Lower Geriatric Nutritional Risk Index and Prognostic Nutritional Index Predict Postoperative Prognosis in Patients with Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Collection and Treatment
2.3. Definition of the GNRI and PNI
2.4. Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Patients in the Two Groups Classified According to the PNI and GNRI
3.2. Association between Nutritional Index and Prognosis
3.3. Prognostic Factors Associated with OS
3.4. Prognostic Factors Associated with RFS
3.5. Correlation between Nutritional Index and Recurrence Timing and Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Shah, S.A.; Cleary, S.P.; Wei, A.C.; Yang, I.; Taylor, B.R.; Hemming, A.W.; Langer, B.; Grant, D.R.; Greig, P.D.; Gallinger, S. Recurrence after liver resection for hepatocellular carcinoma: Risk factors, treatment, and outcomes. Surgery 2007, 141, 330–339. [Google Scholar] [CrossRef]
- Schütte, K.; Schulz, C.; Malfertheiner, P. Nutrition and hepatocellular cancer. Gastrointest. Tumors 2016, 2, 188–194. [Google Scholar] [CrossRef]
- Deng, Y.; Pang, Q.; Miao, R.C.; Chen, W.; Zhou, Y.Y.; Bi, J.B.; Liu, S.S.; Zhang, J.Y.; Qu, K.; Liu, C. Prognostic significance of pretreatment albumin/globulin ratio in patients with hepatocellular carcinoma. Onco Targets Ther. 2016, 9, 5317–5328. [Google Scholar] [CrossRef] [PubMed]
- Harimoto, N.; Yoshizumi, T.; Sakata, K.; Nagatsu, A.; Motomura, T.; Itoh, S.; Harada, N.; Ikegami, T.; Uchiyama, H.; Soejima, Y.; et al. Prognostic significance of preoperative controlling nutritional status (CONUT) score in patients undergoing hepatic resection for hepatocellular carcinoma. World J. Surg. 2017, 41, 2805–2812. [Google Scholar] [CrossRef] [PubMed]
- Nozoe, T.; Ninomiya, M.; Maeda, T.; Matsukuma, A.; Nakashima, H.; Ezaki, T. Prognostic nutritional index: A tool to predict the biological aggressiveness of gastric carcinoma. Surg. Today 2010, 40, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; North, B.V.; Sharma, R. A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma: The prognostic nutritional index (PNI). Br. J. Cancer 2012, 106, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhang, G.; Sun, L.; Ma, Q.; Cheng, Y.; Zhang, H.; Shi, G.; Zhu, Y.; Ye, D. Nutritional screening is strongly associated with overall survival in patients treated with targeted agents for metastatic renal cell carcinoma. J. Cachexia Sarcopenia Muscle 2015, 6, 222–230. [Google Scholar] [CrossRef]
- Imaoka, Y.; Ohira, M.; Kobayashi, T.; Honmyo, N.; Hamaoka, M.; Onoe, T.; Abe, T.; Oishi, K.; Inoue, M.; Ohdan, H.; et al. Impact of geriatric nutritional risk index after initial hepatectomy for hepatocellular carcinoma: A retrospective cohort study with the Hiroshima surgical study group of clinical oncology (HiSCO). J. Gastrointest. Surg. 2023, 27, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, H.; Yang, J.; Jiang, L.; Yang, J.; Wu, H.; Wen, T.; Yan, L. Geriatric nutritional risk index predicts prognosis after hepatectomy in elderly patients with hepatitis B virus-related hepatocellular carcinoma. Sci. Rep. 2018, 8, 12561. [Google Scholar] [CrossRef] [PubMed]
- Kanno, H.; Goto, Y.; Sasaki, S.; Fukutomi, S.; Hisaka, T.; Fujita, F.; Akagi, Y.; Okuda, K. Geriatric nutritional risk index predicts prognosis in hepatocellular carcinoma after hepatectomy: A propensity score matching analysis. Sci. Rep. 2021, 11, 9038. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.K.; Huang, K.T.; Qin, W.; Wu, Q.Y.; Huang, X.L.; Peng, K.; Lao, Q.; Ye, X.P.; Zhu, G.Z.; Li, T.M.; et al. Prognostic value of geriatric nutritional risk index and prognostic nutritional index in hepatocellular carcinoma. Clin. Nutr. ESPEN 2024, 59, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.; Chan, S.L.; Wong, G.L.; Wong, V.W.; Chong, C.C.; Lai, P.B.; Chan, H.L.; To, K.F. Prognostic nutritional index (PNI) predicts tumor recurrence of very early/early stage hepatocellular carcinoma after surgical resection. Ann. Surg. Oncol. 2015, 22, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
- Harimoto, N.; Tsukagoshi, M.; Okuyama, T.; Hoshino, K.; Hagiwara, K.; Kawai, S.; Ishii, N.; Igarashi, T.; Araki, K.; Shirabe, K. Significance of malnutrition defined with Global Leadership Initiative on Malnutrition criteria in patients with hepatocellular carcinoma after hepatic resection. Hepatol. Res. 2023, 53, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Takemura, N.; Yamashita, T.; Watadani, T.; Kaibori, M.; Kubo, S.; Shimada, M.; Nagano, H.; Hatano, E.; Aikata, H.; et al. Clinical practice guidelines for hepatocellular carcinoma 2021 version (5th JSH-HCC guidelines). Hepatol. Res. 2023, 53, 383–390. [Google Scholar] [CrossRef]
- Herrero, A.; Toubert, C.; Bedoya, J.U.; Assenat, E.; Guiu, B.; Panaro, F.; Bardol, T.; Cassese, G. Management of hepatocellular carcinoma recurrence after liver surgery and thermal ablations: State of the art and future perspectives. Hepatobiliary Surg. Nutr. 2024, 13, 71–88. [Google Scholar] [CrossRef]
- Liang, T.; He, Y.; Mo, S.; Chen, Z.; Liao, X.; Zhou, X.; Yang, C.; Zhao, S.; Han, C.; Zhu, G.; et al. Gender disparity in hepatocellular carcinoma recurrence after curative hepatectomy. Ann. Hepatol. 2022, 27, 100695. [Google Scholar] [CrossRef]
- Lei, Z.; Li, J.; Wu, D.; Xia, Y.; Wang, Q.; Si, A.; Wang, K.; Wan, X.; Lau, W.Y.; Wu, M.; et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria. JAMA Surg. 2016, 151, 356–363. [Google Scholar] [CrossRef]
- Hirokawa, F.; Hayashi, M.; Miyamoto, Y.; Asakuma, M.; Shimizu, T.; Komeda, K.; Inoue, Y.; Uchiyama, K. Outcomes and predictors of microvascular invasion of solitary hepatocellular carcinoma. Hepatol. Res. 2014, 44, 846–853. [Google Scholar] [CrossRef]
- Rodriguez-Peralvarez, M.; Luong, T.V.; Andreana, L.; Meyer, T.; Dhillon, A.P.; Burroughs, A.K. A systematic review of microvascular invasion in hepatocellular carcinoma: Diagnostic and prognostic variability. Ann. Surg. Oncol. 2013, 20, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, S.; Liu, Q.; Liu, X.; Wu, F.; Shen, C. Preoperative application of systemic inflammatory biomarkers combined with MR imaging features in predicting microvascular invasion of hepatocellular carcinoma. Abdom. Radiol. 2022, 47, 1806–1816. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Zhang, W.G.; Cescon, M.; Liang, L.; Li, C.; Wang, M.D.; Wu, H.; Lau, W.Y.; Zhou, Y.H.; Gu, W.M.; et al. Defining and predicting early recurrence after liver resection of hepatocellular carcinoma: A multi-institutional study. HPB 2020, 22, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Toubert, C.; Guiu, B.; Al Taweel, B.; Assenat, E.; Panaro, F.; Souche, F.R.; Ursic-Bedoya, J.; Navarro, F.; Herrero, A. Prolonged survival after recurrence in HCC resected patients using repeated curative therapies: Never give up! Cancers 2022, 15, 232. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.M.; Cho, M.; Yoon, K.T.; Chu, C.W.; Yang, K.H.; Park, Y.M.; Rhu, J.H. Risk factors of early recurrence after curative hepatectomy in hepatocellular carcinoma. Tumour Biol. 2017, 39, 1010428317720863. [Google Scholar] [CrossRef]
- Cheng, Z.; Yang, P.; Qu, S.; Zhou, J.; Yang, J.; Yang, X.; Xia, Y.; Li, J.; Wang, K.; Yan, Z.; et al. Risk factors and management for early and late intrahepatic recurrence of solitary hepatocellular carcinoma after curative resection. HPB 2015, 17, 422–427. [Google Scholar] [CrossRef]
- Guo, Y.; Chua, D.W.; Koh, Y.X.; Lee, S.Y.; Cheow, P.C.; Kam, J.H.; Teo, J.Y.; Chow, P.K.; Chung, A.Y.; Ooi, L.L.; et al. Preoperative predictors including the role of inflammatory indices in predicting early recurrence after re-resection for recurrent hepatocellular carcinoma. World J. Surg. 2019, 43, 2587–2594. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S.; et al. Geriatric nutritional risk index as an easy-to-use assessment tool for nutritional status in hepatocellular carcinoma treated with atezolizumab plus bevacizumab. Hepatol. Res. 2023, 53, 1031–1042. [Google Scholar] [CrossRef]
PNI | GNRI | |||||
---|---|---|---|---|---|---|
Variables | ≥45 (n = 158) | <45 (n = 45) | p-Value | ≥98 (n = 169) | <98 (n = 34) | p-Value |
Host-related factors | ||||||
Age (years) | 72 (18–88) | 71 (51–86) | 0.368 | 72 (18–88) | 71 (51–87) | 0.798 |
Sex: Male | 132 (84%) | 354 (76%) | 0.273 | 139 (82%) | 27 (79%) | 0.636 |
BMI (kg/m2) | 23.3 (17.3–34.3) | 22.1 (17.0–27.3) | 0.009 * | 23.6 (17.4–34.3) | 20.7 (17.0–25.7) | <0.001 * |
Skeletal muscle mass index (cm2/m2) | 39.3 (20.7–72.2) | 35.5 (22.5–47.7) | 0.004 * | 39.6 (20.7–72.2) | 34.7 (22.5–48.7) | <0.001 * |
Hand grip strength (kg) | 33.0 (8.6–49.9) | 28.0 (14.6–49.9) | 0.039 * | 32.8 (8.6–49.9) | 29.1 (22.0–45.2) | 0.229 |
Etiology HBV/HCV/NBNC | 20/56/82 | 2/22/21 | 0.114 | 19/68/82 | 3/10/21 | 0.444 |
Platelet count (/µL) | 16.7 (5.7–57.7) | 14.5 (5.6–51.7) | 0.346 | 16.2 (5.7–54.3) | 17.3 (5.6–57.7) | 0.207 |
Lymphocytes (/µL) | 1580 (700–3410) | 1030 (340–2340) | <0.001 * | 1500 (520–3410) | 1380 (340–2590) | 0.249 |
PT (%) | 95 (11–121) | 89 (65–116) | 0.077 | 95 (11–121) | 90 (65–116) | 0.142 |
Total bilirubin (mg/dL) | 0.8 (0.3–3.1) | 0.8 (0.2–1.6) | 0.200 | 0.8 (0.3–3.1) | 0.8 (0.2–2.0) | 0.833 |
Albumin (mg/dL) | 4.2 (3.3–5.3) | 3.6 (2.8–4.1) | <0.001 * | 4.2 (3.3–5.3) | 3.5 (2.8–4.1) | <0.001 * |
CRP (mg/dL) | 0.09 (0.01–8.93) | 0.27 (0.01–7.51) | <0.001 * | 0.08 (0.01–8.93) | 0.33 (0.02–8.37) | <0.001 * |
ICG-R15 (%) | 15.4 (1.6–91.8) | 14.6 (1.5–52.3) | 0.557 | 15.4 (1.6–91.8) | 13.5 (1.5–52.3) | 0.765 |
Child-Pugh Score A | 156 (99%) | 41 (91%) | 0.023 * | 168 (99%) | 29 (85%) | <0.001 * |
AFP (ng/mL) | 7.6 (1.2–108,317) | 41.6 (1.0–275,819) | 0.025 * | 7.6 (1.0–108,317) | 22.8 (1.0–275,819) | 0.112 |
Operative procedures | ||||||
Anatomical | 88 (56%) | 29 (64%) | 0.311 | 93 (55%) | 24 (71%) | 0.128 |
Operation time (min) | 331 (105–643) | 362 (150–682) | 0.020 * | 331 (105–643) | 368 (150–682) | 0.059 |
Blood loss (mL) | 114 (0–2050) | 312 (8–7219) | <0.001 * | 126 (0–2258) | 327 (8–7219) | <0.001 * |
Postoperative hospitalization (days) | 10 (5–88) | 13 (8–196) | <0.001 * | 11 (5–141) | 14 (8–196) | <0.001 * |
Complications (Clavien–Dindo grade ≥ 3) | 18 (11%) | 10 (22%) | 0.085 | 20 (12%) | 8 (24%) | 0.093 |
Tumor-related factors | ||||||
Tumor size (mm) | 3.0 (0.7–22.0) | 5.0 (1.1–16.0) | <0.001 * | 3.0 (0.7–22.0) | 7.0 (1.5–17.0) | <0.001 * |
Multiple tumors | 29 (18%) | 9 (20%) | 0.830 | 34 (20%) | 4 (12%) | 0.338 |
Poor differentiation | 31 (20%) | 5 (11%) | 0.268 | 29 (17%) | 7 (21%) | 0.620 |
Microvascular invasion (+) | 57 (36%) | 25 (56%) | 0.025 * | 64 (38%) | 18 (53%) | 0.126 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |
Age > 80 (years) | 1.93 | 0.99–3.77 | 0.053 | |||
Sex: male | 7.10 | 1.73–29.16 | 0.007 * | 9.85 | 2.37–41.00 | 0.002 * |
HCV | 1.04 | 0.60–1.79 | 0.883 | |||
Skeletal muscle loss | 1.21 | 0.68–2.14 | 0.524 | |||
Child-Pugh Score B or C | 1.66 | 0.40–6.83 | 0.485 | |||
AFP > 40 (ng/mL) | 1.56 | 0.92–2.67 | 0.101 | |||
ICG-R15 > 10 (%) | 2.51 | 1.07–5.86 | 0.034 * | 3.48 | 1.42–8.50 | 0.006 * |
PNI < 45 | 2.35 | 1.36–4.05 | 0.002 * | |||
GNRI < 98 | 3.26 | 1.84–5.77 | <0.001 * | |||
PNI < 45 or GNRI < 98 | 2.78 | 1.63–4.72 | <0.001 * | 2.21 | 1.21–4.05 | 0.010 * |
Operation time > 300 (min) | 2.45 | 1.23–4.86 | 0.010 * | 1.05 | 0.48–2.27 | 0.903 |
Blood loss > 500 (mL) | 2.19 | 1.17–4.10 | 0.014 * | 1.73 | 0.87–3.42 | 0.116 |
Complications (Clavien–Dindo grade ≥ 3) | 1.88 | 1.01–3.50 | 0.048 * | 1.21 | 0.63–2.35 | 0.562 |
Tumor size > 30 (mm) | 1.96 | 1.12–3.41 | 0.018 * | 1.95 | 1.06–3.61 | 0.033 * |
Multiple tumors | 1.64 | 0.88–3.06 | 0.122 | |||
Poor differentiation | 1.43 | 0.74–2.48 | 0.290 | |||
Microvascular invasion (+) | 3.23 | 1.86–5.62 | <0.001 * | 2.87 | 1.58–5.24 | <0.001 * |
Variables | Multivariate Analysis | ||
---|---|---|---|
HR | 95%CI | p-Value | |
(a) ICGR15 > 10 (%) | |||
Sex: male | 8.64 | 2.06–36.25 | 0.003 * |
PNI < 45 or GNRI < 98 | 2.56 | 1.33–4.95 | 0.005 * |
Operation time > 300 (min) | 0.83 | 0.36–1.91 | 0.663 |
Blood loss > 500 (mL) | 2.28 | 1.12–4.63 | 0.023 * |
Complications (Clavien–Dindo grade ≥ 3) | 1.05 | 0.53–2.10 | 0.888 |
Tumor size > 30 (mm) | 2.47 | 1.30–4.69 | 0.006 * |
Microvascular invasion (+) | 3.38 | 1.76–6.49 | <0.001 * |
(b) Tumor size > 30 (mm) | |||
Sex: male | 6.15 | 1.46–25.98 | 0.014 * |
ICG-R15 > 10 (%) | 4.61 | 1.61–13.24 | 0.005 * |
PNI < 45 or GNRI < 98 | 2.53 | 1.25–5.10 | 0.010 * |
Operation time > 300 (min) | 2.30 | 0.53–10.01 | 0.267 |
Microvascular invasion (+) | 3.07 | 1.40–6.71 | 0.005 * |
(c) Microvascular invasion (+) | |||
Sex: male | 12.23 | 1.67–89.80 | 0.014 * |
ICG-R15 > 10 (%) | 3.96 | 1.20–13.02 | 0.024 * |
(d) Microvascular invasion (−) | |||
Sex: male | 4.24 | 0.56–32.11 | 0.162 |
ICG-R15 > 10 (%) | 1.93 | 0.52–7.13 | 0.323 |
PNI < 45 or GNRI < 98 | 4.10 | 1.63–10.30 | 0.003 * |
Tumor size > 30 (mm) | 1.38 | 0.54–3.56 | 0.499 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p-Value | HR | 95%CI | p-Value | |
Age > 80 (years) | 0.88 | 0.51–1.55 | 0.668 | |||
Sex: male | 2.57 | 1.41–4.69 | 0.002 * | 3.00 | 1.64–5.50 | <0.001 * |
HCV | 1.10 | 0.75–1.60 | 0.619 | |||
Skeletal muscle loss | 0.79 | 0.54–1.15 | 0.221 | |||
Child-Pugh Score B or C | 0.95 | 0.30–3.01 | 0.936 | |||
AFP > 40 (ng/mL) | 1.19 | 0.81–1.75 | 0.363 | |||
ICG-R15 > 10 (%) | 1.45 | 0.90–2.33 | 0.128 | |||
PNI < 45 | 1.73 | 1.15–2.59 | 0.008 * | |||
GNRI < 98 | 1.71 | 1.09–2.69 | 0.020 * | |||
PNI < 45 or GNRI < 98 | 1.81 | 1.23–2.66 | 0.003 * | 1.40 | 0.92–2.13 | 0.115 |
Operation time > 300 (min) | 1.39 | 0.94–2.07 | 0.101 | |||
Blood loss > 500 (mL) | 2.10 | 1.29–3.40 | 0.003 * | 1.66 | 0.99–2.76 | 0.054 |
Complications (Clavien–Dindo grade ≥ 3) | 1.24 | 0.75–2.05 | 0.408 | |||
Tumor size > 30 (mm) | 1.50 | 1.03–2.17 | 0.034 * | 1.29 | 0.88–1.90 | 0.197 |
Multiple tumors | 1.38 | 0.87–2.17 | 0.172 | |||
Poor differentiation | 1.26 | 0.79–2.00 | 0.334 | |||
Microvascular invasion (+) | 2.24 | 1.55–3.24 | <0.001 * | 2.05 | 1.40–3.01 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukagoshi, M.; Araki, K.; Igarashi, T.; Ishii, N.; Kawai, S.; Hagiwara, K.; Hoshino, K.; Seki, T.; Okuyama, T.; Fukushima, R.; et al. Lower Geriatric Nutritional Risk Index and Prognostic Nutritional Index Predict Postoperative Prognosis in Patients with Hepatocellular Carcinoma. Nutrients 2024, 16, 940. https://doi.org/10.3390/nu16070940
Tsukagoshi M, Araki K, Igarashi T, Ishii N, Kawai S, Hagiwara K, Hoshino K, Seki T, Okuyama T, Fukushima R, et al. Lower Geriatric Nutritional Risk Index and Prognostic Nutritional Index Predict Postoperative Prognosis in Patients with Hepatocellular Carcinoma. Nutrients. 2024; 16(7):940. https://doi.org/10.3390/nu16070940
Chicago/Turabian StyleTsukagoshi, Mariko, Kenichiro Araki, Takamichi Igarashi, Norihiro Ishii, Shunsuke Kawai, Kei Hagiwara, Kouki Hoshino, Takaomi Seki, Takayuki Okuyama, Ryosuke Fukushima, and et al. 2024. "Lower Geriatric Nutritional Risk Index and Prognostic Nutritional Index Predict Postoperative Prognosis in Patients with Hepatocellular Carcinoma" Nutrients 16, no. 7: 940. https://doi.org/10.3390/nu16070940
APA StyleTsukagoshi, M., Araki, K., Igarashi, T., Ishii, N., Kawai, S., Hagiwara, K., Hoshino, K., Seki, T., Okuyama, T., Fukushima, R., Harimoto, N., & Shirabe, K. (2024). Lower Geriatric Nutritional Risk Index and Prognostic Nutritional Index Predict Postoperative Prognosis in Patients with Hepatocellular Carcinoma. Nutrients, 16(7), 940. https://doi.org/10.3390/nu16070940