Anti-Inflammatory, Analgesic, Functional Improvement, and Chondroprotective Effects of Erigeron breviscapus (Vant.) Hand.-Mazz. Extract in Osteoarthritis: An In Vivo and In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Erigeron breviscapus Extract (EBE)
2.2. High Performance Liquid Chromatography (HPLC) Analysis of EBE
2.3. Animal Treatment
2.4. Acetic Acid-Induced Peripheral Pain Mice Model
2.5. MIA-Induced Osteoarthritis Rat Model
2.6. Weight-Bearing Measurement
2.7. Cartilage Degradation Analysis
2.8. Serum Measurement of OA Induced Model
2.9. Measurement of Cell Toxicity and NO Generation
2.10. Analysis of Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.11. Protein Expression
2.12. Statistics
3. Results
3.1. HPLC Analysis
3.2. Effect of Analgesic Onacetic Acid-Induced Peripheral Pain Mice Model
3.3. Effects on Weight-Bearing Distribution in MIA Rat
3.4. Effects on Knee Cartilage Damage in OA Rat Model
3.5. Effect of Inflammatory Cytokines in MIA Rat Model
3.6. Effects on Cytokine Responses in Knee Cartilage Tissue
3.7. Anti-Inflammatory Effects in LPS-Induced RAW264.7 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef]
- GBD 2021 Osteoarthritis Collaborators Global, Regional, and National Burden of Osteoarthritis, 1990–2020 and Projections to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [CrossRef]
- De Roover, A.; Escribano-Núñez, A.; Monteagudo, S.; Lories, R. Fundamentals of Osteoarthritis: Inflammatory Mediators in Osteoarthritis. Osteoarthr. Cartil. 2023, 31, 1303–1311. [Google Scholar] [CrossRef]
- Gezer, H.H.; Ostor, A. What Is New in Pharmacological Treatment for Osteoarthritis? Best. Pract. Res. Clin. Rheumatol. 2023, 37, 101841. [Google Scholar] [CrossRef] [PubMed]
- Englund, M. Osteoarthritis, Part of Life or a Curable Disease? A Bird’s-Eye View. J. Intern. Med. 2023, 293, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Zhang, C.; Lu, C.; Mo, C.; Zeng, J.; Yao, M.; Jia, B.; Liu, Z.; Yuan, P.; Xu, S. Age-Related Bone Diseases: Role of Inflammaging. J. Autoimmun. 2024, 143, 103169. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial Inflammation in Osteoarthritis Progression. Nat. Rev. Rheumatol. 2022, 18, 258–275. [Google Scholar] [CrossRef]
- Van Spil, W.E.; Kubassova, O.; Boesen, M.; Bay-Jensen, A.-C.; Mobasheri, A. Osteoarthritis Phenotypes and Novel Therapeutic Targets. Biochem. Pharmacol. 2019, 165, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Gouda, N.A.; Alshammari, S.O.; Abourehab, M.A.S.; Alshammari, Q.A.; Elkamhawy, A. Therapeutic Potential of Natural Products in Inflammation: Underlying Molecular Mechanisms, Clinical Outcomes, Technological Advances, and Future Perspectives. Inflammopharmacology 2023, 31, 2857–2883. [Google Scholar] [CrossRef]
- Su, J.; Yu, M.; Wang, H.; Wei, Y. Natural Anti-Inflammatory Products for Osteoarthritis: From Molecular Mechanism to Drug Delivery Systems and Clinical Trials. Phytother. Res. 2023, 37, 4321–4352. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, B.; Xiang, W.; Zheng, L.; Wang, X.; Li, S.; Zhang, T.; Feng, D.; Gong, Y.; Wu, J.; et al. Natural Products in Osteoarthritis Treatment: Bridging Basic Research to Clinical Applications. Chin. Med. 2024, 19, 25. [Google Scholar] [CrossRef]
- Jo, H.-G.; Lee, G.-Y.; Baek, C.Y.; Song, H.S.; Lee, D. Analgesic and Anti-Inflammatory Effects of Aucklandia Lappa Root Extracts on Acetic Acid-Induced Writhing in Mice and Monosodium Iodoacetate-Induced Osteoarthritis in Rats. Plants 2020, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.G.; Baek, C.Y.; Kim, D.; Kim, S.; Han, Y.; Park, C.; Song, H.S.; Lee, D. Network Analysis, In Vivo, and In Vitro Experiments Identified the Mechanisms by Which Piper longum L. [Piperaceae] Alleviates Cartilage Destruction, Joint Inflammation, and Arthritic Pain. Front. Pharmacol. 2023, 14, 1282943. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.-G.; Baek, C.-Y.; Song, H.S.; Lee, D. Network Pharmacology and Experimental Verifications to Discover Scutellaria Baicalensis Georgi’s Effects on Joint Inflammation, Destruction, and Pain in Osteoarthritis. Int. J. Mol. Sci. 2024, 25, 2127. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Z.; Li, J.; Liu, S. Research Progress on Nanotechnology of Traditional Chinese Medicine to Enhance the Therapeutic Effect of Osteoarthritis. Drug Deliv. Transl. Res. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Li, W.; Yu, L.; Li, W.; Ge, G.; Ma, Y.; Xiao, L.; Qiao, Y.; Huang, W.; Huang, W.; Wei, M.; et al. Prevention and Treatment of Inflammatory Arthritis with Traditional Chinese Medicine: Underlying Mechanisms Based on Cell and Molecular Targets. Ageing Res. Rev. 2023, 89, 101981. [Google Scholar] [CrossRef]
- Jo, H.-G.; Baek, C.Y.; Kim, D.; Lee, D.; Song, H.S. Stem of Sorbus commixta Hedl. Extract Inhibits Cartilage Degradation and Arthritic Pain in Experimental Model via Anti-Inflammatory Activity. Nutrients 2023, 15, 3774. [Google Scholar] [CrossRef]
- Zhang, R.; Han, L.; Lin, W.; Ba, X.; Yan, J.; Li, T.; Yang, Y.; Huang, Y.; Huang, Y.; Qin, K.; et al. Mechanisms of NLRP3 Inflammasome in Rheumatoid Arthritis and Osteoarthritis and the Effects of Traditional Chinese Medicine. J. Ethnopharmacol. 2024, 321, 117432. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Lin, P.; Kang, Q.; Zhao, Z.-L.; Wang, J.; Cheng, J.-Y. Metabolism and Pharmacological Mechanisms of Active Ingredients in Erigeron breviscapus. Curr. Drug Metab. 2021, 22, 24–39. [Google Scholar] [CrossRef]
- Wu, R.; Liang, Y.; Xu, M.; Fu, K.; Zhang, Y.; Wu, L.; Wang, Z. Advances in Chemical Constituents, Clinical Applications, Pharmacology, Pharmacokinetics and Toxicology of Erigeron breviscapus. Front. Pharmacol. 2021, 12, 656335. [Google Scholar] [CrossRef]
- Gao, J.; Chen, G.; He, H.; Liu, C.; Xiong, X.; Li, J.; Wang, J. Therapeutic Effects of Breviscapine in Cardiovascular Diseases: A Review. Front. Pharmacol. 2017, 8, 289. [Google Scholar] [CrossRef]
- Dong, X.; Qu, S. Erigeron breviscapus (Vant.) Hand-Mazz.: A Promising Natural Neuroprotective Agent for Alzheimer’s Disease. Front. Pharmacol. 2022, 13, 877872. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.; Korpershoek, J.V.; Novais, E.J.; Tawy, G.F.; Hollander, A.P.; Martin, I. Failure of Cartilage Regeneration: Emerging Hypotheses and Related Therapeutic Strategies. Nat. Rev. Rheumatol. 2023, 19, 403–416. [Google Scholar] [CrossRef]
- Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E.; Alexander, H.D.; Ross, O.A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and Aging-Related Diseases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Liu-Bryan, R.; Terkeltaub, R. Emerging Regulators of the Inflammatory Process in Osteoarthritis. Nat. Rev. Rheumatol. 2015, 11, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Jenei-Lanzl, Z.; Meurer, A.; Zaucke, F. Interleukin-1β Signaling in Osteoarthritis—Chondrocytes in Focus. Cell Signal 2019, 53, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Newman, A.B. Inflammatory Markers in Population Studies of Aging. Ageing Res. Rev. 2011, 10, 319–329. [Google Scholar] [CrossRef]
- Liao, Y.; Ren, Y.; Luo, X.; Mirando, A.J.; Long, J.T.; Leinroth, A.; Ji, R.-R.; Hilton, M.J. Interleukin-6 Signaling Mediates Cartilage Degradation and Pain in Posttraumatic Osteoarthritis in a Sex-Specific Manner. Sci. Signal 2022, 15, eabn7082. [Google Scholar] [CrossRef]
- Grillet, B.; Pereira, R.V.S.; Van Damme, J.; Abu El-Asrar, A.; Proost, P.; Opdenakker, G. Matrix Metalloproteinases in Arthritis: Towards Precision Medicine. Nat. Rev. Rheumatol. 2023, 19, 363–377. [Google Scholar] [CrossRef]
- Billinghurst, R.C.; Dahlberg, L.; Ionescu, M.; Reiner, A.; Bourne, R.; Rorabeck, C.; Mitchell, P.; Hambor, J.; Diekmann, O.; Tschesche, H.; et al. Enhanced Cleavage of Type II Collagen by Collagenases in Osteoarthritic Articular Cartilage. J. Clin. Investig. 1997, 99, 1534–1545. [Google Scholar] [CrossRef]
- Ulivi, V.; Giannoni, P.; Gentili, C.; Cancedda, R.; Descalzi, F. P38/NF-κB-Dependent Expression of COX-2 during Differentiation and Inflammatory Response of Chondrocytes. J. Cell Biochem. 2008, 104, 1393–1406. [Google Scholar] [CrossRef]
- Dahlberg, L.; Billinghurst, R.C.; Manner, P.; Nelson, F.; Webb, G.; Ionescu, M.; Reiner, A.; Tanzer, M.; Zukor, D.; Chen, J.; et al. Selective Enhancement of Collagenase-Mediated Cleavage of Resident Type II Collagen in Cultured Osteoarthritic Cartilage and Arrest with a Synthetic Inhibitor That Spares Collagenase 1 (Matrix Metalloproteinase 1). Arthritis Rheum. 2000, 43, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Little, C.B.; Barai, A.; Burkhardt, D.; Smith, S.M.; Fosang, A.J.; Werb, Z.; Shah, M.; Thompson, E.W. Matrix Metalloproteinase 13-Deficient Mice Are Resistant to Osteoarthritic Cartilage Erosion but Not Chondrocyte Hypertrophy or Osteophyte Development. Arthritis Rheum. 2009, 60, 3723–3733. [Google Scholar] [CrossRef]
- Hu, Q.; Ecker, M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 1742. [Google Scholar] [CrossRef]
- Baral, P.; Udit, S.; Chiu, I.M. Pain and Immunity: Implications for Host Defence. Nat. Rev. Immunol. 2019, 19, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Ansari, M.Y.; Haqqi, T.M. Role of iNOS in Osteoarthritis: Pathological and Therapeutic Aspects. J. Cell Physiol. 2020, 235, 6366–6376. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Q.; Zhou, X.; Pang, Q.; Xu, Y. A UHPLC-MS/MS Method for Simultaneous Determination of Twelve Constituents from Erigeron breviscapus Extract in Rat Plasma: Application to a Pharmacokinetic Study. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2017, 1046, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-P.; Tang, J.-L.; Bao, J.-P.; Hu, P.-F.; Shi, Z.-L.; Wu, L.-D. Anti-Arthritic Effects of Chlorogenic Acid in Interleukin-1β-Induced Rabbit Chondrocytes and a Rabbit Osteoarthritis Model. Int. Immunopharmacol. 2011, 11, 23–28. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Li, F.; Peng, J.; Xu, M.; Shangguan, Y.; Li, Y.; Zhao, Y.; Qiu, C.; Qu, R.; et al. Scutellarin Suppresses Cartilage Destruction in Osteoarthritis Mouse Model by Inhibiting the NF-κB and PI3K/AKT Signaling Pathways. Int. Immunopharmacol. 2019, 77, 105928. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, Z.; Bian, Y.; Su, W.; Li, X.; Li, S.; Wu, J.; Shi, L.; Song, Y.; Zheng, G.; et al. Scutellarin Attenuates the IL-1β-Induced Inflammation in Mouse Chondrocytes and Prevents Osteoarthritic Progression. Front. Pharmacol. 2020, 11, 107. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Lu, W.; Ding, Z.; Huang, W.; Li, Y.T.; Cheng, C.; Shan, W.S.; Xu, J.; He, W.; et al. Scutellarin Ameliorates Cartilage Degeneration in Osteoarthritis by Inhibiting the Wnt/β-Catenin and MAPK Signaling Pathways. Int. Immunopharmacol. 2020, 78, 105954. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, Z.; Wang, L.; Li, Y.; Guo, J.; Yang, X.; Zhao, J.; Rong, K.; Zhang, P.; Ye, B.; et al. Scutellarin Ameliorates Osteoarthritis by Protecting Chondrocytes and Subchondral Bone Microstructure by Inactivating NF-κB/MAPK Signal Transduction. Biomed. Pharmacother. 2022, 155, 113781. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.-H.; Tan, L.-R.; Liu, P.-W.; Tan, Y.-L.; Zhang, Y.-T.; Li, X.-H.; Wang, M.-J.; He, B.-X. Scutellarin Regulates Osteoarthritis in Vitro by Inhibiting the PI3K/AKT/mTOR Signaling Pathway. Mol. Med. Rep. 2021, 23, 83. [Google Scholar] [CrossRef] [PubMed]
Conditions | |
---|---|
Colum | Triart C18 column (4.6 × 150 mm, 5 µm, YMC-PACK®, Kyoto, Japan) |
Mobile phase | (A) acetonitrile, (B) 0.3% formic acid |
Flow rate | 0–10 min, 1–1% |
10–13 min, 1–15% | |
13–35 min, 15–15% | |
35–45 min, 15–100% | |
45–60 min, 100–1% solvent B | |
Injection volume | 1.0 mL/min |
Detection wavelength | 325 nm |
Temperature | 30 °C |
Group | OA Model (50 μL, Intraarticular) | Sample (10 mL/kg, P.O.) |
---|---|---|
sham | saline | DW |
CON | MIA 40 mg/mL | DW |
INDO 3 | MIA 40 mg/mL | indomethacin 3 mg/kg |
EBE 300 | MIA 40 mg/mL | EBE 300 mg/kg |
Score | Cartilage Appearance |
---|---|
0 | Typical appearance on the surface of cartilage |
1 | Mild fibrillation or a yellowish discoloration on the surface |
2 | Erosion affecting the cartilage’s middle or outer layers |
3 | Deep erosions that extend to the subchondral bone |
4 | Massive erosions and widespread exposure of subchondral bone |
IL-1β | F | AACTCAACTGTGAAATAGCAGC |
R | TCCACAGCCACAATGAGTG | |
IL-6 | F | TCCGCAAGAGACTTCCAGC |
R | CCTCCGACTTGTGAAGTGG | |
Ptger2 | F | TGTGTGTACTGTCCGTCTGC |
R | CAGGGATCCAGTCTCGGTGT | |
NOS2 | F | AGTCAACTACAAGCCCCACG |
R | GCAGCTTGTCCAGGGATTCT | |
MMP-1 | F | AACTTGGGTGAAGACGTCCA |
R | TCCTGTCACTTTCAGCCCAA | |
MMP-8 | F | TCTGTTCTTCTTCCACACACAG |
R | GCAATCATAGTGGCATTCCT | |
MMP-13 | F | ACCTTCTTCTTGTTGAGTTGGA |
R | CTGCATTTCTCGGAGTCTA | |
GAPDH | F | CTTGTGACAAAGTGGACATTGTT |
R | TGACCAGCTTCCCATTCTC |
MMP-1 | F | ATGCCTAGCCTTCCTTTGCT |
R | TTCCAGGTATTTCCAGACTG | |
MMP-13 | F | AACCAAGATGTGGAGTGCCT |
R | GACCAGACCTTGAAGGCTTT | |
IL-1β | F | CCAGCTTCAAATCTCGCAGC |
R | GTGCTCATGTCCTCATCCTGG | |
TNF-α | F | GAGAAGTTCCCAAATGGCCT |
R | AGCCACTCCAGCTGCTCCT | |
IL-6 | F | CACTTCACAAGTCGGAGGCT |
R | CAAGTGCATCATCGTTGTTC | |
COX-2 | F | ATCCATGTCAAAACCGTGGG |
R | TTGGGGTGGGCTTCAGCAG | |
Ptger2 | F | CTGGTAACGGAATTGGTGC |
R | TGGCCAGACTAAAGAAGGTC | |
NOS2 | F | ACCAAGATGGCCTGGAGGAA |
R | CCGACCTGATGTTGCCATTG | |
GAPDH | F | ATGGTGAAGGTCGGTGTG |
R | GCCGTGAGTGGAGTCATAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, H.-G.; Baek, C.Y.; Lee, J.; Hwang, Y.; Baek, E.; Hwang, J.H.; Lee, D. Anti-Inflammatory, Analgesic, Functional Improvement, and Chondroprotective Effects of Erigeron breviscapus (Vant.) Hand.-Mazz. Extract in Osteoarthritis: An In Vivo and In Vitro Study. Nutrients 2024, 16, 1035. https://doi.org/10.3390/nu16071035
Jo H-G, Baek CY, Lee J, Hwang Y, Baek E, Hwang JH, Lee D. Anti-Inflammatory, Analgesic, Functional Improvement, and Chondroprotective Effects of Erigeron breviscapus (Vant.) Hand.-Mazz. Extract in Osteoarthritis: An In Vivo and In Vitro Study. Nutrients. 2024; 16(7):1035. https://doi.org/10.3390/nu16071035
Chicago/Turabian StyleJo, Hee-Geun, Chae Yun Baek, JunI Lee, Yeseul Hwang, Eunhye Baek, Ji Hye Hwang, and Donghun Lee. 2024. "Anti-Inflammatory, Analgesic, Functional Improvement, and Chondroprotective Effects of Erigeron breviscapus (Vant.) Hand.-Mazz. Extract in Osteoarthritis: An In Vivo and In Vitro Study" Nutrients 16, no. 7: 1035. https://doi.org/10.3390/nu16071035
APA StyleJo, H. -G., Baek, C. Y., Lee, J., Hwang, Y., Baek, E., Hwang, J. H., & Lee, D. (2024). Anti-Inflammatory, Analgesic, Functional Improvement, and Chondroprotective Effects of Erigeron breviscapus (Vant.) Hand.-Mazz. Extract in Osteoarthritis: An In Vivo and In Vitro Study. Nutrients, 16(7), 1035. https://doi.org/10.3390/nu16071035