High Fat Diet and Polycystic Ovary Syndrome (PCOS) in Adolescence: An Overview of Nutritional Strategies
Abstract
:1. Introduction
2. Methods
3. PCOS in Adolescents: Definition, Pathophysiology, and Therapeutic Strategies
3.1. Definition and Diagnosis
3.2. Pathophysiology
3.3. Therapeutic Strategies
4. High-Fat Diet and PCOS
5. Nutritional Strategies for PCOS
- The classic ketogenic diet (CKD) is the most restrictive diet as it involves a fixed ketogenic ratio. Fats are primarily represented by long-chain triglycerides (LCT), constituting 90% of daily calories in the 4:1 ketogenic ratio diet, 87% in the 3:1 ketogenic ratio diet, and 82% in the 2:1 ketogenic ratio diet. Carbohydrate intake is highly limited, and protein is calculated to meet growth requirements. The CKD can be administered in three different ways, through the exclusive use of foods, in combination with functional foods formulated with a predetermined ketogenic ratio, or by the exclusive use of functional foods [93];
- The KD with medium-chain triglycerides (MCTKD) (70% lipids; 10% proteins; 20% carbohydrates), where 30–60% of the energy comes from oil based on medium-chain triglycerides (MCT), allows the production of more ketones per kilocalorie of energy compared to long-chain triglycerides. It enables a decrease in total fats and a higher intake of carbohydrates and proteins compared to the CKD;
- The Modified Atkins Diet (MAD) (64% lipids; 30% proteins; 6% carbohydrates), less restrictive compared to the two previous types, allows an intake of carbohydrates up to 20 g/day. It is based on a significant restriction of starchy foods, leading to a reduction in calorie intake and subsequent weight loss. The ketogenic ratio is around 1:1, and it is typically designed for the adolescent population to facilitate the management of the diet in daily life. It represents a valid alternative in case there is low compliance with the traditional method;
- The Low Glycemic Index Diet (LGIT) (60% lipids; 30% proteins; 10% carbohydrates) allows a carbohydrate intake of 40–60 g/day, restricted to foods with a low glycemic index (GI < 50). The aim of the LGIT is to prevent glycemic fluctuations and reduce insulin levels. It is the least restrictive among the four diets but also results in a lower average ketonemia.
6. Eating Disorders in Polycystic Ovary Syndrome
7. Limitations and Suggestions for Future Research
- -
- Lack of long-term studies: the majority of studies exploring the relationship between diet and PCOS are short-term. Long-term studies are essential to evaluate the sustainability and enduring effects of dietary interventions on PCOS symptomatology;
- -
- Lack of data in clinical trials conducted on adolescents: frequently studies are restricted to specific populations; in particular, few studies have been conducted on adolescent patients. The majority of studies are conducted on adult women;
- -
- Lack of uniformity among the applied nutritional protocols;
- -
- Few randomized case-control studies.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Faghfoori, Z.; Fazelian, S.; Shadnoush, M.; Goodarzi, R. Nutritional Management in Women with Polycystic Ovary Syndrome: A Review Study. Diabetes Metab. Syndr. 2017, 11 (Suppl. 1), S429–S432. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Chen, Z.; Liu, M.; Mo, Z. Dietary Interventions: A Promising Treatment for Polycystic Ovary Syndrome. Ann. Nutr. Metab. 2021, 77, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.L.; Gong, Y.; Qi, Y.J.; Shao, Z.M.; Jiang, Y.Z. Effects of dietary intervention on human diseases: Molecular mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2024, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Hussain, N.; Hameed, Z.; Lin, L. Elucidating the Role of Diet in Maintaining Gut Health to Reduce the Risk of Obesity, Cardiovascular and Other Age-Related Inflammatory Diseases: Recent Challenges and Future Recommendations. Gut Microbes 2024, 16, 2297864. [Google Scholar] [CrossRef]
- Mente, A.; Dehghan, M.; Rangarajan, S.; McQueen, M.; Dagenais, G.; Wielgosz, A.; Lear, S.; Li, W.; Chen, H.; Yi, S.; et al. Association of Dietary Nutrients with Blood Lipids and Blood Pressure in 18 Countries: A Cross-Sectional Analysis from the PURE Study. Lancet Diabetes Endocrinol. 2017, 5, 774–787. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Bach-Faig, A.; Donini, L.M.; Medina, F.-X.; Belahsen, R.; et al. Updating the Mediterranean Diet Pyramid towards Sustainability: Focus on Environmental Concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef]
- Aziz, T.; Khan, A.A.; Tzora, A.; Voidarou, C.; Skoufos, I. Dietary Implications of the Bidirectional Relationship between the Gut Microflora and Inflammatory Diseases with Special Emphasis on Irritable Bowel Disease: Current and Future Perspective. Nutrients 2023, 15, 2956. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses of Observational Studies and Randomised Trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet, Dietary Patterns and Body Composition in Women with Polycystic Ovary Syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [CrossRef]
- Trimboli, P.; Castellana, M.; Bellido, D.; Casanueva, F.F. Confusion in the Nomenclature of Ketogenic Diets Blurs Evidence. Rev. Endocr. Metab. Disord. 2020, 21, 1–3. [Google Scholar] [CrossRef]
- Paoli, A. Ketogenic Diet for Obesity: Friend or Foe? Int. J. Environ. Res. Public Health 2014, 11, 2092–2107. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Verde, L.; Camajani, E.; Cernea, S.; Frias-Toral, E.; Lamabadusuriya, D.; Ceriani, F.; Savastano, S.; Colao, A.; Muscogiuri, G. Correction: Ketogenic Diet as Medical Prescription in Women with Polycystic Ovary Syndrome (PCOS). Curr. Nutr. Rep. 2023, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Ding, J.; Wang, K.; Ni, Z.; Yu, J. Mediterranean Diet Combined With a Low-Carbohydrate Dietary Pattern in the Treatment of Overweight Polycystic Ovary Syndrome Patients. Front. Nutr. 2022, 9, 876620. [Google Scholar] [CrossRef] [PubMed]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean Diet: A Review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Rossi, V.; Massini, G.; Casini, F.; Zuccotti, G.; Fabiano, V. Probiotics and Polycystic Ovary Syndrome: A Perspective for Management in Adolescents with Obesity. Nutrients 2023, 15, 3144. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Verduci, E.; Cena, H.; Magenes, V.C.; Todisco, C.F.; Tenuta, E.; Gregorio, C.; De Giuseppe, R.; Bosetti, A.; Di Profio, E.; et al. Polycystic Ovary Syndrome in Insulin-Resistant Adolescents with Obesity: The Role of Nutrition Therapy and Food Supplements as a Strategy to Protect Fertility. Nutrients 2021, 13, 1848. [Google Scholar] [CrossRef]
- Calcaterra, V.; Cena, H.; Sottotetti, F.; Hruby, C.; Madini, N.; Zelaschi, N.; Zuccotti, G. Low-Calorie Ketogenic Diet: Potential Application in the Treatment of Polycystic Ovary Syndrome in Adolescents. Nutrients 2023, 15, 3582. [Google Scholar] [CrossRef]
- Tay, C.T.; Hart, R.J.; Hickey, M.; Moran, L.J.; Earnest, A.; Doherty, D.A.; Teede, H.J.; Joham, A.E. Updated Adolescent Diagnostic Criteria for Polycystic Ovary Syndrome: Impact on Prevalence and Longitudinal Body Mass Index Trajectories from Birth to Adulthood. BMC Med. 2020, 18, 389. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Genazzani, R. Polycystic Ovary Syndrome as Metabolic Disease: New Insights on Insulin Resistance. Eur. Endocrinol. 2023, 19, 71. [Google Scholar] [CrossRef]
- Giampaolino, P.; Foreste, V.; Di Filippo, C.; Gallo, A.; Mercorio, A.; Serafino, P.; Improda, F.P.; Verrazzo, P.; Zara, G.; Buonfantino, C.; et al. Microbiome and PCOS: State-of-Art and Future Aspects. Int. J. Mol. Sci. 2021, 22, 2048. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Flores, A.E.; Luque-Ramírez, M.; Escobar-Morreale, H.F. Polycystic Ovary Syndrome in Adult Women. Med. Clínica (Engl. Ed.) 2019, 152, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Kiconco, S.; Earnest, A.; Enticott, J.; Hart, R.; Mori, T.A.; Hickey, M.; Teede, H.J.; Joham, A.E. Normative Cut-Offs for Polycystic Ovary Syndrome Diagnostic Features in Adolescents Using Cluster Analysis. Eur. J. Endocrinol. 2023, 188, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; Andersen, M.; Azziz, R.; et al. Recommendations from the International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Fertil. Steril. 2018, 110, 364–379. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Li, M.; Mueck, A.O. Why Does Polycystic Ovary Syndrome (PCOS) Need Long-Term Management? Curr. Pharm. Des. 2018, 24, 4685–4692. [Google Scholar] [CrossRef] [PubMed]
- Cooney, L.G.; Dokras, A. Beyond Fertility: Polycystic Ovary Syndrome and Long-Term Health. Fertil. Steril. 2018, 110, 794–809. [Google Scholar] [CrossRef]
- Ekramzadeh, M.; Hajivandi, L.; Noroozi, M.; Mostafavi, F. Psychological Experiences of Adolescent Girls with Polycystic Ovary Syndrome: A Qualitative Study. Iran. J. Nurs. Midwifery Res. 2020, 25, 341–347. [Google Scholar] [CrossRef]
- Bernardo, W.M.; Nobre, M.R.C.; Jatene, F.B. Evidence-based clinical practice. Part II--Searching evidence databases. Rev. Assoc. Med. Bras. (1992) 2004, 50, 104–108. [Google Scholar] [CrossRef]
- Bednarska, S.; Siejka, A. The Pathogenesis and Treatment of Polycystic Ovary Syndrome: What’s New? Adv. Clin. Exp. Med. 2017, 26, 359–367. [Google Scholar] [CrossRef]
- Witchel, S.F.; Oberfield, S.; Rosenfield, R.L.; Codner, E.; Bonny, A.; Ibáñez, L.; Pena, A.; Horikawa, R.; Gomez-Lobo, V.; Joel, D.; et al. The Diagnosis of Polycystic Ovary Syndrome during Adolescence. Horm. Res. Paediatr. 2015, 83, 376–389. [Google Scholar] [CrossRef]
- Ibáñez, L.; Oberfield, S.E.; Witchel, S.; Auchus, R.J.; Chang, R.J.; Codner, E.; Dabadghao, P.; Darendeliler, F.; Elbarbary, N.S.; Gambineri, A.; et al. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm. Res. Paediatr. 2017, 88, 371–395. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.L. Perspectives on the International Recommendations for the Diagnosis and Treatment of Polycystic Ovary Syndrome in Adolescence. J. Pediatr. Adolesc. Gynecol. 2020, 33, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, M.K.; Bonny, A.E. Polycystic Ovary Syndrome in Adolescence: Diagnostic and Therapeutic Strategies. Transl. Pediatr. 2017, 6, 248–255. [Google Scholar] [CrossRef]
- Trent, M.; Gordon, C.M. Diagnosis and Management of Polycystic Ovary Syndrome in Adolescents. Pediatrics 2020, 145, S210–S218. [Google Scholar] [CrossRef]
- Patel, K.; Coffler, M.S.; Dahan, M.H.; Malcom, P.J.; Deutsch, R.; Chang, R.J. Relationship of GnRH-Stimulated LH Release to Episodic LH Secretion and Baseline Endocrine-Metabolic Measures in Women with Polycystic Ovary Syndrome. Clin. Endocrinol. 2004, 60, 67–74. [Google Scholar] [CrossRef]
- Franks, S.; Stark, J.; Hardy, K. Follicle Dynamics and Anovulation in Polycystic Ovary Syndrome. Hum. Reprod. Update 2008, 14, 367–378. [Google Scholar] [CrossRef]
- O’Reilly, M.; Gathercole, L.; Capper, F.; Arlt, W.; Tomlinson, J. Effect of Insulin on AKR1C3 Expression in Female Adipose Tissue: In-Vivo and in-Vitro Study of Adipose Androgen Generation in Polycystic Ovary Syndrome. Lancet 2015, 385, S16. [Google Scholar] [CrossRef]
- Dumesic, D.A.; Oberfield, S.E.; Stener-Victorin, E.; Marshall, J.C.; Laven, J.S.; Legro, R.S. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr. Rev. 2015, 36, 487–525. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Burt Solorzano, C.M.; McCartney, C.R. Polycystic Ovary Syndrome: Ontogeny in Adolescence. Endocrinol. Metab. Clin. N. Am. 2021, 50, 25–42. [Google Scholar] [CrossRef]
- McCartney, C.R.; Campbell, R.E. Abnormal GnRH Pulsatility in Polycystic Ovary Syndrome: Recent Insights. Curr. Opin. Endocr. Metab. Res. 2020, 12, 78–84. [Google Scholar] [CrossRef]
- Crisosto, N.; Echiburú, B.; Maliqueo, M.; Pérez, V.; Ladrón de Guevara, A.; Preisler, J.; Sánchez, F.; Sir-Petermann, T. Improvement of Hyperandrogenism and Hyperinsulinemia during Pregnancy in Women with Polycystic Ovary Syndrome: Possible Effect in the Ovarian Follicular Mass of Their Daughters. Fertil. Steril. 2012, 97, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Crisosto, N.; Ladrón de Guevara, A.; Echiburú, B.; Maliqueo, M.; Cavada, G.; Codner, E.; Paez, F.; Sir-Petermann, T. Higher Luteinizing Hormone Levels Associated with Antimüllerian Hormone in Postmenarchal Daughters of Women with Polycystic Ovary Syndrome. Fertil. Steril. 2019, 111, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Torchen, L.C.; Legro, R.S.; Dunaif, A. Distinctive Reproductive Phenotypes in Peripubertal Girls at Risk for Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2019, 104, 3355–3361. [Google Scholar] [CrossRef] [PubMed]
- Crisosto, N.; Codner, E.; Maliqueo, M.; Echiburú, B.; Sánchez, F.; Cassorla, F.; Sir-Petermann, T. Anti-Müllerian Hormone Levels in Peripubertal Daughters of Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2007, 92, 2739–2743. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; Potau, N.; Virdis, R. Postpubertal Outcome in Girls Diagnosed of Premature Pubarche during Childhood: Increased Frequency of Functional Ovarian Hyperandrogenism. J. Clin. Endocrinol. Metab. 1993, 76, 1599–1603. [Google Scholar] [CrossRef]
- Idkowiak, J.; Lavery, G.G.; Dhir, V.; Barrett, T.G.; Stewart, P.M.; Krone, N.; Arlt, W. Premature Adrenarche: Novel Lessons from Early Onset Androgen Excess. Eur. J. Endocrinol. 2011, 165, 189–207. [Google Scholar] [CrossRef]
- Paterson, W.F.; Ahmed, S.F.; Bath, L.; Donaldson, M.D.C.; Fleming, R.; Greene, S.A.; Hunter, I.; Kelnar, C.J.H.; Mayo, A.; Schulga, J.S.; et al. Exaggerated Adrenarche in a Cohort of Scottish Children: Clinical Features and Biochemistry. Clin. Endocrinol. 2010, 72, 496–501. [Google Scholar] [CrossRef]
- Broekmans, F.J.; Visser, J.A.; Laven, J.S.E.; Broer, S.L.; Themmen, A.P.N.; Fauser, B.C. Anti-Müllerian Hormone and Ovarian Dysfunction. Trends Endocrinol. Metab. 2008, 19, 340–347. [Google Scholar] [CrossRef]
- Rosenfield, R.L. Evidence That Idiopathic Functional Adrenal Hyperandrogenism Is Caused by Dysregulation of Adrenal Steroidogenesis and That Hyperinsulinemia May Be Involved. J. Clin. Endocrinol. Metab. 1996, 81, 878–880. [Google Scholar] [CrossRef]
- Ibáñez, L.; Díaz, R.; López-Bermejo, A.; Marcos, M.V. Clinical Spectrum of Premature Pubarche: Links to Metabolic Syndrome and Ovarian Hyperandrogenism. Rev. Endocr. Metab. Disord. 2009, 10, 63–76. [Google Scholar] [CrossRef]
- Glueck, C.J.; Goldenberg, N. Characteristics of Obesity in Polycystic Ovary Syndrome: Etiology, Treatment, and Genetics. Metabolism 2019, 92, 108–120. [Google Scholar] [CrossRef]
- Anderson, A.D.; Solorzano, C.M.B.; McCartney, C.R. Childhood Obesity and Its Impact on the Development of Adolescent PCOS. Semin. Reprod. Med. 2014, 32, 202–213. [Google Scholar] [CrossRef]
- Day, F.; Karaderi, T.; Jones, M.R.; Meun, C.; He, C.; Drong, A.; Kraft, P.; Lin, N.; Huang, H.; Broer, L.; et al. Large-Scale Genome-Wide Meta-Analysis of Polycystic Ovary Syndrome Suggests Shared Genetic Architecture for Different Diagnosis Criteria. PLoS Genet. 2018, 14, e1007813. [Google Scholar] [CrossRef]
- Nokoff, N.; Thurston, J.; Hilkin, A.; Pyle, L.; Zeitler, P.S.; Nadeau, K.J.; Santoro, N.; Kelsey, M.M. Sex Differences in Effects of Obesity on Reproductive Hormones and Glucose Metabolism in Early Puberty. J. Clin. Endocrinol. Metab. 2019, 104, 4390–4397. [Google Scholar] [CrossRef]
- Zeng, X.; Xie, Y.; Liu, Y.; Long, S.; Mo, Z. Polycystic Ovarian Syndrome: Correlation between Hyperandrogenism, Insulin Resistance and Obesity. Clin. Chim. Acta 2020, 502, 214–221. [Google Scholar] [CrossRef]
- Calcaterra, V.; Cena, H.; Regalbuto, C.; Vinci, F.; Porri, D.; Verduci, E.; Chiara, M.; Zuccotti, G.V. The Role of Fetal, Infant, and Childhood Nutrition in the Timing of Sexual Maturation. Nutrients 2021, 13, 419. [Google Scholar] [CrossRef]
- Ibáñez, L.; Potau, N.; Francois, I.; de Zegher, F. Precocious Pubarche, Hyperinsulinism, and Ovarian Hyperandrogenism in Girls: Relation to Reduced Fetal Growth. J. Clin. Endocrinol. Metab. 1998, 83, 3558–3562. [Google Scholar] [CrossRef]
- Insenser, M.; Murri, M.; Del Campo, R.; Martínez-García, M.Á.; Fernández-Durán, E.; Escobar-Morreale, H.F. Gut Microbiota and the Polycystic Ovary Syndrome: Influence of Sex, Sex Hormones, and Obesity. J. Clin. Endocrinol. Metab. 2018, 103, 2552–2562. [Google Scholar] [CrossRef]
- Torres, P.J.; Siakowska, M.; Banaszewska, B.; Pawelczyk, L.; Duleba, A.J.; Kelley, S.T.; Thackray, V.G. Gut Microbial Diversity in Women With Polycystic Ovary Syndrome Correlates With Hyperandrogenism. J. Clin. Endocrinol. Metab. 2018, 103, 1502–1511. [Google Scholar] [CrossRef]
- Liu, S.; An, Y.; Cao, B.; Sun, R.; Ke, J.; Zhao, D. The Composition of Gut Microbiota in Patients Bearing Hashimoto’s Thyroiditis with Euthyroidism and Hypothyroidism. Int. J. Endocrinol. 2020, 2020, 5036959. [Google Scholar] [CrossRef]
- Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Thackray, V.G. Sex, Microbes, and Polycystic Ovary Syndrome. Trends Endocrinol. Metab. 2019, 30, 54–65. [Google Scholar] [CrossRef]
- Amin, M.; Gragnoli, C. Genome-Wide Linkage and Association Study Identifies Novel Genes and Pathways Implicated in Polycystic Ovarian Syndrome. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3719–3732. [Google Scholar] [CrossRef]
- Vink, J.M.; Sadrzadeh, S.; Lambalk, C.B.; Boomsma, D.I. Heritability of Polycystic Ovary Syndrome in a Dutch Twin-Family Study. J. Clin. Endocrinol. Metab. 2006, 91, 2100–2104. [Google Scholar] [CrossRef] [PubMed]
- Risal, S.; Pei, Y.; Lu, H.; Manti, M.; Fornes, R.; Pui, H.-P.; Zhao, Z.; Massart, J.; Ohlsson, C.; Lindgren, E.; et al. Prenatal Androgen Exposure and Transgenerational Susceptibility to Polycystic Ovary Syndrome. Nat. Med. 2019, 25, 1894–1904. [Google Scholar] [CrossRef]
- Moran, L.J.; Ko, H.; Misso, M.; Marsh, K.; Noakes, M.; Talbot, M.; Frearson, M.; Thondan, M.; Stepto, N.; Teede, H.J. Dietary Composition in the Treatment of Polycystic Ovary Syndrome: A Systematic Review to Inform Evidence-Based Guidelines. J. Acad. Nutr. Diet. 2013, 113, 520–545. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.L.; Lombard, C.B.; Moran, L.J.; Teede, H.J. Exercise Therapy in Polycystic Ovary Syndrome: A Systematic Review. Hum. Reprod. Update 2011, 17, 171–183. [Google Scholar] [CrossRef]
- Naderpoor, N.; Shorakae, S.; de Courten, B.; Misso, M.L.; Moran, L.J.; Teede, H.J. Metformin and Lifestyle Modification in Polycystic Ovary Syndrome: Systematic Review and Meta-Analysis. Hum. Reprod. Update 2015, 21, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Al Khalifah, R.A.; Florez, I.D.; Zoratti, M.J.; Dennis, B.; Thabane, L.; Bassilious, E. Efficacy of Treatments for Polycystic Ovarian Syndrome Management in Adolescents. J. Endocr. Soc. 2021, 5, bvaa155. [Google Scholar] [CrossRef]
- Ganie, M.A.; Khurana, M.L.; Eunice, M.; Gulati, M.; Dwivedi, S.N.; Ammini, A.C. Comparison of Efficacy of Spironolactone with Metformin in the Management of Polycystic Ovary Syndrome: An Open-Labeled Study. J. Clin. Endocrinol. Metab. 2004, 89, 2756–2762. [Google Scholar] [CrossRef] [PubMed]
- Ostadmohammadi, V.; Jamilian, M.; Bahmani, F.; Asemi, Z. Vitamin D and Probiotic Co-Supplementation Affects Mental Health, Hormonal, Inflammatory and Oxidative Stress Parameters in Women with Polycystic Ovary Syndrome. J. Ovarian Res. 2019, 12, 5. [Google Scholar] [CrossRef]
- Sadeghi, A.; Djafarian, K.; Mohammadi, H.; Shab-Bidar, S. Effect of Omega-3 Fatty Acids Supplementation on Insulin Resistance in Women with Polycystic Ovary Syndrome: Meta-Analysis of Randomized Controlled Trials. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wu, H.; Sun, S.; Zhao, R.; Deng, Y.; Zeng, S.; Chen, J. Effect of High Fat Diet on Disease Development of Polycystic Ovary Syndrome and Lifestyle Intervention Strategies. Nutrients 2023, 15, 2230. [Google Scholar] [CrossRef] [PubMed]
- Farshchi, H.; Rane, A.; Love, A.; Kennedy, R.L. Diet and Nutrition in Polycystic Ovary Syndrome (PCOS): Pointers for Nutritional Management. J. Obstet. Gynaecol. 2007, 27, 762–773. [Google Scholar] [CrossRef]
- Riccardi, G.; Rivellese, A.A. Dietary Treatment of the Metabolic Syndrome--the Optimal Diet. Br. J. Nutr. 2000, 83 (Suppl. 1), S143–S148. [Google Scholar] [CrossRef]
- Wu, L.L.-Y.; Dunning, K.R.; Yang, X.; Russell, D.L.; Lane, M.; Norman, R.J.; Robker, R.L. High-Fat Diet Causes Lipotoxicity Responses in Cumulus-Oocyte Complexes and Decreased Fertilization Rates. Endocrinology 2010, 151, 5438–5445. [Google Scholar] [CrossRef]
- González, F. Nutrient-Induced Inflammation in Polycystic Ovary Syndrome: Role in the Development of Metabolic Aberration and Ovarian Dysfunction. Semin. Reprod. Med. 2015, 33, 276–286. [Google Scholar] [CrossRef]
- Norman, R.J.; Dewailly, D.; Legro, R.S.; Hickey, T.E. Polycystic Ovary Syndrome. Lancet 2007, 370, 685–697. [Google Scholar] [CrossRef]
- Cincione, R.I.; Losavio, F.; Ciolli, F.; Valenzano, A.; Cibelli, G.; Messina, G.; Polito, R. Effects of Mixed of a Ketogenic Diet in Overweight and Obese Women with Polycystic Ovary Syndrome. Int. J. Environ. Res. Public Health 2021, 18, 12490. [Google Scholar] [CrossRef]
- Sedighi, S.; Amir Ali Akbari, S.; Afrakhteh, M.; Esteki, T.; Alavi Majd, H.; Mahmoodi, Z. Comparison of Lifestyle in Women with Polycystic Ovary Syndrome and Healthy Women. Glob. J. Health Sci. 2014, 7, 228–234. [Google Scholar] [CrossRef]
- Alomran, S.; Estrella, E.D. Effect of Dietary Regimen on the Development of Polycystic Ovary Syndrome: A Narrative Review. Cureus 2023, 15, e47569. [Google Scholar] [CrossRef]
- Altieri, P.; Cavazza, C.; Pasqui, F.; Morselli, A.M.; Gambineri, A.; Pasquali, R. Dietary Habits and Their Relationship with Hormones and Metabolism in Overweight and Obese Women with Polycystic Ovary Syndrome. Clin. Endocrinol. 2013, 78, 52–59. [Google Scholar] [CrossRef]
- Xenou, M.; Gourounti, K. Dietary Patterns and Polycystic Ovary Syndrome: A Systematic Review. Maedica 2021, 16, 516–521. [Google Scholar] [CrossRef]
- Frias-Toral, E.; Garcia-Velasquez, E.; de Los Angeles Carignano, M.; Rodriguez-Veintimilla, D.; Alvarado-Aguilera, I.; Bautista-Litardo, N. Polycystic Ovary Syndrome and Obesity: Clinical Aspects and Nutritional Management. Minerva Endocrinol. 2022, 47, 215–241. [Google Scholar] [CrossRef]
- Günalan, E.; Yaba, A.; Yılmaz, B. The Effect of Nutrient Supplementation in the Management of Polycystic Ovary Syndrome-Associated Metabolic Dysfunctions: A Critical Review. J. Turk. Ger. Gynecol. Assoc. 2018, 19, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Cacciapuoti, N.; Lonardo, M.S.; Nasti, G.; Gautiero, C.; Belfiore, A.; Guida, B.; Chiurazzi, M. Pathophysiology and Nutritional Approaches in Polycystic Ovary Syndrome (PCOS): A Comprehensive Review. Curr. Nutr. Rep. 2023, 12, 527–544. [Google Scholar] [CrossRef]
- Di Rosa, C.; Lattanzi, G.; Spiezia, C.; Imperia, E.; Piccirilli, S.; Beato, I.; Gaspa, G.; Micheli, V.; De Joannon, F.; Vallecorsa, N.; et al. Mediterranean Diet versus Very Low-Calorie Ketogenic Diet: Effects of Reaching 5% Body Weight Loss on Body Composition in Subjects with Overweight and with Obesity-A Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 13040. [Google Scholar] [CrossRef]
- Castellana, M.; Conte, E.; Cignarelli, A.; Perrini, S.; Giustina, A.; Giovanella, L.; Giorgino, F.; Trimboli, P. Efficacy and Safety of Very Low Calorie Ketogenic Diet (VLCKD) in Patients with Overweight and Obesity: A Systematic Review and Meta-Analysis. Rev. Endocr. Metab. Disord. 2020, 21, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Pugliese, G.; Salzano, C.; Savastano, S.; Colao, A. The Management of Very Low-Calorie Ketogenic Diet in Obesity Outpatient Clinic: A Practical Guide. J. Transl. Med. 2019, 17, 356. [Google Scholar] [CrossRef]
- Moreno, B.; Crujeiras, A.B.; Bellido, D.; Sajoux, I.; Casanueva, F.F. Obesity Treatment by Very Low-Calorie-Ketogenic Diet at Two Years: Reduction in Visceral Fat and on the Burden of Disease. Endocrine 2016, 54, 681–690. [Google Scholar] [CrossRef]
- Dowis, K.; Banga, S. The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients 2021, 13, 1654. [Google Scholar] [CrossRef]
- Camajani, E.; Feraco, A.; Verde, L.; Moriconi, E.; Marchetti, M.; Colao, A.; Caprio, M.; Muscogiuri, G.; Barrea, L. Ketogenic Diet as a Possible Non-Pharmacological Therapy in Main Endocrine Diseases of the Female Reproductive System: A Practical Guide for Nutritionists. Curr. Obes. Rep. 2023, 12, 231–249. [Google Scholar] [CrossRef]
- Magagnini, M.C.; Condorelli, R.A.; Cimino, L.; Cannarella, R.; Aversa, A.; Calogero, A.E.; La Vignera, S. Does the Ketogenic Diet Improve the Quality of Ovarian Function in Obese Women? Nutrients 2022, 14, 4147. [Google Scholar] [CrossRef]
- Caprio, M.; Infante, M.; Moriconi, E.; Armani, A.; Fabbri, A.; Mantovani, G.; Mariani, S.; Lubrano, C.; Poggiogalle, E.; Migliaccio, S.; et al. Very-Low-Calorie Ketogenic Diet (VLCKD) in the Management of Metabolic Diseases: Systematic Review and Consensus Statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Investig. 2019, 42, 1365–1386. [Google Scholar] [CrossRef]
- Paoli, A.; Mancin, L.; Giacona, M.C.; Bianco, A.; Caprio, M. Effects of a Ketogenic Diet in Overweight Women with Polycystic Ovary Syndrome. J. Transl. Med. 2020, 18, 104. [Google Scholar] [CrossRef]
- Mavropoulos, J.C.; Yancy, W.S.; Hepburn, J.; Westman, E.C. The Effects of a Low-Carbohydrate, Ketogenic Diet on the Polycystic Ovary Syndrome: A Pilot Study. Nutr. Metab. 2005, 2, 35. [Google Scholar] [CrossRef]
- Khalid, K.; Apparow, S.; Mushaddik, I.L.; Anuar, A.; Rizvi, S.A.A.; Habib, A. Effects of Ketogenic Diet on Reproductive Hormones in Women With Polycystic Ovary Syndrome. J. Endocr. Soc. 2023, 7, bvad112. [Google Scholar] [CrossRef]
- Lalonde-Bester, S.; Malik, M.; Masoumi, R.; Ng, K.; Sidhu, S.; Ghosh, M.; Vine, D. Prevalence and Etiology of Eating Disorders in Polycystic Ovary Syndrome: A Scoping Review. Adv. Nutr. 2024, 15, 100193. [Google Scholar] [CrossRef]
- Lee, I.; Cooney, L.G.; Saini, S.; Smith, M.E.; Sammel, M.D.; Allison, K.C.; Dokras, A. Increased Risk of Disordered Eating in Polycystic Ovary Syndrome. Fertil. Steril. 2017, 107, 796–802. [Google Scholar] [CrossRef]
- Lee, I.; Cooney, L.G.; Saini, S.; Sammel, M.D.; Allison, K.C.; Dokras, A. Increased Odds of Disordered Eating in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Eat. Weight Disord. 2019, 24, 787–797. [Google Scholar] [CrossRef]
- Kjeldbjerg, M.L.; Clausen, L. Prevalence of Binge-Eating Disorder among Children and Adolescents: A Systematic Review and Meta-Analysis. Eur. Child. Adolesc. Psychiatry 2021, 32, 549–574. [Google Scholar] [CrossRef]
- Galmiche, M.; Déchelotte, P.; Lambert, G.; Tavolacci, M.P. Prevalence of Eating Disorders over the 2000–2018 Period: A Systematic Literature Review. Am. J. Clin. Nutr. 2019, 109, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.N.; Gowda, A.S.; Rallabhandi, B.; Bidika, E.; Fayyaz, H.; Salib, M.; Cancarevic, I. Have Our Attempts to Curb Obesity Done More Harm Than Good? Cureus 2020, 12, e10275. [Google Scholar] [CrossRef]
- Blay, S.L.; Aguiar, J.; Passos, I.C. Polycystic Ovary Syndrome and Mental Disorders: A Systematic Review and Exploratory Meta-Analysis. NDT 2016, 12, 2895–2903. [Google Scholar] [CrossRef]
- Paganini, C.; Peterson, G.; Stavropoulos, V.; Krug, I. The Overlap Between Binge Eating Behaviors and Polycystic Ovarian Syndrome: An Etiological Integrative Model. CPD 2018, 24, 999–1006. [Google Scholar] [CrossRef]
- Burnatowska, E.; Wikarek, A.; Oboza, P.; Ogarek, N.; Glinianowicz, M.; Kocelak, P.; Olszanecka-Glinianowicz, M. Emotional Eating and Binge Eating Disorders and Night Eating Syndrome in Polycystic Ovary Syndrome—A Vicious Circle of Disease: A Systematic Review. Nutrients 2023, 15, 295. [Google Scholar] [CrossRef]
- Goldschmidt, A.B.; Wall, M.; Loth, K.A.; Le Grange, D.; Neumark-Sztainer, D. Which Dieters Are at Risk for the Onset of Binge Eating? A Prospective Study of Adolescents and Young Adults. J. Adolesc. Health 2012, 51, 86–92. [Google Scholar] [CrossRef]
- Dokras, A.; Stener-Victorin, E.; Yildiz, B.O.; Li, R.; Ottey, S.; Shah, D.; Epperson, N.; Teede, H. Androgen Excess- Polycystic Ovary Syndrome Society: Position Statement on Depression, Anxiety, Quality of Life, and Eating Disorders in Polycystic Ovary Syndrome. Fertil. Steril. 2018, 109, 888–899. [Google Scholar] [CrossRef]
- Ee, C.; Pirotta, S.; Mousa, A.; Moran, L.; Lim, S. Providing Lifestyle Advice to Women with PCOS: An Overview of Practical Issues Affecting Success. BMC Endocr. Disord. 2021, 21, 234. [Google Scholar] [CrossRef] [PubMed]
- Dilbaz, B.; Cınar, M.; Ozkaya, E.; Tonyalı, N.V.; Dilbaz, S. Health Related Quality of Life among Different PCOS Phenotypes of Infertile Women. J. Turk. Ger. Gynecol. Assoc. 2012, 13, 247–252. [Google Scholar] [CrossRef] [PubMed]
PCOS Diagnostic Criteria in Adolescents [24,31,32] |
---|
Required |
Ovulatory dysfunction: abnormal menstrual pattern for the individual’s age or gynecologic age, which persists for 1–2 years. This pattern may include symptoms such as amenorrhea, oligomenorrhea, or excessive uterine bleeding. + Hyperandrogenism: biochemical (elevation of total/free serum testosterone) or clinical (moderate to severe hirsutism) |
Not Recommended |
Polycystic ovary morphology, Obesity, insulin resistance and/or hyperinsulinism, Severe acne, Biomarkers (T/DHT, AMH) |
Reference | Study Type Duration | Population Age Range | Diagnostic Criteria Used for PCOS Diagnosis | Main Results | Main Limits |
---|---|---|---|---|---|
Altieri et al., 2013 [84] | Case-Control Study Dietary recall for 7 days and laboratory test examinations. | n = 100 women with PCOS and afeected by obesity or overweight. Age range: 18–45 y | Rotterdam criteria | High intake of high-glycemic index sweets, saturated fat, and cheese in patients with PCOS. | (1) The assessment of advanced glycosylated end products (AGE) content in foods was conducted only in small subsets of individuals with PCOS and controls; (2) The inclusion of individuals with overweight or obesity may have impacted the findings, given that the majority of studies indicating a correlation between AGE levels and PCOS have been carried out in women of normal weight |
Mei et al., 2022 [14] | Randomized Controlled Clinical Trial 12-week duration. | n = 72 patients with overweight and PCOS. Age range: 16–45 y | Rotterdam criteria | The MED/LC diet restores menstrual cycles, improving anthropometric parameters, IR levels, and correcting endocrine disorders. | (1) Patient adherence to the dietary intervention was notably challenging, as PCOS patients encountered difficulty in adhering to a single dietary model for 12 consecutive weeks; (2) single-center trial; (3) all participants were Chinese patients; (4) the treatment period was limited to 12 weeks. |
Paoli et al., 2020 [97] | Single-arm Controlled Clinical Trial 12-week duration. | n = 14 women with overweight and PCOS. Age range: age 19–35 y | Rotterdam criteria | After 12 weeks of KEMEPHY diet: a reduction of body weight, BMI, VAT, glucose, insulin blood levels, TG, TC, LDLc, LH/FSH ratio, LH total and free testosterone, and DHEAS. Estradiol, progesterone and SHBG increased. | (1) Inclusion of an oral glucose tolerance test for glucose and insulin would have provided additional insights into the metabolic effects of a ketogenic diet; (2) Small sample size and a single arm design. |
Cincione et al., 2021 [81] | Controlled Clinical Trial Dietary treatment protocol for 45 days and final evaluation. | n = 17 women with obesity and diagnosis of PCOS. Age range: 18–45 y | Rotterdam criteria | KD improves LH, FSH, SHBG, insulin sensitivity and HOMA index, and reduces androgens. | (1) Small sample size; (2) Long term effects and adeherence to this dietary regiment could be problematic in PCOS patients. |
Mavropoulos et al., 2005 [98] | Controlled Clinical Trial 6-month duration. | n = 11 with a BMI > 27 kg/m2 and with diagnosis of PCOS. Age range: 18–45 y | Not specified | LCKD led to significant improvement in weight, free testosterone %, LH/FSH ratio, and fasting insulin over a 24-week period. | (1) Weight loss can be a confounding factors when evaluating the effets of the dietary approach; (2) Hormonal measures were not taken at specified points during the menstrual cycle. |
Magagnini et al., 2022 [95] | Controlled Clinical Trial 12-week duration. | n = 25 women with obesity and diagnosis of PCOS. Age range: 25–28 y | Rotterdam criteria | A reduction in BMI, WC, and HOMA index. A decrease in serum AMH levels. An increase of progesterone and SHBG levels. | (1) Small sample size and no control group; (2) Having no controls it is not possible to state that the benefits obtained are due to the KD alone or weight loss itself. |
Khalid et al., 2023 [99] | Review Dietary interventions of at least 45 days in the studies included. | Single- or double-arm protocol. Age range of the studies included: 18–50 y | Rotterdam criteria | Short-term KD have shown potential in improving hormonal imbalances commonly associated with PCOS. | (1) Being this work a review and not a clinical trial it is not possible to drive clinical conclusions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcaterra, V.; Magenes, V.C.; Massini, G.; De Sanctis, L.; Fabiano, V.; Zuccotti, G. High Fat Diet and Polycystic Ovary Syndrome (PCOS) in Adolescence: An Overview of Nutritional Strategies. Nutrients 2024, 16, 938. https://doi.org/10.3390/nu16070938
Calcaterra V, Magenes VC, Massini G, De Sanctis L, Fabiano V, Zuccotti G. High Fat Diet and Polycystic Ovary Syndrome (PCOS) in Adolescence: An Overview of Nutritional Strategies. Nutrients. 2024; 16(7):938. https://doi.org/10.3390/nu16070938
Chicago/Turabian StyleCalcaterra, Valeria, Vittoria Carlotta Magenes, Giulia Massini, Luisa De Sanctis, Valentina Fabiano, and Gianvincenzo Zuccotti. 2024. "High Fat Diet and Polycystic Ovary Syndrome (PCOS) in Adolescence: An Overview of Nutritional Strategies" Nutrients 16, no. 7: 938. https://doi.org/10.3390/nu16070938
APA StyleCalcaterra, V., Magenes, V. C., Massini, G., De Sanctis, L., Fabiano, V., & Zuccotti, G. (2024). High Fat Diet and Polycystic Ovary Syndrome (PCOS) in Adolescence: An Overview of Nutritional Strategies. Nutrients, 16(7), 938. https://doi.org/10.3390/nu16070938