Dietary Inflammatory Index and Dietary Diversity Score Associated with Sarcopenia and Its Components: Findings from a Nationwide Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Assessment of Sarcopenia and Its Components
2.3. Dietary Assessment
2.3.1. Assessment of E-DII
2.3.2. Assessment of DDS
2.4. Covariates
2.5. Statistical Analysis
2.6. Sensitivity Analysis
2.7. Stratified Analysis
3. Results
3.1. Participant Characteristics
3.2. Associations of the E-DII with Sarcopenia and Its Components
3.3. Associations of DDS with Sarcopenia and Its Components
3.4. Combined Effects of the E-DII and DDS on Sarcopenia and Its Components
3.5. Stratified Analysis
4. Discussion
4.1. Comparison with Other Studies and Possible Explanations
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, J.; Geerlings, M.A.J.; Reijnierse, E.M.; Phassouliotis, C.; Lim, W.K.; Maier, A.B. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp. Gerontol. 2020, 131, 110801. [Google Scholar] [CrossRef]
- Kilgour, A.H.M.; Redmond, P.; Taylor, A.; Deary, I.J.; Starr, J.M.; Shenkin, S.D. 70 Prevalence of Sarcopenia in A Longitudinal UK Cohort Study Using Ewgsop2 Criteria Varies Widely Depending on Which Measures of Muscle Strength and Performance are Used. Age Ageing 2020, 49, i22–i23. [Google Scholar] [CrossRef]
- Jauffret, C.; Perichon, R.; Lamer, A.; Cortet, B.; Chazard, E.; Paccou, J. Association between sarcopenia and fracture risk in a population from the UK Biobank database. J. Bone Miner. Res. 2023, 38, 1422–1434. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef]
- Denison, H.J.; Cooper, C.; Sayer, A.A.; Robinson, S.M. Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interv. Aging 2015, 10, 859–869. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Misra, A.; Mohan, V.; Taylor, R.; Yancy, W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 2018, 361, k2234. [Google Scholar] [CrossRef]
- English, L.K.; Ard, J.D.; Bailey, R.L.; Bates, M.; Bazzano, L.A.; Boushey, C.J.; Brown, C.; Butera, G.; Callahan, E.H.; de Jesus, J.; et al. Evaluation of Dietary Patterns and All-Cause Mortality: A Systematic Review. JAMA Netw. Open 2021, 4, e2122277. [Google Scholar] [CrossRef]
- Bian, D.; Liu, X.; Wang, C.; Jiang, Y.; Gu, Y.; Zhong, J.; Shi, Y. Association between Dietary Inflammatory Index and Sarcopenia in Crohn’s Disease Patients. Nutrients 2022, 14, 901. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Soltani, S.; Hashemi, R.; Heshmat, R.; Motlagh, A.D.; Esmaillzadeh, A. Inflammatory potential of the diet and risk of sarcopenia and its components. Nutr. J. 2020, 19, 129. [Google Scholar] [CrossRef]
- Geng, J.; Deng, L.; Qiu, S.; Bian, H.; Cai, B.; Jin, K.; Zheng, X.; Li, J.; Liao, X.; Li, Y.; et al. Dietary inflammatory potential and risk of sarcopenia: Data from national health and nutrition examination surveys. Aging 2021, 13, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Kruger, R.; Hepburn, A.J.; Beck, K.L.; McNaughton, S.; Stonehouse, W. Evaluating a novel dietary diversity questionnaire to assess dietary diversity and adequacy of New Zealand women. Nutrition 2021, 91, 111468. [Google Scholar] [CrossRef] [PubMed]
- Verger, E.O.; Le Port, A.; Borderon, A.; Bourbon, G.; Moursi, M.; Savy, M.; Mariotti, F.; Martin-Prevel, Y. Dietary Diversity Indicators and Their Associations with Dietary Adequacy and Health Outcomes: A Systematic Scoping Review. Adv. Nutr. 2021, 12, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhou, R.; Li, F.; Chen, L.; Wu, K.; Huang, J.; Liu, H.; Huang, Z.; Xu, L.; Yuan, Z.; et al. Association between dietary diversity and cognitive impairment among the oldest-old: Findings from a nationwide cohort study. Clin. Nutr. 2021, 40, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Madzorera, I.; Isanaka, S.; Wang, M.; Msamanga, G.I.; Urassa, W.; Hertzmark, E.; Duggan, C.; Fawzi, W.W. Maternal dietary diversity and dietary quality scores in relation to adverse birth outcomes in Tanzanian women. Am. J. Clin. Nutr. 2020, 112, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Narmaki, E.; Siassi, F.; Fariba, K.; Qorbani, M.; Shiraseb, F.; Ataie-Jafari, A.; Sotoudeh, G. Dietary diversity as a proxy measure of blood antioxidant status in women. Nutrition 2015, 31, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Palmer, L.J. UK Biobank: Bank on it. Lancet 2007, 369, 1980–1982. [Google Scholar] [CrossRef] [PubMed]
- Heianza, Y.; Zhou, T.; Sun, D.; Hu, F.B.; Manson, J.E.; Qi, L. Genetic susceptibility, plant-based dietary patterns, and risk of cardiovascular disease. Am. J. Clin. Nutr. 2020, 112, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustmentfortotal energyintakein epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K.; Schatzkin, A.; Harris, T.B.; Ziegler, R.G.; Block, G. Dietary diversity and subsequent mortality in the first national health and nutrition examination survey epidemiologic follow-up study. Am. J. Clin. Nutr. 1993, 57, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Foote, J.A.; Murphy, S.P.; Wilkens, L.R.; Basiotis, P.P.; Carlson, A. Dietary variety increases the probability of nutrient adequacy among adults. J. Nutr. 2004, 134, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Nutrition and Consumer Protection Division, Food and Agriculture Organization of the United Nations. Guidelines for Measuring Household and Individual Dietary Diversity; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Knol, M.J.; VanderWeele, T.J.; Groenwold, R.H.; Klungel, O.H.; Rovers, M.M.; Grobbee, D.E. Estimating measures of interaction on an additive scale for preventive exposures. Eur. J. Epidemiol. 2011, 26, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Nie, L.; Cole, S.R. Estimating the relative excess risk due to interaction: A bayesian approach. Epidemiology 2011, 22, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Franssen, F.M.; Rutten, E.P.; Groenen, M.T.; Vanfleteren, L.E.; Wouters, E.F.; Spruit, M.A. New reference values for body composition by bioelectrical impedance analysis in the general population: Results from the UK Biobank. J. Am. Med. Dir. Assoc. 2014, 15, 448.e1–448.e6. [Google Scholar] [CrossRef]
- Blazek, K.; van Zwieten, A.; Saglimbene, V.; Teixeira-Pinto, A. A practical guide to multiple imputation of missing data in nephrology. Kidney Int. 2021, 99, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Gray, L.; McCartney, G.; White, I.R.; Katikireddi, S.V.; Rutherford, L.; Gorman, E.; Leyland, A.H. Use of record-linkage to handle non-response and improve alcohol consumption estimates in health survey data: A study protocol. BMJ Open 2013, 3, e002647. [Google Scholar] [CrossRef] [PubMed]
- Locquet, M.; Beaudart, C.; Petermans, J.; Reginster, J.Y.; Bruyere, O. EWGSOP2 Versus EWGSOP1: Impact on the Prevalence of Sarcopenia and Its Major Health Consequences. J. Am. Med. Dir. Assoc. 2019, 20, 384–385. [Google Scholar] [CrossRef] [PubMed]
- Reiss, J.; Iglseder, B.; Alzner, R.; Mayr-Pirker, B.; Pirich, C.; Kassmann, H.; Kreutzer, M.; Dovjak, P.; Reiter, R. Consequences of applying the new EWGSOP2 guideline instead of the former EWGSOP guideline for sarcopenia case finding in older patients. Age Ageing 2019, 48, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.J.; Reijnierse, E.M.; van Ancum, J.M.; Verlaan, S.; Meskers, C.G.M.; Maier, A.B. Acute inflammation is associated with lower muscle strength, muscle mass and functional dependency in male hospitalised older patients. PLoS ONE 2019, 14, e0215097. [Google Scholar] [CrossRef]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Alturki, M.; Beyer, I.; Mets, T.; Bautmans, I. Impact of drugs with anti-inflammatory effects on skeletal muscle and inflammation: A systematic literature review. Exp. Gerontol. 2018, 114, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, Y.; Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Kurita, S.; Nishimoto, K.; Makizako, H.; Shimada, H. Association between dietary diversity and sarcopenia in community-dwelling older adults. Nutrition 2023, 106, 111896. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Becker, W.; Michaelsson, K.; Cederholm, T.; Sjogren, P. Associations between dietary patterns at age 71 and the prevalence of sarcopenia 16 years later. Clin. Nutr. 2020, 39, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Mohebbi, M.; Collier, F.; Loughman, A.; Staudacher, H.; Shivappa, N.; Hebert, J.R.; Pasco, J.A.; Jacka, F.N. The role of diet quality and dietary patterns in predicting muscle mass and function in men over a 15-year period. Osteoporos. Int. 2021, 32, 2193–2203. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.C.; Wahlqvist, M.L.; Huang, Y.C.; Chuang, S.Y.; Wang, C.F.; Lee, M.S. Medical costs of a low skeletal muscle mass are modulated by dietary diversity and physical activity in community-dwelling older Taiwanese: A longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Aytekin, N.; Mileva, K.N.; Cunliffe, A.D. Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: Relevance of UK dietary recommendations. Nutr. Res. Rev. 2018, 31, 204–224. [Google Scholar] [CrossRef] [PubMed]
- Hayhoe, R.P.G.; Lentjes, M.A.H.; Mulligan, A.A.; Luben, R.N.; Khaw, K.T.; Welch, A.A. Cross-sectional associations of dietary and circulating magnesium with skeletal muscle mass in the EPIC-Norfolk cohort. Clin. Nutr. 2019, 38, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Damiano, S.; Muscariello, E.; La Rosa, G.; Di Maro, M.; Mondola, P.; Santillo, M. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia? Int. J. Mol. Sci. 2019, 20, 3815. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.M.; Granic, A.; Robinson, S.M.; Sayer, A.A. Sarcopenia, long-term conditions, and multimorbidity: Findings from UK Biobank participants. J. Cachexia Sarcopenia Muscle 2020, 11, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Ferguson, L.D.; Gray, S.R.; Rodríguez-Gómez, I.; Sattar, N.; Siebert, S.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Association of sarcopenia with incident osteoporosis: A prospective study of 168,682 UK biobank participants. J. Cachexia Sarcopenia Muscle 2021, 12, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Guide for Monitoring Alcohol Consumption and Related Harm; World Health Organization: Geneva, Switzerland, 2000; pp. 51–52. [Google Scholar]
- Bassett, D.R., Jr. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1396. [Google Scholar] [CrossRef] [PubMed]
- Madjedi, K.M.; Stuart, K.V.; Chua, S.Y.L.; Ramulu, P.Y.; Warwick, A.; Luben, R.N.; Sun, Z.; Chia, M.A.; Aschard, H.; Wiggs, J.L.; et al. The Association of Physical Activity with Glaucoma and Related Traits in the UK Biobank. Ophthalmology 2023, 130, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Traversy, G.; Chaput, J.-P. Alcohol Consumption and Obesity: An Update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall | E-DII | DDS | ||||
---|---|---|---|---|---|---|---|
Tertile 1 (−5.45, −0.49) | Tertile 2 (−0.50, 1.12) | Tertile 3 (1.13, 4.65) | Low (1–6) | Medium (7–12) | High (13–18) | ||
No. of participants | 155,669 | 51,890 | 51,889 | 51,890 | 18,838 | 95,428 | 41,403 |
Age (years), mean (SD) | 57.7 (8.0) | 58.4 (7.9) | 57.8 (7.9) | 56.9 (8.0) | 55.7 (8.1) | 57.6 (8.0) | 58.9 (7.6) |
Sex, female | 81,045 (52.1) | 23,498 (45.3) | 27,527 (53.0) | 30,020 (57.9) | 8291 (44.0) | 48,819 (51.2) | 23,935 (57.8) |
Race, nonwhite | 6325 (4.1) | 1766 (3.4) | 1733 (3.3) | 2826 (5.4) | 1295 (6.9) | 3869 (4.1) | 1161 (2.8) |
Residence, rural | 24,973 (16.0) | 8554 (16.5) | 8449 (16.3) | 7970 (15.4) | 2616 (13.9) | 15,346 (16.1) | 7011 (16.9) |
Household income | |||||||
GBP >52,000 | 51,704 (33.2) | 16,706 (32.2) | 17,852 (34.4) | 17,146 (33.0) | 5746 (30.5) | 31,584 (33.1) | 14,374 (34.7) |
GBP 18,000 to 52,000 | 81,437 (52.3) | 27,538 (53.1) | 27,047 (52.1) | 26,852 (51.7) | 9672 (51.3) | 49,928 (52.3) | 21,837 (52.7) |
GBP <18,000 | 22,528 (14.5) | 7646 (14.7) | 6990 (13.5) | 7892 (15.2) | 3420 (18.2) | 13,916 (14.6) | 5192 (12.5) |
Smoking status | |||||||
Never | 87,650 (56.3) | 29,374 (56.6) | 29,513 (56.9) | 28,763 (55.4) | 9879 (52.4) | 53,554 (56.1) | 24,217 (58.5) |
Previous | 55,824 (35.9) | 19,178 (37.0) | 18,712 (36.1) | 17,934 (34.6) | 6366 (33.8) | 34,371 (36.0) | 15,087 (36.4) |
Current | 12,195 (7.8) | 3338 (6.4) | 3664 (7.1) | 5193 (10.0) | 2593 (13.8) | 7503 (7.9) | 2099 (5.1) |
Alcohol consumption (g/week), mean (SD) | 114.9 (99.5) | 119.6 (102.8) | 114.7 (98.6) | 110.4 (96.6) | 131.7 (121.9) | 115.6 (99.5) | 105.7 (85.9) |
PA, MET (hours/week), mean (SD) | 41.1 (40.1) | 45.2 (42.5) | 39.8 (39.0) | 38.2 (39.2) | 41.8 (44.5) | 40.9 (40.4) | 41.2 (38.3) |
BMI (kg/m2), mean (SD) | 26.9 (4.5) | 26.7 (4.5) | 26.8 (4.4) | 27.1 (4.7) | 27.7 (4.8) | 26.9 (4.5) | 26.5 (4.4) |
Energy intake (kcal/day), mean (SD) | 2087.8 (617.7) | 2465.5 (598.7) | 2085.9 (516.3) | 1711.9 (485.4) | 1884.6 (636.5) | 2091.0 (612.6) | 2172.8 (599.5) |
Dietary supplement | 73,379 (47.1) | 26,216 (50.5) | 24,418 (47.1) | 22,745 (43.8) | 7794 (41.4) | 44,446 (46.6) | 21,139 (51.1) |
Diabetes | 6345 (4.1) | 2208 (4.3) | 1974 (3.8) | 2163 (4.2) | 905 (4.8) | 3945 (4.1) | 1495 (3.6) |
CVD | 6348 (4.1) | 2251 (4.3) | 2013 (3.9) | 2084 (4.0) | 905 (4.8) | 3908 (4.1) | 1535 (3.7) |
Cancer | 13,262 (8.5) | 4536 (8.7) | 4342 (8.4) | 4384 (8.4) | 1433 (7.6) | 8005 (8.4) | 3824 (9.2) |
Hypertension | 34,983 (22.5) | 12,001 (23.1) | 11,634 (22.4) | 11,348 (21.9) | 4390 (23.3) | 21,209 (22.2) | 9384 (22.7) |
Hyperlipidemia | 16,207 (10.4) | 5669 (10.9) | 5325 (10.3) | 5213 (10.0) | 1953 (10.4) | 9878 (10.4) | 4376 (10.6) |
Sarcopenia | 496 (0.3) | 156 (0.3) | 146 (0.3) | 194 (0.4) | 57 (0.3) | 308 (0.3) | 131 (0.3) |
Low muscle mass | 8928 (5.7) | 2793 (5.4) | 3023 (5.8) | 3112 (6.0) | 851 (4.5) | 5368 (5.6) | 2709 (6.5) |
Low muscle strength | 5771 (3.7) | 1799 (3.5) | 1854 (3.6) | 2118 (4.1) | 840 (4.5) | 3483 (3.6) | 1448 (3.5) |
Low physical performance | 7239 (4.7) | 2094 (4.0) | 2122 (4.1) | 3023 (5.8) | 1337 (7.1) | 4399 (4.6) | 1503 (3.6) |
E-DII, ORs (95% Cls) | Continuous (per SD Reduction) | |||
---|---|---|---|---|
Tertile 1 (−5.45, −0.49) | Tertile 2 (−0.50, 1.12) | Tertile 3 (1.13, 4.65) | ||
No. of participants | 41,403 | 95,428 | 18,838 | 155,669 |
Sarcopenia | ||||
Cases | 156 | 146 | 194 | 496 |
Model 1 a | 0.62 (0.47, 0.80) | 0.67 (0.53, 0.84) | 1.00 (Ref) | 0.83 (0.76, 0.92) |
Model 2 a | 0.71 (0.54, 0.91) | 0.71 (0.51, 0.97) | 1.00 (Ref) | 0.84 (0.77, 0.93) |
Model 3 a | 0.75 (0.59, 0.94) | 0.76 (0.59, 0.98) | 1.00 (Ref) | 0.86 (0.78, 0.94) |
Low muscle strength | ||||
Cases | 1799 | 1854 | 2118 | 5771 |
Model 1 b | 0.79 (0.74, 0.84) | 0.83 (0.78, 0.89) | 1.00 (Ref) | 0.89 (0.87, 0.92) |
Model 2 b | 0.84 (0.82, 0.94) | 0.88 (0.78, 0.90) | 1.00 (Ref) | 0.92 (0.90, 0.94) |
Model 3 b | 0.83 (0.77, 0.90) | 0.88 (0.82, 0.94) | 1.00 (Ref) | 0.92 (0.90, 0.94) |
Low muscle mass | ||||
Cases | 2793 | 3023 | 3112 | 8928 |
Model 1 b | 0.77 (0.72, 0.83) | 0.79 (0.74, 0.84) | 1.00 (Ref) | 0.93 (0.90, 0.95) |
Model 2 b | 0.78 (0.72, 0.85) | 0.80 (0.75, 0.86) | 1.00 (Ref) | 0.93 (0.91, 0.96) |
Model 3 b | 0.80 (0.74, 0.87) | 0.88 (0.92, 0.95) | 1.00 (Ref) | 0.96 (0.93, 0.98) |
Low physical performance | ||||
Cases | 2094 | 2122 | 3023 | 7239 |
Model 1 b | 0.65 (0.61, 0.69) | 0.67 (0.63, 0.71) | 1.00 (Ref) | 0.81 (0.79, 0.83) |
Model 2 b | 0.73 (0.68, 0.78) | 0.75 (0.71, 0.81) | 1.00 (Ref) | 0.88 (0.86, 0.91) |
Model 3 b | 0.76 (0.71, 0.82) | 0.76 (0.72, 0.81) | 1.00 (Ref) | 0.89 (0.86, 0.91) |
ORs (95% Cls) | Continuous (per SD Increment) | |||
---|---|---|---|---|
Low-Level DDS (1–6) | Medium-Level DDS (7–12) | High-Level DDS (13–18) | ||
No. of participants | 25,255 | 123,362 | 52,311 | 155,669 |
Sarcopenia | ||||
Cases | 57 | 308 | 131 | 496 |
Model 1 a | 1.00 (Ref) | 0.75 (0.55, 1.05) | 0.62 (0.43, 0.90) | 0.87 (0.79, 0.95) |
Model 2 a | 1.00 (Ref) | 0.80 (0.56, 1.05) | 0.70 (0.47, 0.99) | 0.87 (0.79, 0.97) |
Model 3 a | 1.00 (Ref) | 0.84 (0.62, 1.14) | 0.69 (0.48, 0.95) | 0.89 (0.80, 0.98) |
Low muscle strength | ||||
Cases | 840 | 3483 | 1448 | 5771 |
Model 1 b | 1.00 (Ref) | 0.70 (0.65, 0.76) | 0.61 (0.55, 0.66) | 0.85 (0.83, 0.88) |
Model 2 b | 1.00 (Ref) | 0.76 (0.70, 0.82) | 0.69 (0.63, 0.76) | 0.88 (0.86, 0.91) |
Model 3 b | 1.00 (Ref) | 0.77 (0.71, 0.83) | 0.70 (0.64, 0.77) | 0.89 (0.87, 0.92) |
Low muscle mass | ||||
Cases | 851 | 5368 | 2709 | 8928 |
Model 1 b | 1.00 (Ref) | 0.80 (0.72, 0.79) | 0.76 (0.67, 0.86) | 0.91 (0.89, 0.93) |
Model 2 b | 1.00 (Ref) | 0.83 (0.75, 0.93) | 0.81 (0.72, 0.88) | 0.93 (0.90, 0.95) |
Model 3 b | 1.00 (Ref) | 0.88 (0.80, 0.97) | 0.84 (0.76, 0.94) | 0.94 (0.91, 0.97) |
Low physical performance | ||||
Cases | 1337 | 4399 | 1503 | 7239 |
Model 1 b | 1.00 (Ref) | 0.57 (0.54, 0.61) | 0.42 (0.38, 0.45) | 0.74 (0.72, 0.76) |
Model 2 b | 1.00 (Ref) | 0.67 (0.63, 0.72) | 0.55 (0.51, 0.60) | 0.80 (0.78, 0.82) |
Model 3 b | 1.00 (Ref) | 0.74 (0.69, 0.79) | 0.63 (0.58, 0.68) | 0.85 (0.83, 0.87) |
ORs (95% CIs) c | p-Interaction d | |||
---|---|---|---|---|
Tertile 3 of E-DII b | Tertile 2 of E-DII b | Tertile 1 of E-DII b | ||
Sarcopenia | <0.001 | |||
Low-level DDS a | 1.00 (Ref) | 0.90 (0.82, 0.99) | 0.97 (0.84, 1.12) | |
Medium-level DDS a | 0.83 (0.79, 0.87) | 0.76 (0.72, 0.80) | 0.75 (0.71, 0.79) | |
High-level DDS a | 0.79 (0.65, 0.85) | 0.71 (0.67, 0.75) | 0.69 (0.65, 0.74) | |
Low muscle strength | 0.265 | |||
Low-level DDS a | 1.00 (Ref) | 0.83 (0.69, 1.00) | 1.03 (0.78, 1.35) | |
Medium-level DDS a | 0.77 (0.70, 0.86) | 0.72 (0.65, 0.79) | 0.72 (0.64, 0.80) | |
High-level DDS a | 0.74 (0.64, 0.86) | 0.71 (0.63, 0.80) | 0.62 (0.55, 0.70) | |
Low muscle mass | 0.884 | |||
Low-level DDS a | 1.00 (Ref) | 1.02 (0.80, 1.28) | 0.81 (0.55, 1.18) | |
Medium-level DDS a | 0.92 (0.83, 1.02) | 0.88 (0.78, 0.98) | 0.75 (0.66, 0.86) | |
High-level DDS a | 0.87 (0.66, 1.00) | 0.85 (0.74, 0.97) | 0.74 (0.65, 0.85) | |
Low physical performance | 0.003 | |||
Low-level DDS a | 1.00 (Ref) | 0.90 (0.77, 1.05) | 0.83 (0.64, 1.06) | |
Medium-level DDS a | 0.80 (0.74, 0.88) | 0.65 (0.59, 0.72) | 0.65 (0.59, 0.71) | |
High-level DDS a | 0.68 (0.58, 0.78) | 0.61 (0.54, 0.68) | 0.54 (0.48, 0.61) |
RERI (95% CIs) c | |||
---|---|---|---|
Tertile 3 of E-DII b | Tertile 2 of E-DII b | Tertile 1 of E-DII b | |
Sarcopenia | |||
Low-level DDS a | 1.00 (Ref) | - | - |
Medium-level DDS a | - | 0.04 (−0.04, 0.11) | −0.01 (−0.11, 0.08) |
High-level DDS a | - | −0.08 (−0.37, 0.21) | −0.09 (−0.43, 0.18) |
Low muscle strength | |||
Low-level DDS a | 1.00 (Ref) | - | - |
Medium-level DDS a | - | −0.06 (−0.20, 0.08) | −0.08 (−0.25, 0.09) |
High-level DDS a | - | −0.27 (−0.67, 0.13) | −0.10 (−0.48, 0.28) |
Low muscle mass | |||
Low-level DDS a | 1.00 (Ref) | - | - |
Medium-level DDS a | - | 0.02 (−0.11, 0.16) | 0.06 (−0.10, 0.22) |
High-level DDS a | - | −0.09 (−0.52, 0.34) | −0.03 (−0.43, 0.37) |
Low physical performance | |||
Low-level DDS a | 1.00 (Ref) | - | - |
Medium-level DDS a | - | 0.10 (−0.02, 0.22) | 0.03 (−0.13, 0.20) |
High-level DDS a | - | 0.09 (−0.25, 0.42) | −0.05 (−0.38, 0.28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, G.; Xia, H.; Lai, Z.; Shi, H.; Zhang, J.; Wang, C.; Tian, F.; Lin, H. Dietary Inflammatory Index and Dietary Diversity Score Associated with Sarcopenia and Its Components: Findings from a Nationwide Cross-Sectional Study. Nutrients 2024, 16, 1038. https://doi.org/10.3390/nu16071038
Zheng G, Xia H, Lai Z, Shi H, Zhang J, Wang C, Tian F, Lin H. Dietary Inflammatory Index and Dietary Diversity Score Associated with Sarcopenia and Its Components: Findings from a Nationwide Cross-Sectional Study. Nutrients. 2024; 16(7):1038. https://doi.org/10.3390/nu16071038
Chicago/Turabian StyleZheng, Guzhengyue, Hui Xia, Zhihan Lai, Hui Shi, Junguo Zhang, Chongjian Wang, Fei Tian, and Hualiang Lin. 2024. "Dietary Inflammatory Index and Dietary Diversity Score Associated with Sarcopenia and Its Components: Findings from a Nationwide Cross-Sectional Study" Nutrients 16, no. 7: 1038. https://doi.org/10.3390/nu16071038
APA StyleZheng, G., Xia, H., Lai, Z., Shi, H., Zhang, J., Wang, C., Tian, F., & Lin, H. (2024). Dietary Inflammatory Index and Dietary Diversity Score Associated with Sarcopenia and Its Components: Findings from a Nationwide Cross-Sectional Study. Nutrients, 16(7), 1038. https://doi.org/10.3390/nu16071038