A Cross-Sectional Pilot Study on Association of Ready-to-Eat and Processed Food Intakes with Metabolic Factors, Serum Trans Fat and Phospholipid Fatty Acid Compositions in Healthy Japanese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometrics, Blood Pressure, and Biochemical Measurements
2.3. Serum Elaidic Acid and Vaccenic Acid Analysis
2.4. Serum Fatty Acid Concentrations in PL Fraction
2.5. Dietary Data Collection
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Energy Intakes from Processed and RTE Foods
3.3. Participant Backgrounds According to the Tertiles of Energy Percent Derived from Fatty-RTE Foods
3.4. Food Intakes According to the Tertiles of Energy Percent Derived from Fatty-RTE Foods
3.5. Nutrient Intakes According to the Tertiles of Energy Percent Derived from Fatty-RTE Foods
3.6. BMI, Blood Pressure, and Serum Biochemical Parameter Concentrations According to the Tertiles of Energy Percent Derived from Fatty-RTE Foods
3.7. Fatty Acid Compositions of PLs According to the Tertiles of Energy Percent Derived from Fatty-RTE Foods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gesteiro, E.; García-Carro, A.; Aparicio-Ugarriza, R.; González-Gross, M. Eating out of home: Influence on nutrition, health, and policies: A scoping. Nutrients 2022, 14, 1265. [Google Scholar] [CrossRef]
- Poti, J.M.; Mendez, M.A.; Ng, S.W.; Popkin, B.M. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am. J. Clin. Nutr. 2015, 101, 1251–1262. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Matsumoto, M.; Saito, A.; Okada, C.; Okada, E.; Tajima, R.; Takimoto, H. Consumption of meals prepared away from home is associated with inadequacy of dietary fiber, vitamin C and mineral intake among Japanese adults: Analysis from the 2015 National Health and Nutrition Survey. Nutr. J. 2021, 20, 40. [Google Scholar] [CrossRef]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-processed foods and health outcomes: A narrative review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan. 2015. Available online: https://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h27-houkoku-06.pdf (accessed on 3 January 2023).
- Ministry of Health, Labour and Welfare. National Health and Nutrition Survey Japan. 2019. Available online: https://www.mhlw.go.jp/content/000711008.pdf (accessed on 3 January 2023).
- Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S. Three-generation Study of Women on Diets and Health Study Group. Living status and frequency of eating out-of-home foods in relation to nutritional adequacy in 4017 Japanese female dietetic students aged 18–20 years: A multicenter cross-sectional study. J. Epidemiol. 2017, 27, 287–293. [Google Scholar] [CrossRef]
- Koiwai, K.; Takemi, Y.; Hayashi, F.; Ogata, H.; Matsumoto, S.; Ozawa, K.; Machado, P.P.; Monteiro, C.A. Consumption of ultra-processed foods decreases the quality of the overall diet of middle-aged Japanese adults. Public Health Nutr. 2019, 22, 2999–3008. [Google Scholar] [CrossRef]
- Shinozaki, N.; Murakami, K.; Masayasu, S.; Sasaki, S. Highly processed food consumption and its association with anthropometric, sociodemographic, and behavioral characteristics in a nationwide sample of 2742 Japanese adults: An analysis based on 8-day weighed dietary records. Nutrients 2023, 15, 1295. [Google Scholar] [CrossRef]
- Shinozaki, N.; Murakami, K.; Asakura, K.; Masayasu, S.; Sasaki, S. Consumption of highly processed foods in relation to overall diet quality among Japanese adults: A nationwide study. Public Health Nutr. 2023, 26, 1784–1797. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Steele, E.M.; O’Connor, L.E.; Juul, F.; Khandpur, N.; Baraldi, L.G.; Monteiro, C.A.; Parekh, N.; Herrick, K.A. Identifying and estimating ultraprocessed food intake in the US NHANES according to the Nova classification system of food processing. J. Nutr. 2023, 153, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.C.; Louzada, M.L.C.; Azeredo, C.M.; Ricardo, C.Z.; Martins, A.P.B.; Levy, R.B. Out-of-home food consumers in Brazil: What do they eat? Nutrients 2018, 10, 218. [Google Scholar] [CrossRef]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-processed foods and nutritional dietary profile: A meta-analysis of nationally representative samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Babio, N.; Martínez-González, M.A.; Corella, D.; Ros, E.; Martín-Peláez, S.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Investigators dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [CrossRef]
- Wang, Q.; Afshin, A.; Yakoob, M.Y.; Singh, G.M.; Rehm, C.D.; Khatibzadeh, S.; Micha, R.; Shi, P.; Mozaffarian, D. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE) impact of nonoptimal intakes of saturated, polyunsaturated, and trans-fat on global burdens of coronary heart disease. J. Am. Heart Assoc. 2016, 5, e002891. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.L.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. American Heart Association. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Willis, S.A.; Bawden, S.J.; Malaikah, S.; Sargeant, J.A.; Stensel, D.S.; Aithal, G.P.; King, J.A. The role of hepatic lipid composition in obesity-related metabolic disease. Liver Int. 2021, 41, 2819–2835. [Google Scholar] [CrossRef]
- Maruyama, C.; Sato, A.; Nishikata, Y.; Nakazawa, M.; Shijo, Y.; Kameyama, N.; Umezawa, A.; Ayaori, M.; Waki, M.; Ikewaki, K.; et al. Effects of nutrition education program for the Japan Diet on serum phospholipid fatty acid compositions in patients with dyslipidemia: Re-analysis of data from a previous randomized controlled trial. J. Atheroscler. Thromb. 2023, 30, 1849–1869. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, M.; Maruyama, C.; Umezawa, A.; Kameyama, N.; Sato, A.; Kamoshita, K.; Komine, S.; Hasegawa, S. A cross-sectional pilot study on food intake patterns identified from very short FFQ and metabolic factors including liver function in healthy Japanese adults. Nutrients 2022, 14, 2442. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, S.G.H. A simple method for the isolation and purification to total lipids from animal tissues. J. Bio Chem. 1957, 9, 61–67. [Google Scholar]
- Okamura, T.; Tsukamoto, K.; Arai, H.; Fujioka, Y.; Ishigaki, Y.; Koba, S.; Ohmura, H.; Shoji, T.; Yokote, K.; Yoshida, H.; et al. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases. J. Atheroscler. Thromb. 2022. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Tokunaga, K.; Kotani, K.; Keno, Y.; Kobayashi, T.; Tarui, S. Simple estimation of ideal body weight from body mass index with the lowest morbidity. Diabetes Res. Clin. Pract. 1990, 10 (Suppl. S1), S159–S164. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, K.; Matsuzawa, Y.; Kotani, K.; Keno, Y.; Kobatake, T.; Fujioka, S.; Tarui, S. Ideal body weight estimated from the body mass index with the lowest morbidity. Int. J. Obes. 1991, 15, 1–5. [Google Scholar]
- Takeda-Imai, F.; Yamamoto, S.; Fujii, H.; Noda, M.; Inoue, M.; Tsugane, S. Validity and reproducibility of the self-administered shorter version of the physical activity questionnaire used in the JPHC study. Res. Exerc. Epidemiol. 2010, 12, 1–10. (In Japanese) [Google Scholar]
- Murakami, K.; Livingstone, M.B.E.; Sasaki, S. Thirteen-year trends in dietary patterns among Japanese adults in the National Health and Nutrition Survey 2003–2015: Continuous westernization of the Japanese diet. Nutrients 2018, 10, 994. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, T.; Sasaki, J.; Ishibashi, S.; Birou, S.; Daida, H.; Dohi, S.; Egusa, G.; Hiro, T.; Hirobe, K.; Iida, M.; et al. Treatment A lifestyle modification: Executive summary of the Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and prevention of atherosclerotic cardiovascular diseases in Japan—2012 version. J. Atheroscler. Thromb. 2013, 20, 835–849. [Google Scholar] [CrossRef] [PubMed]
- Committee for Epidemiology and Clinical Management of Atherosclerosis. Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017. J. Atheroscler. Thromb. 2018, 25, 846–984. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, R.D.; Lopes, A.C.S.; Pimenta, A.M.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra Project. Am. J. Hypertens. 2017, 30, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Webster, C.; Gallacher, J. Are exposures to ready-to-eat food environments associated with type 2 diabetes? A cross-sectional study of 347,551 UK Biobank adult participants. Lancet Planet. Health 2018, 2, e438–e450. [Google Scholar] [CrossRef]
- Lavigne-Robichaud, M.; Moubarac, J.C.; Lantagne-Lopez, S.; Johnson-Down, L.; Batal, M.; Sidi, E.A.L.; Lucas, M. Diet quality indices in relation to metabolic syndrome in an Indigenous Cree (Eeyouch) population in northern Québec, Canada. Public Health Nutr. 2018, 21, 172–180. [Google Scholar] [CrossRef]
- Nasreddine, L.; Tamim, H.; Itani, L.; Nasrallah, M.P.; Isma’eel, H.; Nakhoul, N.F.; Abou-Rizk, J.; Naja, F. A minimally processed dietary pattern is associated with lower odds of metabolic syndrome among Lebanese adults. Public Health Nutr. 2018, 21, 160–171. [Google Scholar] [CrossRef]
- Steele, E.M.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev. Med. 2019, 125, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.; Albaloul, A.; Kopytek, A.; Elliott, P.; Frost, G. Effect of ultraprocessed food intake on cardiometabolic risk is mediated by diet quality: A cross-sectional study. BMJ Nutr. Prev. Health 2021, 4, 174–180. [Google Scholar] [CrossRef]
- Sommerfeld, M. Trans unsaturated fatty acids in natural products and processed foods. Prog. Lipid Res. 1983, 22, 221–233. [Google Scholar] [CrossRef]
- Gadiraju, T.V.; Patel, Y.; Gaziano, J.M.; Djoussé, L. Fried food consumption and cardiovascular health: A review of current evidence. Nutrients 2015, 7, 8424–8430. [Google Scholar] [CrossRef] [PubMed]
- Huybrechts, I.; Rauber, F.; Nicolas, G.; Casagrande, C.; Kliemann, N.; Wedekind, R.; Biessy, C.; Scalbert, A.; Touvier, M.; Aleksandrova, K.; et al. Characterization of the degree of food processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova classification and validation using selected biomarkers of food processing. Front. Nutr. 2022, 9, 1035580. [Google Scholar] [CrossRef]
- Micha, R.; Shulkin, M.L.; Peñalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS ONE 2017, 12, e0175149. [Google Scholar] [CrossRef]
- Diao, P.; Wang, Y.; Jia, F.; Wang, X.; Hu, X.; Kimura, T.; Sato, Y.; Moriya, K.; Koike, K.; Nakayama, J.; et al. Dietary fat composition affects hepatic angiogenesis and lymphangiogenesis in hepatitis C virus core gene transgenic mice. Liver Cancer 2022, 12, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef]
- World Health Organization. WHO’s Trans Fat Elimination Validation Program Is Now Open for Country Applications. Available online: https://www.who.int/news/item/14-04-2023-who-trans-fat-elimination-validation-program-is-now-open-for-country-applications (accessed on 3 January 2023).
- Wanders, A.J.; Zock, P.L.; Brouwer, I.A. Trans fat intake and its dietary sources in general populations worldwide: A systematic review. Nutrients 2017, 9, 840. [Google Scholar] [CrossRef]
- Itcho, K.; Yoshii, Y.; Ohno, H.; Oki, K.; Shinohara, M.; Irino, Y.; Toh, R.; Ishida, T.; Hirata, K.; Yoneda, M. Association between serum elaidic acid concentration and insulin resistance in two Japanese cohorts with different lifestyles. J. Atheroscler. Thromb. 2017, 24, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Ishida, T.; Yasuda, T.; Hasokawa, M.; Monguchi, T.; Sasaki, M.; Kondo, K.; Nakajima, H.; Shinohara, M.; Shinke, T.; et al. Serum trans-fatty acid concentration is elevated in young patients with coronary artery disease in Japan. Circ. J. 2015, 79, 2017–2025. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Koh, W.P.; Yuan, J.M.; Gross, M.D.; Pereira, M.A. Western-style fast food intake and cardiometabolic risk in an Eastern country. Circulation 2012, 126, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Manson, J.E.; Forman, J.P.; Gaziano, J.M.; Buring, J.E.; Sesso, H.D. Dietary fatty acids and the risk of hypertension in middle-aged and older women. Hypertension 2010, 56, 598–604. [Google Scholar] [CrossRef]
- Weitkunat, K.; Schumann, S.; Petzke, K.J.; Blaut, M.; Loh, G.; Klaus, S. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. J. Nutr. Biochem. 2015, 26, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Weitkunat, K.; Schumann, S.; Nickel, D.; Hornemann, S.; Petzke, K.J.; Schulze, M.B.; Pfeiffer, A.F.H.; Klaus, S. Odd-chain fatty acids as a biomarker for dietary fiber intake: A novel pathway for endogenous production from propionate. Am. J. Clin. Nutr. 2017, 105, 1544–1551. [Google Scholar] [CrossRef]
- Wolever, T.M.; Fernandes, J.; Rao, A.V. Serum acetate: Propionate ratio is related to serum cholesterol in men but not women. J. Nutr. 1996, 126, 2790–2797. [Google Scholar]
- Weitkunat, K.; Schumann, S.; Nickel, D.; Kappo, K.A.; Petzke, K.J.; Kipp, A.P.; Blaut, M.; Klaus, S. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity. Mol. Nutr. Food Res. 2016, 60, 2611–2621. [Google Scholar] [CrossRef]
- Maruyama, C.; Yoneyama, M.; Suyama, N.; Yoshimi, K.; Teramoto, A.; Sakaki, Y.; Suto, Y.; Takahashi, K.; Araki, R.; Ishizaka, Y.; et al. Differences in serum phospholipid fatty acid compositions and estimated desaturase activities between Japanese men with and without metabolic syndrome. J. Atheroscler. Thromb. 2008, 15, 306–313. [Google Scholar] [CrossRef]
- Maruyama, C.; Nakano, R.; Shima, M.; Mae, A.; Shijo, Y.; Nakamura, E.; Okabe, Y.; Park, S.; Kameyama, N.; Hirai, S.; et al. Effects of a Japan Diet intake program on metabolic parameters in middle-aged men. J. Atheroscler. Thromb. 2017, 24, 393–401. [Google Scholar] [CrossRef]
- Maruyama, C.; Shijo, Y.; Kameyama, N.; Umezawa, A.; Sato, A.; Nishitani, A.; Ayaori, M.; Ikewaki, K.; Waki, M.; Teramoto, T. Effects of nutrition education program for the Japan Diet on serum LDL-cholesterol concentration in patients with dyslipidemia: A randomized controlled trial. J. Atheroscler. Thromb. 2021, 28, 1035–1051. [Google Scholar] [CrossRef]
- Shijo, Y.; Maruyama, C.; Nakamura, E.; Nakano, R.; Shima, M.; Mae, A.; Okabe, Y.; Park, S.; Kameyama, N.; Hirai, S. Japan Diet intake changes serum phospholipid fatty acid compositions in middle-aged men: A pilot study. J. Atheroscler. Thromb. 2019, 26, 3–13. [Google Scholar] [CrossRef]
- Yokoyama, S. Beneficial effect of retuning to “Japan Diet” for the Japanese. J. Atheroscler. Thromb. 2019, 26, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan. 2018. Available online: https://www.mhlw.go.jp/content/000615343.pdf (accessed on 3 January 2023).
- Bjerve, K.S.; Brubakk, A.M.; Fougner, K.J.; Johnsen, H.; Midthjell, K.; Vik, T. Omega-3 fatty acids: Essential fatty acids with important biological effects, and serum phospholipid fatty acids as markers of dietary omega 3-fatty acid intake. Am. J. Clin. Nutr. 1993, 57 (Suppl. S5), 801S–805S; discussion 805S–806S. [Google Scholar]
- Wakai, K.; Ito, Y.; Kojima, M.; Tokudome, S.; Ozasa, K.; Inaba, Y.; Yagyu, K.; Tamakoshi, A. JACC Study Group. Intake frequency of fish and serum levels of long-chain n-3 fatty acids: A cross-sectional study within the Japan Collaborative Cohort Study. J. Epidemiol. 2005, 15, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “balanced antagonistic metabolic functions” in the human body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef]
- Willis, A.L. Nutritional and pharmacological factors in eicosanoid biology. Nutr. Rev. 1981, 39, 289–301. [Google Scholar] [CrossRef]
- Levin, G.; Duffin, K.L.; Obukowicz, M.G.; Hummert, S.L.; Fujiwara, H.; Needleman, P.; Raz, A. Differential metabolism of dihomo-gamma-linolenic acid and arachidonic acid by cyclo-oxygenase-1 and cyclo-oxygenase-2: Implications for cellular synthesis of prostaglandin E1 and prostaglandin E2. Biochem. J. 2002, 365 Pt 2, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef]
- Brennan, E.; Kantharidis, P.; Cooper, M.E.; Godson, C. Pro-resolving lipid mediators: Regulators of inflammation, metabolism and kidney function. Nat. Rev. Nephrol. 2021, 17, 725–739. [Google Scholar] [CrossRef]
- Ninomiya, T.; Nagata, M.; Hata, J.; Hirakawa, Y.; Ozawa, M.; Yoshida, D.; Ohara, T.; Kishimoto, H.; Mukai, N.; Fukuhara, M.; et al. Association between ratio of serum eicosapentaenoic acid to arachidonic acid and risk of cardiovascular disease: The Hisayama Study. Atherosclerosis 2013, 231, 261–267. [Google Scholar] [CrossRef]
- Innes, J.K.; Calder, P.C. Marine omega-3 (N-3) fatty acids for cardiovascular health: An Update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [PubMed]
- Yagi, S.; Aihara, K.; Fukuda, D.; Takashima, A.; Bando, M.; Hara, T.; Nishimoto, S.; Ise, T.; Kusunose, T.; Yamaguchi, K.; et al. Reduced ratio of eicosapentaenoic acid and docosahexaenoic acid to arachidonic acid is associated with early onset of acute coronary syndrome. Nutr. J. 2015, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Ando, J.; Shimada, K.; Nishizaki, Y.; Tani, S.; Ogawa, T.; Yamamoto, M.; Nagao, K.; Hirayama, A.; Yoshimura, M.; et al. The ratio of serum n-3 to n-6 polyunsaturated fatty acids is associated with diabetes mellitus in patients with prior myocardial infarction: A multicenter cross-sectional study. BMC Cardiovasc. Disord. 2017, 17, 41. [Google Scholar] [CrossRef]
- Honda, T.; Chen, S.; Hata, J.; Shibata, M.; Furuta, Y.; Oishi, E.; Sakata, S.; Kitazono, T.; Ninomiya, T. Changes in the eicosapentaenoic acid to arachidonic acid ratio in serum over 10 years in a Japanese community: The Hisayama Study. J. Atheroscler. Thromb. 2023, 30, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Miyoshi, T.; Doi, M.; Seiyama, K.; Takagi, W.; Sogo, M.; Nosaka, K.; Takahashi, M.; Okawa, K.; Ito, H. Secular decreasing trend in plasma eicosapentaenoic and docosahexaenoic acids among patients with acute coronary Syndrome from 2011 to 2019: A Single Center Descriptive Study. Nutrients 2021, 13, 253. [Google Scholar] [CrossRef]
- Shinozaki, N.; Murakami, K.; Yuan, X.; Tajima, R.; Matsumoto, M.; Asakura, K.; Masayasu, S.; Sasaki, S. The association of highly processed food consumption with food choice values and food literacy in Japanese adults: A nationwide cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 143. [Google Scholar] [CrossRef]
Requires Additional Cooking | Food Group | Made with Oil and/or Fat | Examples | ||
---|---|---|---|---|---|
Processed food | Requires additional ingredients and cooking | Canned and retort pouch foods | boiled tomatoes, fungi, beans | ||
Frozen foods | seafood mix, vegetables, edamame | ||||
Seasonings, sauce | mayonnaise, dressing, pizza sauce | ||||
jam, ketchup, soup for noodles | |||||
Requires additional cooking, such as with heat | Cooked canned and bottled foods | boiled fish with vegetable oil | |||
boiled fish with dashi soup and soy sauce | |||||
Cooked frozen foods | hamburger steak, pasta Bolognese, croquette | ||||
stewed fish, Chinese dumplings, boiled fruits | |||||
Cooked pouch foods | curry | ||||
rice porridge | |||||
Freeze-dried cooked foods | noodles, soup | ||||
Other traditional prepared foods | fried tofu, fried onion | ||||
konjac, mochi, Japanese noodles, pasta, kamaboko, hanpen, tofu, fu (Japanese dry baked wheat gluten), dried fruit, dried vegetables, nuts | |||||
Ready-to-eatfoods | Edible without cooking | Processed meat products | # | ham, sausage, bacon | |
Sandwich, savory | # | sandwiches, hamburger, hot dog, pizza | |||
Eating at a restaurant or take-away staple and main dishes made with cereals, meat, chicken, eggs, fish, shellfish, and soybean products | # | ramen, fried rice, curry rice, tempura, pork cutlet, fried chicken | |||
rice ball, sushi, sashimi, natto, grilled fish | |||||
Eating at a restaurant or take-away side dish and soup mainly made with vegetables, seaweed, fungi, soybean and soybean products, potatoes | # | stir-fried vegetables, salad with dressing or mayonnaise, fried potato, potage soup | |||
boiled or stewed vegetables seasoned with soy source or vinegar, tofu, baked potato, pickled vegetables, miso soup, clear soup | |||||
Cereal flakes | corn flakes, muesli | ||||
Plain table bread | bucket, table roll, bread | ||||
Bakery products | # | Danish, sweet roll, doughnuts | |||
Confectionaries | # | pie, cookies, cakes, potato chips, ice cream, chocolate | |||
rice crackers, yokan, manjyu, sherbet, jelly |
T1 | T2 | T3 | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(n = 71) | (n = 71) | (n = 71) | ||||||||
Age | (years) | 41 | (29, 47) | * | 38 | (31, 45) | 32 | (27, 41) | 0.001 | ‡ |
Physical activity | (METs) | 15.3 | (12.3, 25.3) | 14.5 | (12.3, 25.3) | 15.3 | (12.3, 25.3) | 0.197 | ‡ | |
Men | (n) | 23 | (32.4) | † | 41 | (57.7) | 45 | (63.3) | <0.001 | § |
Occupation | ||||||||||
Office worker | (n) | 41 | (57.7) | 49 | (69.0) | 53 | (74.6) | 0.006 | ||
Part-time employee | (n) | 10 | (14.1) | 3 | (4.2) | 1 | (1.4) | |||
Homemaker | (n) | 8 | (11.3) | 4 | (5.6) | 0 | (0.0) | § | ||
Healthcare worker and teacher | (n) | 7 | (9.9) | 6 | (8.5) | 4 | (5.6) | |||
Student | (n) | 2 | (2.8) | 5 | (7.0) | 9 | (12.7) | |||
Other | (n) | 3 | (4.2) | 4 | (5.6) | 4 | (5.6) | |||
Smoking states | ||||||||||
Never smoker | (n) | 53 | (74.6) | 54 | (76.1) | 52 | (73.2) | 0.598 | ||
Past smoker | (n) | 9 | (12.7) | 13 | (18.3) | 11 | (15.5) | § | ||
Current smoker | (n) | 9 | (12.7) | 4 | (5.6) | 8 | (11.3) |
T1 | T2 | T3 | p | ||||
---|---|---|---|---|---|---|---|
Median | (IQR) | Median | (IQR) | Median | (IQR) | ||
Cereal | 6.480 | (4.832, 7.944) | 6.176 | (4.810, 7.828) | 6.224 | (4.455, 7.217) | 0.455 |
Potatoes and starch | 0.467 | (0.096, 0.836) | 0.383 | (0.092, 0.665) | 0.312 | (0.135, 0.706) | 0.334 |
Sugar and jam | 0.120 | (0.061, 0.220) | 0.098 | (0.049, 0.165) | 0.081 | (0.037, 0.127) | 0.006 |
Fish | 0.589 | (0.133, 0.853) | 0.381 | (0.076, 0.784) | 0.116 | (0.000, 0.547) | 0.001 |
Seafood | 0.044 | (0.000, 0.276) | 0.120 | (0.000, 0.268) | 0.033 | (0.000, 0.217) | 0.422 |
Soy and soybean products | 0.770 | (0.409, 1.469) | 0.527 | (0.228, 1.394) | 0.280 | (0.048, 0.820) | 0.000 |
Dairy | 1.731 | (0.816, 3.125) | 1.387 | (0.556, 2.722) | 0.373 | (0.099, 1.268) | 0.000 |
Meat and poultry | 1.630 | (1.092, 2.132) | 1.879 | (1.395, 2.382) | 1.507 | (1.040, 2.323) | 0.645 |
Processed meat | 1.664 | (1.111, 2.256) | 1.944 | (1.395, 2.469) | 1.508 | (1.043, 2.402) | 0.658 |
Eggs | 0.596 | (0.347, 0.872) | 0.488 | (0.225, 0.752) | 0.339 | (0.138, 0.658) | 0.000 |
Fat and oil | 0.186 | (0.112, 0.257) | 0.228 | (0.156, 0.325) | 0.267 | (0.134, 0.356) | 0.009 |
Fat | 0.021 | (0.000, 0.057) | 0.023 | (0.000, 0.078) | 0.037 | (0.014, 0.071) | 0.072 |
Oil | 0.149 | (0.077, 0.233) | 0.197 | (0.119, 0.281) | 0.206 | (0.122, 0.309) | 0.026 |
Mayonnaise, dressing | 0.071 | (0.025, 0.143) | 0.114 | (0.050, 0.179) | 0.118 | (0.033, 0.191) | 0.118 |
Non-oily seasonings | 0.688 | (0.538, 0.946) | 0.651 | (0.518, 0.917) | 0.587 | (0.438, 0.725) | 0.002 |
Nuts | 0.004 | (0.000, 0.033) | 0.005 | (0.000, 0.023) | 0.009 | (0.003, 0.037) | 0.239 |
Green and yellow vegetables | 1.348 | (0.717, 2.698) | 1.077 | (0.607, 1.744) | 0.808 | (0.459, 1.139) | 0.000 |
Other vegetables | 2.458 | (1.753, 3.531) | 2.277 | (1.605, 3.119) | 1.607 | (1.186, 2.298) | 0.000 |
Pickles | 0.037 | (0.000, 0.184) | 0.013 | (0.000, 0.091) | 0.053 | (0.008, 0.115) | 0.938 |
Seaweed, mushrooms, konjac | 0.414 | (0.191, 0.831) | 0.287 | (0.105, 0.471) | 0.204 | (0.082, 0.292) | 0.000 |
Fruit | 0.624 | (0.000, 1.588) | 0.216 | (0.000, 1.059) | 0.000 | (0.000, 0.204) | 0.000 |
Sweet beverages | 0.000 | (0.000, 1.569) | 0.000 | (0.000, 1.733) | 0.893 | (0.000, 2.880) | 0.017 |
Confectionaries | 0.478 | (0.180, 0.994) | 0.849 | (0.336, 1.376) | 0.805 | (0.382, 1.357) | 0.027 |
Alcohol | 0.000 | (0.000, 0.168) | 0.000 | (0.000, 0.241) | 0.000 | (0.000, 0.136) | 0.604 |
T1 | T2 | T3 | p | |||||
---|---|---|---|---|---|---|---|---|
Median | (IQR) | Median | (IQR) | Median | (IQR) | |||
Energy | (kcal) | 32.1 | (27.3, 38.0) | 33.4 | (29.0, 36.6) | 29.1 | (24.8, 34.5) | 0.099 |
Processed food | (%En) | 11.8 | (5.4, 16.8) | 7.4 | (3.8, 12.0) | 2.7 | (0.4, 7.4) | 0.000 |
Non-fatty RTE food | (%En) | 14.6 | (9.1, 23.0) | 15.4 | (9.5, 23.9) | 16.3 | (11.3, 23.2) | 0.327 |
Fatty RTE | (%En) | 17.9 | (8.1, 23.5) | 36.2 | (33.1, 39.4) | 54.7 | (48.3, 64.5) | 0.000 |
Protein | (g) | 1.2 | (1.0, 1.5) | 1.2 | (1.0, 1.4) | 1.0 | (0.8, 1.2) | 0.002 |
Lipids | (g) | 1.1 | (0.9, 1.3) | 1.2 | (1.0, 1.4) | 1.1 | (0.9, 1.4) | 0.836 |
SFA | (g) | 0.325 | (0.270, 0.402) | 0.358 | (0.305, 0.417) | 0.307 | (0.270, 0.412) | 0.625 |
MUFA | (g) | 0.383 | (0.327, 0.492) | 0.45 | (0.362, 0.548) | 0.414 | (0.324, 0.522) | 0.535 |
PUFA | (g) | 0.217 | (0.178, 0.268) | 0.23 | (0.192, 0.273) | 0.221 | (0.162, 0.282) | 0.815 |
n-6 PUFA | (g) | 0.19 | (0.15, 0.22) | 0.19 | (0.16, 0.22) | 0.18 | (0.14, 0.24) | 0.945 |
n-3 PUFA | (g) | 0.04 | (0.03, 0.05) | 0.03 | (0.03, 0.05) | 0.03 | (0.02, 0.04) | 0.295 |
EPA + DHA | (mg) | 9.74 | (2.46, 17.42) | 7.14 | (2.95, 14.69) | 2.87 | (1.27, 9.23) | 0.009 |
Cholesterol | (mg) | 5.73 | (4.24, 7.04) | 5.28 | (4.13, 6.65) | 4.54 | (3.12, 5.97) | 0.002 |
Carbohydrate | (g) | 3.95 | (3.34, 4.84) | 3.78 | (3.42, 4.50) | 3.54 | (2.98, 4.31) | 0.056 |
Dietary fiber | (g) | 0.24 | (0.19, 0.31) | 0.21 | (0.16, 0.26) | 0.17 | (0.15, 0.22) | 0.000 |
Sodium | (mg) | 57.1 | (48.6, 68.7) | 57.1 | (49.4, 64.9) | 56.5 | (44.8, 63.8) | 0.414 |
Potassium | (mg) | 41.5 | (34.1, 54.0) | 39.0 | (31.8, 45.0) | 31.6 | (25.6, 38.5) | 0.000 |
Calcium | (mg) | 8.5 | (6.8, 10.8) | 7.1 | (5.6, 9.6) | 6.0 | (4.3, 7.6) | 0.000 |
Magnesium | (mg) | 4.3 | (3.6, 5.4) | 4.2 | (3.5, 4.8) | 3.3 | (2.8, 4.3) | 0.000 |
Iron | (mg) | 0.14 | (0.11, 0.16) | 0.12 | (0.10, 0.14) | 0.10 | (0.08, 0.13) | 0.001 |
Iodine | (μg) | 13.8 | (2.8, 28.5) | 14.3 | (4.2, 29.9) | 14.6 | (2.8, 24.9) | 0.678 |
Selenium | (μg) | 1.2 | (0.9, 1.5) | 1.2 | (0.9, 1.4) | 1.0 | (0.8, 1.4) | 0.011 |
β-carotene | (μg) | 59.1 | (35.6, 89.1) | 48.2 | (28.1, 65.4) | 34.5 | (22.2, 56.3) | 0.000 |
Retinol | (μg) | 8.2 | (6.0, 11.4) | 7.2 | (4.8, 10.2) | 5.7 | (3.9, 8.5) | 0.002 |
Vitamin D | (μg) | 0.10 | (0.04, 0.17) | 0.08 | (0.04, 0.14) | 0.05 | (0.03, 0.09) | 0.001 |
α-tocopherol | (mg) | 0.13 | (0.11, 0.16) | 0.12 | (0.10, 0.15) | 0.11 | (0.09, 0.13) | 0.002 |
Vitamin K | (mg) | 4.10 | (2.49, 6.63) | 3.45 | (2.19, 4.37) | 2.39 | (1.89, 3.48) | 0.000 |
Thiamin | (mg) | 0.02 | (0.01, 0.02) | 0.02 | (0.01, 0.02) | 0.01 | (0.01, 0.02) | 0.005 |
Riboflavin | (mg) | 0.02 | (0.02, 0.03) | 0.02 | (0.02, 0.02) | 0.02 | (0.01, 0.02) | 0.001 |
Niacin | (mg) | 0.53 | (0.44, 0.67) | 0.54 | (0.43, 0.62) | 0.43 | (0.34, 0.52) | 0.001 |
Vitamin B6 | (mg) | 0.02 | (0.02, 0.03) | 0.02 | (0.02, 0.03) | 0.02 | (0.01, 0.02) | 0.000 |
Vitamin B12 | (mg) | 0.09 | (0.05, 0.17) | 0.11 | (0.06, 0.14) | 0.06 | (0.03, 0.09) | 0.019 |
Folate | (mg) | 5.33 | (4.11, 7.52) | 4.71 | (3.67, 6.12) | 3.84 | (2.83, 5.11) | 0.000 |
Pantothenic acid | (mg) | 0.10 | (0.08, 0.13) | 0.10 | (0.08, 0.12) | 0.08 | (0.06, 0.10) | 0.000 |
Biotin | (mg) | 0.68 | (0.50, 0.80) | 0.58 | (0.49, 0.71) | 0.49 | (0.36, 0.59) | 0.000 |
Ascorbic acid | (mg) | 1.61 | (1.00, 2.32) | 1.42 | (0.98, 1.91) | 1.09 | (0.81, 1.54) | 0.001 |
T1 | T2 | T3 | p | |||||
---|---|---|---|---|---|---|---|---|
Median | (IQR) | Median | (IQR) | Median | (IQR) | |||
Body weight | (kg) | 54.2 | (49.0, 63.1) | 58.4 | (52.0, 68.0) | 61.7 | (54.3, 70.1) | 0.002 |
Body mass index | (kg/m2) | 21.0 | (19.7, 22.8) | 21.4 | (19.8, 23.6) | 21.9 | (20.3, 23.6) | 0.100 |
Systolic blood pressure | (mmHg) | 109 | (102, 119) | 114 | (107, 129) | 114 | (102, 128) | 0.073 |
Diastolic blood pressure | (mmHg) | 70 | (64, 77) | 72 | (65, 80) | 72 | (63, 80) | 0.536 |
Total cholesterol | (mmol/L) | 4.91 | (4.45, 5.48) | 5.22 | (4.47, 5.61) | 5.02 | (4.47, 5.53) | 0.816 |
LDL cholesterol | (mmol/L) | 2.71 | (2.17, 3.34) | 2.87 | (2.30, 3.36) | 2.87 | (2.46, 3.47) | 0.129 |
HDL cholesterol | (mmol/L) | 1.73 | (1.50, 2.07) | 1.68 | (1.32, 1.99) | 1.55 | (1.40, 1.86) | 0.033 |
Triglyceride | (mmol/L) | 0.71 | (0.59, 0.96) | 0.66 | (0.49, 1.08) | 0.75 | (0.52, 1.26) | 0.378 |
Phospholipid | (mmol/L) | 27.4 | (25.3, 30.2) | 28.0 | (25.7, 31.1) | 27.3 | (24.2, 29.6) | 0.732 |
Aspartate aminotransferase | (U/L) | 19 | (17, 24) | 20 | (18, 22) | 20 | (18, 25) | 0.609 |
Alanine aminotransferase | (U/L) | 16 | (12, 23) | 16 | (12, 21) | 19 | (12, 26) | 0.135 |
Alkaline phosphatase | (U/L) | 159 | (135, 199) | 192 | (154, 213) | 179 | (154, 219) | 0.010 |
γ-glutamyl transpeptidase | (U/L) | 19 | (14, 33) | 20 | (15, 28) | 23 | (14, 39) | 0.261 |
Leucine aminopeptidase | (U/L) | 46 | (42, 54) | 49 | (43, 56) | 52 | (46, 59) | 0.001 |
Total bilirubin | (µmol/L) | 12.0 | (8.5, 15.4) | 12.0 | (10.3, 13.7) | 13.7 | (10.3, 15.4) | 0.142 |
Direct bilirubin | (µmol/L) | 3.4 | (3.4, 5.1) | 3.4 | (3.4, 5.1) | 5.1 | (3.4, 5.1) | 0.019 |
Indirect bilirubin | (µmol/L) | 8.5 | (6.8, 10.3) | 8.5 | (6.8, 10.3) | 8.5 | (6.8, 10.3) | 0.380 |
Elaidic acid | (μM) | 3.51 | (3.06, 4.24) | 3.78 | (3.23, 4.71) | 3.86 | (3.30, 4.73) | 0.021 |
Vaccenic acid | (μM) | 4.64 | (3.55, 6.24) | 4.45 | (3.43, 5.46) | 4.26 | (3.37, 5.57) | 0.362 |
T1 | T2 | T3 | p | ||||
---|---|---|---|---|---|---|---|
Median | (IQR) | Median | (IQR) | Median | (IQR) | ||
SFA 12:0 | 0.01 | (0.00, 0.01) | 0.01 | (0.00, 0.01) | 0.01 | (0.01, 0.01) | 0.860 |
14:0 | 0.26 | (0.18, 0.31) | 0.26 | (0.16, 0.32) | 0.22 | (0.15, 0.31) | 0.085 |
15:0 | 0.12 | (0.10, 0.14) | 0.11 | (0.09, 0.13) | 0.10 | (0.09, 0.12) | 0.000 |
16:0 | 24.98 | (24.16, 26.13) | 25.08 | (24.06, 26.1) | 25.04 | (24.47, 25.88) | 0.625 |
17:0 | 0.36 | (0.32, 0.4) | 0.34 | (0.30, 0.37) | 0.33 | (0.30, 0.35) | 0.000 |
18:0 | 13.89 | (13.21, 14.36) | 13.87 | (13.11, 14.65) | 13.74 | (13.2, 14.62) | 0.929 |
20:0 | 0.61 | (0.55, 0.68) | 0.60 | (0.54, 0.66) | 0.62 | (0.56, 0.70) | 0.301 |
22:0 | 1.48 | (1.30, 1.67) | 1.50 | (1.32, 1.75) | 1.67 | (1.44, 1.81) | 0.002 |
24:0 | 1.32 | (1.16, 1.49) | 1.36 | (1.19, 1.53) | 1.47 | (1.30, 1.59) | 0.007 |
MUFA 16:1 | 0.35 | (0.30, 0.41) | 0.34 | (0.29, 0.44) | 0.34 | (0.28, 0.41) | 0.577 |
17:1 | 0.09 | (0.08, 0.12) | 0.09 | (0.07, 0.12) | 0.09 | (0.07, 0.12) | 0.351 |
18:1cis | 8.11 | (7.71, 8.68) | 8.28 | (7.69, 9.08) | 8.45 | (7.77, 9.23) | 0.095 |
20:1 | 0.22 | (0.19, 0.26) | 0.23 | (0.20, 0.27) | 0.22 | (0.19, 0.24) | 0.800 |
22:1 | 0.04 | (0.04, 0.05) | 0.04 | (0.03, 0.05) | 0.04 | (0.03, 0.05) | 0.990 |
24:1 | 2.71 | (2.51, 2.95) | 2.75 | (2.38, 3.02) | 2.84 | (2.50, 3.11) | 0.418 |
n-6 PUFA 18:2cis | 20.03 | (17.98, 21.84) | 20.61 | (18.98, 21.9) | 21.58 | (19.58, 23.41) | 0.001 |
20:2 | 0.33 | (0.29, 0.37) | 0.31 | (0.28, 0.35) | 0.32 | (0.28, 0.36) | 0.709 |
20:3 | 1.98 | (1.54, 2.37) | 1.99 | (1.64, 2.35) | 1.92 | (1.69, 2.42) | 0.847 |
(AA) 20:4 | 10.30 | (9.43, 11.6) | 10.17 | (8.88, 10.79) | 9.78 | (8.82, 11.11) | 0.027 |
22:2 | 0.64 | (0.53, 0.69) | 0.58 | (0.52, 0.68) | 0.62 | (0.53, 0.70) | 0.508 |
n-3 PUFA 18:3 | 0.22 | (0.20, 0.27) | 0.21 | (0.17, 0.25) | 0.21 | (0.16, 0.27) | 0.031 |
18:4 | 0.09 | (0.07, 0.13) | 0.09 | (0.07, 0.12) | 0.09 | (0.07, 0.12) | 0.774 |
20:4 | 0.10 | (0.07, 0.16) | 0.10 | (0.07, 0.14) | 0.09 | (0.06, 0.12) | 0.013 |
(EPA) 20:5 | 1.86 | (1.10, 2.53) | 1.71 | (1.06, 2.47) | 1.14 | (0.72, 1.77) | 0.001 |
22:5 | 0.97 | (0.86, 1.11) | 0.93 | (0.80, 1.05) | 0.88 | (0.79, 1.01) | 0.013 |
(DHA) 22:6 | 6.71 | (5.72, 7.48) | 6.07 | (5.11, 6.98) | 5.83 | (4.75, 6.71) | 0.000 |
EPA/AA | 0.182 | (0.106, 0.244) | 0.182 | (0.102, 0.256) | 0.115 | (0.078, 0.183) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruyama, C.; Uchiyama, M.; Umezawa, A.; Tokunaga, A.; Yasuda, A.; Chibai, K.; Fukuda, C.; Ichiki, R.; Kameyama, N.; Shinohara, M. A Cross-Sectional Pilot Study on Association of Ready-to-Eat and Processed Food Intakes with Metabolic Factors, Serum Trans Fat and Phospholipid Fatty Acid Compositions in Healthy Japanese Adults. Nutrients 2024, 16, 1032. https://doi.org/10.3390/nu16071032
Maruyama C, Uchiyama M, Umezawa A, Tokunaga A, Yasuda A, Chibai K, Fukuda C, Ichiki R, Kameyama N, Shinohara M. A Cross-Sectional Pilot Study on Association of Ready-to-Eat and Processed Food Intakes with Metabolic Factors, Serum Trans Fat and Phospholipid Fatty Acid Compositions in Healthy Japanese Adults. Nutrients. 2024; 16(7):1032. https://doi.org/10.3390/nu16071032
Chicago/Turabian StyleMaruyama, Chizuko, Miya Uchiyama, Ariko Umezawa, Aoi Tokunaga, Akari Yasuda, Kanako Chibai, Chieko Fukuda, Rina Ichiki, Noriko Kameyama, and Masakazu Shinohara. 2024. "A Cross-Sectional Pilot Study on Association of Ready-to-Eat and Processed Food Intakes with Metabolic Factors, Serum Trans Fat and Phospholipid Fatty Acid Compositions in Healthy Japanese Adults" Nutrients 16, no. 7: 1032. https://doi.org/10.3390/nu16071032
APA StyleMaruyama, C., Uchiyama, M., Umezawa, A., Tokunaga, A., Yasuda, A., Chibai, K., Fukuda, C., Ichiki, R., Kameyama, N., & Shinohara, M. (2024). A Cross-Sectional Pilot Study on Association of Ready-to-Eat and Processed Food Intakes with Metabolic Factors, Serum Trans Fat and Phospholipid Fatty Acid Compositions in Healthy Japanese Adults. Nutrients, 16(7), 1032. https://doi.org/10.3390/nu16071032