z.P.; Neigh, G.N. High-Fructose Diet during Periadolescent Development Increases Depressive-like Behavior and Remodels the Hypothalamic Transcriptome in Male Rats. Psychoneuroendocrinology 2015, 62, 252–264. [Google Scholar] [CrossRef]
- McInnis, C.M.; Thoma, M.V.; Gianferante, D.; Hanlin, L.; Chen, X.; Breines, J.G.; Hong, S.; Rohleder, N. Measures of Adiposity Predict Interleukin-6 Responses to Repeated Psychosocial Stress. Brain. Behav. Immun. 2014, 42, 33–40. [Google Scholar] [CrossRef]
- Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.M.; Smolarczyk, R.; Meczekalski, B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Wisner, K.L. Nutrition and Depression: Implications for Improving Mental Health Among Childbearing-Aged Women. Biol. Psychiatry 2005, 58, 679–685. [Google Scholar] [CrossRef]
- Yu, L.; Chen, X.; Bai, X.; Fang, J.; Sui, M. Microbiota Alters and Its Correlation with Molecular Regulation Underlying Depression in PCOS Patients. Mol. Neurobiol. 2023. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Wang, R.; An, Y.; Gao, W.; Bai, L.; Li, Y.; Zhao, S.; Fan, J.; Liu, E. Western Diet Feeding Influences Gut Microbiota Profiles in apoE Knockout Mice. Lipids Health Dis. 2018, 17, 159. [Google Scholar] [CrossRef]
- Nagpal, R.; Shively, C.A.; Appt, S.A.; Register, T.C.; Michalson, K.T.; Vitolins, M.Z.; Yadav, H. Gut Microbiome Composition in Non-Human Primates Consuming a Western or Mediterranean Diet. Front. Nutr. 2018, 5, 28. [Google Scholar] [CrossRef]
- Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; et al. Diet and Depression: Exploring the Biological Mechanisms of Action. Mol. Psychiatry 2021, 26, 134–150. [Google Scholar] [CrossRef] [PubMed]
- Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biol. Psychiatry 2017, 82, 472–487. [Google Scholar] [CrossRef] [PubMed]
- Dharmayani, P.N.A.; Juergens, M.; Allman-Farinelli, M.; Mihrshahi, S. Association between Fruit and Vegetable Consumption and Depression Symptoms in Young People and Adults Aged 15–45: A Systematic Review of Cohort Studies. Int. J. Environ. Res. Public Health 2021, 18, 780. [Google Scholar] [CrossRef] [PubMed]
- Głąbska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef]
- Giussani, M.; Lieti, G.; Orlando, A.; Parati, G.; Genovesi, S. Fructose Intake, Hypertension and Cardiometabolic Risk Factors in Children and Adolescents: From Pathophysiology to Clinical Aspects. A Narrative Review. Front. Med. 2022, 9, 792949. [Google Scholar] [CrossRef] [PubMed]
ND (n = 61) | RD (n = 55) | p-Value | |
---|---|---|---|
Age (years) | 27.58 (4.38) | 28.74 (5.72) | NS |
BMI (kg/m2) | 23.24 (4.79) | 26.86 (6.20) | <0.0001 |
<18.9 kg/m2 | 2 (6%) | 1 (3%) | |
19.0–24.9 kg/m2 | 26 (85%) | 19 (63) | |
25.0–29.9 kg/m2 | 1 (3%) | 6 (20%) | |
>30 kg/m2 | 2 (6%) | 4 (14%) | |
Risk of depression (points) | 10.23 (3.05) | 23.81 (3.81) | <0.0001 |
<9 | 31 (51%) | — | |
10–18 | 30 (49%) | — | |
19–29 | — | 48 (87%) | |
30–63 | — | 7 (13%) | |
pHDI-10 | 26.28 (11.18) | 21.55 (9.12) | 0.014 |
nHDI-14 | 20.64 (11.45) | 24.12 (13.30) | NS |
Whitemeal products (times/day) | 0.47 (0.43) | 0.52 (0.42) | NS |
Wholemeal products (times/day) | 0.45 (0.36) | 0.37 (0.31) | NS |
Dairy products and eggs (times/day) | 0.55 (0.40) | 0.49 (0.36) | NS |
Meat and meat products (times/day) | 0.32 (0.40) | 0.33 (0.43) | NS |
Poultry (times/day) | 0.46 (0.48) | 0.41 (0.38) | NS |
Fish and sea foods (times/day) | 0.19 (0.29) | 0.22 (0.22) | NS |
Fruits (times/day) | 0.89 (0.56) | 0.91 (0.60) | NS |
Fast foods and snacks (times/day) | 0.23 (0.21) | 0.27 (0.22) | NS |
Confectionary (times/day) | 0.45 (0.60) | 0.47 (0.56) | NS |
Vegetable and legumes (times/day) | 0.73 (0.47) | 0.55 (0.41) | 0.03 |
Sweetened beverages (times/day) | 0.14 (0.32) | 0.42 (0.63) | 0.002 |
Energy drinks (times/day) | 0.11 (0.33) | 0.35 (0.59) | 0.008 |
Alcoholic beverages (times/day) | 0.12 (0.22) | 0.19 (0.28) | NS |
Parameters | Occurrence in Overweight or Obesity Group n (%) | Risk of Depression (BDI Score > 19) | |
---|---|---|---|
Crude OR (CI 95%) | OR Adjusted for Age (CI 95%) | ||
BMI (kg/m2) overweight or obesity | - | 5.92 (2.58; 13.58); p < 0.001 | 5.82 (2.39; 14.21); p < 0.001 |
pHDI-10 ≥upper quartile | 13 (28) | 0.43 (0.19; 0.97); p = 0.039 | 0.50 (0.14; 1.77); NS |
nHDI-14 ≥upper quartile | 14 (30) | 1.71 (0.68; 4.29); NS | 1.04 (0.35; 3.13); NS |
Whitemeal products ≥once per day | 11 (24) | 0.46 (0.16; 1.35); NS | 0.43 (0.15; 1.27); NS |
Wholemeal products ≥once per day | 9 (20) | 0.35 (0.10; 1.20); NS | 0.35 (0.10; 1.23); NS |
Dairy products and eggs ≥once per day | 7 (15) | 1.22 (0.37; 3.95); NS | 1.02 (0.30; 3.43); NS |
Meat and meat products ≥two times per week | 29 (63) | 0.97 (0.39; 2.38); NS | 1.38 (0.51; 3.74); NS |
Poultry ≥two times per week | 38 (83) | 1.29 (0.53; 3.14); NS | 1.17 (0.46; 2.99); NS |
Fish and seafood ≥two times per week | 25 (54) | 2.03 (0.67; 6.13); NS | 2.30 (0.70; 7.60); NS |
Fruits ≥two times per day | 6 (13) | 1.94 (0.62; 6.06); NS | 2.04 (0.59; 7.10); NS |
Fast foods and snacks ≥two times per week | 30 (65) | 1.24 (0.48; 3.16); NS | 1.03 (0.38; 2.78); NS |
Confectionary ≥two times per week | 34 (74) | 1.31 (0.56; 3.05); NS | 1.13 (0.44; 2.89); NS |
Vegetable and legumes ≥two times per day | 8 (17) | 0.38 (0.15; 0.96); 0.04 | 0.98 (0.25; 3.88); NS |
Sweetened beverages ≥two times per week | 26 (56) | 2.00 (0.59; 6.77); NS | 1.73 (0.48; 6.15); NS |
Energy drinks ≥once per week | 24 (52) | 2.33 (0.89; 6.10); NS | 1.82 (0.56; 5.93); NS |
Alcoholic beverages ≥once per week | 15 (33) | 1.37 (0.45; 4.20); NS | 2.32 (0.88; 6.08); NS |
Regression Coefficient | 95% CI | p-Value | |
---|---|---|---|
Age (years) | 0.05 | −0.04, 014 | 0.26 |
BMI (kg/m2) | 0.14 | 0.01, 0.27 | 0.04 |
pHDI-10 | −0.18 | −0.43, 0.08 | 0.18 |
nHDI-14 | 0.00 | −0.12, 0.12 | 0.97 |
Whitemeal products (times/day) | 1.33 | −0.28, 2.93 | 0.11 |
Wholemeal products (times/day) | −0.10 | −1.12, 0.92 | 0.85 |
Dairy products and eggs (times/day) | 0.45 | −2.41, 3.31 | 0.76 |
Meat and meat products (times/day) | 0.86 | −0.93, 2.66 | 0.35 |
Poultry (times/day) | 0.50 | −1.79, 2.79 | 0.67 |
Fish and sea foods (times/day) | −1.76 | −3.61, 0.10 | 0.06 |
Fruits (times/day) | 0.47 | −2.47, 3.41 | 0.75 |
Fast foods and snacks (times/day) | 2.01 | −1.84, 5.86 | 0.31 |
Confectionary (times/day) | −1.39 | −4.39, 1.61 | 0.36 |
Vegetable and legumes (times/day) | 0.85 | −0.51, 2.22 | 0.22 |
Sweetened beverages (times/day) | 0.47 | −1.04, 1.99 | 0.54 |
Energy drinks (times/day) | −0.36 | −2.57, 1.86 | 0.75 |
Alcoholic beverages (times/day) | 2.11 | −0.14, 4.35 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łagowska, K.; Bajerska, J.; Pieczyńska-Zając, J.M. Dietary Factors and the Risk of Depression among Women with Polycystic Ovary Syndrome. Nutrients 2024, 16, 763. https://doi.org/10.3390/nu16060763
Łagowska K, Bajerska J, Pieczyńska-Zając JM. Dietary Factors and the Risk of Depression among Women with Polycystic Ovary Syndrome. Nutrients. 2024; 16(6):763. https://doi.org/10.3390/nu16060763
Chicago/Turabian StyleŁagowska, Karolina, Joanna Bajerska, and Joanna Maria Pieczyńska-Zając. 2024. "Dietary Factors and the Risk of Depression among Women with Polycystic Ovary Syndrome" Nutrients 16, no. 6: 763. https://doi.org/10.3390/nu16060763
APA StyleŁagowska, K., Bajerska, J., & Pieczyńska-Zając, J. M. (2024). Dietary Factors and the Risk of Depression among Women with Polycystic Ovary Syndrome. Nutrients, 16(6), 763. https://doi.org/10.3390/nu16060763