Dairy Matrix Effects: Physicochemical Properties Underlying a Multifaceted Paradigm
Abstract
:1. Introduction
2. Matrices and Matrix Effects
‘The product matrix refers to the components of the product, their interactions, their structural organization within the product and the resultant physicochemical properties of the product.’
‘The functional outcome of specific component(s) as part of a specific product matrix’
‘The physiological outcome of the intake of component(s) in the form of a specific product matrix’
3. Product Matrix Effects: Examples of Dairy Foods
3.1. Product Matrix Effects in Relation to Product Stability: Milk and Cheese
3.2. Product Matrix Effects in Relation to Sensory Properties: An Example of Cheese
3.3. Product Matrix Effects in Relation to Human Nutrition and Health
- (1)
- RCTs or other mechanistic studies, sometimes complemented with in vitro studies, to demonstrate the occurrence of product matrix effects, often on intermediate markers in relation to health outcomes.
- (2)
- Epidemiological studies demonstrating associations between consumption of certain products and health outcomes, wherein product matrix effects are put forward as potential explanations for observed associations.
4. Mechanistic Insights on Dairy Product Matrix Effects
4.1. Dairy Protein Digestion and Amino Acid Absorption
4.2. Dairy and Dental Health
4.3. Dairy and Glycemic Responses
4.4. Dairy and Calcium Bioavailability
4.5. Dairy and Fat Digestion and Absorption
5. Beyond Product Matrix Effects: Meal Effects
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, Z.; Afarideh, M. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Cocking, C.; Walton, J.; Kehoe, L.; Cashman, K.D.; Flynn, A. The Role of Meat in the European Diet: Current State of Knowledge on Dietary Recommendations, Intakes and Contribution to Energy and Nutrient Intakes and Status. Nutr. Res. Rev. 2020, 33, 181–189. [Google Scholar] [CrossRef]
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Modeling the Contribution of Meat to Global Nutrient Availability. Front. Nutr. 2022, 9, 766796. [Google Scholar] [CrossRef]
- Smith, N.W.; Fletcher, A.J.; Dave, L.A.; Hill, J.P.; McNabb, W.C. Use of the DELTA Model to Understand the Food System and Global Nutrition. J. Nutr. 2021, 151, 3253–3261. [Google Scholar] [CrossRef]
- Green, A.; Nemecek, T.; Mathys, A. A Proposed Framework to Develop Nutrient Profiling Algorithms for Assessments of Sustainable Food: The Metrics and Their Assumptions Matter. Int. J. Life Cycle Assess. 2023, 28, 1326–1347. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of Saturated and Trans Unsaturated Fatty Acids and Risk of All Cause Mortality, Cardiovascular Disease, and Type 2 Diabetes: Systematic Review and Meta-Analysis of Observational Studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, Z.; Baker, J.S.; Davies, B. Evidence from Prospective Cohort Studies Does Not Support Current Dietary Fat Guidelines: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2017, 51, 1743–1749. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Zamora, D.; Majchrzak-Hong, S.; Faurot, K.R.; Broste, S.K.; Frantz, R.P.; Davis, J.M.; Ringel, A.; Suchindran, C.M.; Hibbeln, J.R. Re-Evaluation of the Traditional Diet-Heart Hypothesis: Analysis of Recovered Data from Minnesota Coronary Experiment (1968–73). BMJ 2016, 353, i1246. [Google Scholar] [CrossRef] [PubMed]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Meta-Analysis of Prospective Cohort Studies Evaluating the Association of Saturated Fat with Cardiovascular Disease. Am. J. Clin. Nutr. 2010, 91, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Martin, N.; Jimoh, O.F.; Kirk, C.; Foster, E.; Abdelhamid, A.S. Reduction in Saturated Fat Intake for Cardiovascular Disease. Cochrane Database Syst. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Geiker, N.R.W.; Magkos, F. Effects of Full-Fat and Fermented Dairy Products on Cardiometabolic Disease: Food Is More Than the Sum of Its Parts. Adv. Nutr. 2019, 10, 924S–930S. [Google Scholar] [CrossRef] [PubMed]
- Hjerpsted, J.; Tholstrup, T. Cheese and Cardiovascular Disease Risk: A Review of the Evidence and Discussion of Possible Mechanisms. Crit. Rev. Food Sci. Nutr. 2016, 56, 1389–1403. [Google Scholar] [CrossRef]
- Hu, M.J.; Tan, J.S.; Gao, X.J.; Yang, J.G.; Yang, Y.J. Effect of Cheese Intake on Cardiovascular Diseases and Cardiovascular Biomarkers. Nutrients 2022, 14, 2936. [Google Scholar] [CrossRef]
- Trieu, K.; Bhat, S.; Dai, Z.; Leander, K.; Gigante, B.; Qian, F.; Korat, A.V.A.; Sun, Q.; Pan, X.F.; Laguzzi, F.; et al. Biomarkers of Dairy Fat Intake, Incident Cardiovascular Disease, and All-Cause Mortality: A Cohort Study, Systematic Review, and Meta-Analysis. PLoS Med. 2021, 18, e1003763. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, S.; Wang, P.G. Matrix Effects and Application of Matrix Effect Factor. Bioanalysis 2017, 9, 1839–1844. [Google Scholar] [CrossRef]
- Patel, D. Matrix Effect in a View of LC-MS/MS: An Overview. Int. J. Pharma Bio Sci. 2011, 2, 559–564. [Google Scholar]
- Chiu, M.L.; Lawi, W.; Snyder, S.T.; Wong, P.K.; Liao, J.C.; Gau, V. Matrix Effects-A Challenge toward Automation of Molecular Analysis. JALA-J. Assoc. Lab. Autom. 2010, 15, 233–242. [Google Scholar] [CrossRef]
- Marchi, I.; Viette, V.; Badoud, F.; Fathi, M.; Saugy, M.; Rudaz, S.; Veuthey, J.L. Characterization and Classification of Matrix Effects in Biological Samples Analyses. J. Chromatogr. A 2010, 1217, 4071–4078. [Google Scholar] [CrossRef]
- Haber, G.B.; Heaton, K.W.; Murphy, D.; Burroughs, L.F. Depletion and disruption of dietary fibre. Effects on satiety, plasma-glucose and serum-insulin. Lancet 1977, 310, 679–682. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Griffiths, C.; Krzeminska, K.; Lawrie, J.A.; Bennett, C.M.; Goff, D.V.; Sarson, D.L.; Bloom, S.R. Slow Release Dietary Carbohydrate Improves Second Meal Tolerance. Am. J. Clin. Nutr. 1982, 35, 1339–1346. [Google Scholar] [CrossRef]
- Pennings, B.; Groen, B.B.L.; Van Dijk, J.W.; De Lange, A.; Kiskini, A.; Kuklinski, M.; Senden, J.M.G.; Van Loon, L.J.C. Minced Beef Is More Rapidly Digested and Absorbed than Beef Steak, Resulting in Greater Postprandial Protein Retention in Older Men. Am. J. Clin. Nutr. 2013, 98, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Horstman, A.M.H.; Huppertz, T. Milk Proteins: Processing, Gastric Coagulation, Amino Acid Availability and Muscle Protein Synthesis. Crit. Rev. Food Sci. Nutr. 2022, 63, 10267–10282. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.C. Solubility of Calcium Phosphates. Monogr. Oral Sci. 2001, 18, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Gazi, I.; Luyten, H.; Nieuwenhuijse, H.; Alting, A.; Schokker, E. Hydration of Casein Micelles and Caseinates: Implications for Casein Micelle Structure. Int. Dairy J. 2017, 74, 1–11. [Google Scholar] [CrossRef]
- Holt, C.; Carver, J.A.; Ecroyd, H.; Thorn, D.C. Invited Review: Caseins and the Casein Micelle: Their Biological Functions, Structures, and Behavior in Foods. J. Dairy Sci. 2013, 96, 6127–6146. [Google Scholar] [CrossRef] [PubMed]
- Shkembi, B.; Huppertz, T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Uniacke-Lowe, T.; Kelly, A.L. Physical Chemistry of Milk Fat Globules. In Advanced Dairy. Chemistry: Volume 2: Lipids, 4th ed.; Springer: Cham, Switzerland, 2020; Volume 2. [Google Scholar]
- Walstra, P. Physical Chemistry of Milk Fat Globules. In Developments in Dairy Chemistry—2; Springer: Dordrecht, The Netherlands, 1983; pp. 119–158. [Google Scholar]
- Okamoto, Y.; Tayama, K.; Kurotobi, T.; Watanabe, Y. Sensory Analysis of Sweetness in Viscous Solutions and Gels with Agar. J. Sens. Stud. 2023, 38, e12891. [Google Scholar] [CrossRef]
- Mosca, A.C.; van de Velde, F.; Bult, J.H.F.; van Boekel, M.A.J.S.; Stieger, M. Effect of Gel Texture and Sucrose Spatial Distribution on Sweetness Perception. LWT 2012, 46, 183–188. [Google Scholar] [CrossRef]
- Kohyama, K.; Hayakawa, F.; Kazami, Y.; Nishinari, K. Sucrose Release from Agar Gels and Sensory Perceived Sweetness. Food Hydrocoll. 2016, 60, 405–414. [Google Scholar] [CrossRef]
- Kuo, W.Y.; Lee, Y. Effect of Food Matrix on Saltiness Perception-Implications for Sodium Reduction. Compr. Rev. Food Sci. Food Saf. 2014, 13, 906–923. [Google Scholar] [CrossRef]
- Panouillé, M.; Saint-Eve, A.; de Loubens, C.; Déléris, I.; Souchon, I. Understanding of the Influence of Composition, Structure and Texture on Salty Perception in Model Dairy Products. Food Hydrocoll. 2011, 25, 716–723. [Google Scholar] [CrossRef]
- Heaney, R.P.; Weaver, C.M. Oxalate: Effect on Calcium Absorbability. Am. J. Clin. Nutr. 1989, 50, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Kannan, S. Phytate and Mineral Bioavailability. In Food Phytates; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant Food Anti-Nutritional Factors and Their Reduction Strategies: An Overview. Food Prod. Process Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of Antinutritional Factors on Protein Digestibility and Amino Acid Availability in Foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jin, Y.; Wilde, P.J.; Hou, Y.; Wang, Y.; Han, J. Mechanisms, Physiology, and Recent Research Progress of Gastric Emptying. Crit. Rev. Food Sci. Nutr. 2021, 61, 2742–2755. [Google Scholar] [CrossRef]
- Higaki, K.; Choe, S.Y.; Löbenberg, R.; Welage, L.S.; Amidon, G.L. Mechanistic Understanding of Time-Dependent Oral Absorption Based on Gastric Motor Activity in Humans. Eur. J. Pharm. Biopharm. 2008, 70, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Chia, L.W. Milk Protein Coagulation under Gastric Conditions: A Review. Int. Dairy J. 2021, 113, 104882. [Google Scholar] [CrossRef]
- Boulier, A.; Denis, S.; Henry, G.; Guérin, S.; Alric, M.; Meunier, N.; Blot, A.; Pereira, B.; Malpuech-Brugere, C.; Remond, D.; et al. Casein Structures Differently Affect Postprandial Amino Acid Delivery through Their Intra-Gastric Clotting Properties. Food Chem. 2023, 415, 135779. [Google Scholar] [CrossRef]
- Lindsay, D.; Robertson, R.; Fraser, R.; Engstrom, S.; Jordan, K. Heat Induced Inactivation of Microorganisms in Milk and Dairy Products. Int. Dairy J. 2021, 121, 105096. [Google Scholar] [CrossRef]
- Dash, K.K.; Fayaz, U.; Dar, A.H.; Shams, R.; Manzoor, S.; Sundarsingh, A.; Deka, P.; Khan, S.A. A Comprehensive Review on Heat Treatments and Related Impact on the Quality and Microbial Safety of Milk and Milk-Based Products. Food Chem. Adv. 2022, 1, 100041. [Google Scholar] [CrossRef]
- Qian, C.; Murphy, S.I.; Lott, T.T.; Martin, N.H.; Wiedmann, M. Development and Deployment of a Supply-Chain Digital Tool to Predict Fluid-Milk Spoilage Due to Psychrotolerant Sporeformers. J. Dairy Sci. 2023, 106, 8415–8433. [Google Scholar] [CrossRef] [PubMed]
- van Asselt, E.D.; van der Fels-Klerx, H.J.; Marvin, H.J.P.; van Bokhorst-van de Veen, H.; Groot, M.N. Overview of Food Safety Hazards in the European Dairy Supply Chain. Compr. Rev. Food Sci. Food Saf. 2017, 16, 9–75. [Google Scholar] [CrossRef]
- Anema, S.G. Age Gelation, Sedimentation, and Creaming in UHT Milk: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 140–166. [Google Scholar] [CrossRef] [PubMed]
- Datta, N.; Deeth, H.C. Age Gelation of UHT Milk—A Review. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 2001, 79, 197–210. [Google Scholar] [CrossRef]
- Smith, N.W.; Dave, A.C.; Hill, J.P.; McNabb, W.C. Nutritional Assessment of Plant-Based Beverages in Comparison to Bovine Milk. Front. Nutr. 2022, 9, 957486. [Google Scholar] [CrossRef] [PubMed]
- De Kruif, C.G.; Huppertz, T.; Urban, V.S.; Petukhov, A.V. Casein Micelles and Their Internal Structure. Adv. Colloid. Interface Sci. 2012, 171–172, 36–52. [Google Scholar] [CrossRef]
- Choi, K.H.; Lee, H.; Lee, S.; Kim, S.; Yoon, Y. Cheese Microbial Risk Assessments—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 307–314. [Google Scholar] [CrossRef]
- Johnson, M.E. A 100-Year Review: Cheese Production and Quality. J. Dairy Sci. 2017, 100, 9952–9965. [Google Scholar] [CrossRef]
- Irlinger, F.; Mounier, J. Microbial Interactions in Cheese: Implications for Cheese Quality and Safety. Curr. Opin. Biotechnol. 2009, 20, 142–148. [Google Scholar] [CrossRef]
- Wemmenhove, E.; van Valenberg, H.J.F.; van Hooijdonk, A.C.M.; Wells-Bennik, M.H.J.; Zwietering, M.H. Factors That Inhibit Growth of Listeria Monocytogenes in Nature-Ripened Gouda Cheese: A Major Role for Undissociated Lactic Acid. Food Control 2018, 84, 413–418. [Google Scholar] [CrossRef]
- Guinee, T.P.; Fox, P.F. Salt in Cheese: Physical, Chemical and Biological Aspects. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 1, pp. 317–375. ISBN 9780122636530. [Google Scholar]
- Bansal, V.; Mishra, S.K. Reduced-Sodium Cheeses: Implications of Reducing Sodium Chloride on Cheese Quality and Safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 733–758. [Google Scholar] [CrossRef] [PubMed]
- Balciunas, E.M.; Castillo Martinez, F.A.; Todorov, S.D.; de Melo Franco, B.D.G.; Converti, A.; de Souza Oliveira, R.P. Novel Biotechnological Applications of Bacteriocins: A Review. Food Control 2013, 32, 134–142. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Fialho, T.L.; Carrijo, L.C.; Magalhães Júnior, M.J.; Baracat-Pereira, M.C.; Piccoli, R.H.; de Abreu, L.R. Extraction and Identification of Antimicrobial Peptides from the Canastra Artisanal Minas Cheese. Food Res. Int. 2018, 107, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, H.; Akın, N. Effect of Ripening Time on Peptide Dynamics and Bioactive Peptide Composition in Tulum Cheese. J. Dairy Sci. 2021, 104, 3832–3852. [Google Scholar] [CrossRef] [PubMed]
- Santiago-López, L.; Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Liceaga, A.M.; González-Córdova, A.F. Invited Review: Bioactive Compounds Produced during Cheese Ripening and Health Effects Associated with Aged Cheese Consumption. J. Dairy Sci. 2018, 101, 3742–3757. [Google Scholar] [CrossRef] [PubMed]
- Forde, C.G.; de Graaf, K. Influence of Sensory Properties in Moderating Eating Behaviors and Food Intake. Front. Nutr. 2022, 9, 841444. [Google Scholar] [CrossRef]
- Chen, J.; Engelen, L. Food Oral Processing: Fundamentals of Eating and Sensory Perception; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Torrico, D.D.; Fuentes, S.; Gonzalez Viejo, C.; Ashman, H.; Dunshea, F.R. Cross-Cultural Effects of Food Product Familiarity on Sensory Acceptability and Non-Invasive Physiological Responses of Consumers. Food Res. Int. 2019, 115, 439–450. [Google Scholar] [CrossRef]
- Lee, H.S.; Lopetcharat, K. Effect of Culture on Sensory and Consumer Research: Asian Perspectives. Curr. Opin. Food Sci. 2017, 15, 22–29. [Google Scholar] [CrossRef]
- Moskowitz, H.R.; Krieger, B. The Contribution of Sensory Liking to Overall Liking: An Analysis of Six Food Categories. Food Qual. Prefer. 1995, 6, 83–90. [Google Scholar] [CrossRef]
- Delahunty, C.M.; Drake, M.A. Sensory Character of Cheese and Its Evaluation. In Cheese: Chemistry, Physics and Microbiology; Elsevier Inc.: Amsterdam, The Netherlands, 2004; Volume 1. [Google Scholar]
- Foegeding, E.A.; Drake, M.A. Invited Review: Sensory and Mechanical Properties of Cheese Texture. J. Dairy Sci. 2007, 90, 1611–1624. [Google Scholar] [CrossRef] [PubMed]
- Foegeding, E.A.; Brown, J.; Drake, M.A.; Daubert, C.R. Sensory and Mechanical Aspects of Cheese Texture. Int. Dairy J. 2003, 13, 585–591. [Google Scholar] [CrossRef]
- Lawrence, R.C.; Creamer, L.K.; Gilles, J. Texture Development During Cheese Ripening. J. Dairy Sci. 1987, 70, 1748–1760. [Google Scholar] [CrossRef]
- Everett, D.W.; Auty, M.A.E. Cheese Structure and Current Methods of Analysis. Int. Dairy J. 2008, 18, 759–773. [Google Scholar] [CrossRef]
- Bertuzzi, A.S.; McSweeney, P.L.H.; Rea, M.C.; Kilcawley, K.N. Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese. Compr. Rev. Food Sci. Food Saf. 2018, 17, 371–390. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Cheese Flavour. In Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017; pp. 443–474. [Google Scholar]
- Kim, M.K.; Drake, S.L.; Drake, M.A. Evaluation of Key Flavor Compounds in Reduced- and Full-Fat Cheddar Cheeses Using Sensory Studies on Model Systems. J. Sens. Stud. 2011, 26, 278–290. [Google Scholar] [CrossRef]
- Lawlor, J.B.; Delahunty, C.M.; Wilkinson, M.G.; Sheehan, J. Relationships between the Sensory Characteristics, Neutral Volatile Composition and Gross Composition of Ten Cheese Varieties. Lait 2001, 81, 487–507. [Google Scholar] [CrossRef]
- Lauverjat, C.; Déléris, I.; Tréléa, I.C.; Salles, C.; Souchon, I. Salt and Aroma Compound Release in Model Cheeses in Relation to Their Mobility. J. Agric. Food Chem. 2009, 57, 9878–9887. [Google Scholar] [CrossRef]
- Fox, P.F.; Wallace, J.M. Formation of Flavor Compounds in Cheese. Adv. Appl. Microbiol. 1997, 4, 169–181. [Google Scholar]
- Andersen, L.T.; Ardö, Y.; Bredie, W.L.P. Study of Taste-Active Compounds in the Water-Soluble Extract of Mature Cheddar Cheese. Int. Dairy J. 2010, 20, 528–536. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Loudiyi, M.; Aït-Kaddour, A. Evaluation of the Effect of Salts on Chemical, Structural, Textural, Sensory and Heating Properties of Cheese: Contribution of Conventional Methods and Spectral Ones. Crit. Rev. Food Sci. Nutr. 2019, 59, 2442–2457. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Starter Cultures. In Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017; pp. 121–183. [Google Scholar]
- Parente, E.; Cogan, T.M.; Powell, I.B. Starter Cultures: General Aspects. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 1. [Google Scholar]
- Guggisberg, D.; Schuetz, P.; Winkler, H.; Amrein, R.; Jakob, E.; Fröhlich-Wyder, M.T.; Irmler, S.; Bisig, W.; Jerjen, I.; Plamondon, M.; et al. Mechanism and Control of the Eye Formation in Cheese. Int. Dairy J. 2015, 47, 118–127. [Google Scholar] [CrossRef]
- Huc, D.; Mariette, F.; Challois, S.; Barreau, J.; Moulin, G.; Michon, C. Multi-Scale Investigation of Eyes in Semi-Hard Cheese. Innov. Food Sci. Emerg. Technol. 2014, 24, 106–112. [Google Scholar] [CrossRef]
- Lucey, J.A.; Johnson, M.E.; Horne, D.S. Invited Review: Perspectives on the Basis of the Rheology and Texture Properties of Cheese. J. Dairy Sci. 2003, 86, 2725–2743. [Google Scholar] [CrossRef]
- Gierczynski, I.; Labouré, H.; Sémon, E.; Guichard, E. Impact of Hardness of Model Fresh Cheese on Aroma Release: In Vivo and in Vitro Study. J. Agric. Food Chem. 2007, 55, 3066–3073. [Google Scholar] [CrossRef] [PubMed]
- De Roos, K.B. Effect of Texture and Microstructure on Flavour Retention and Release. Int. Dairy J. 2003, 13, 593–605. [Google Scholar] [CrossRef]
- Bansal, N.; Fox, P.F.; McSweeney, P.L.H. Comparison of the Level of Residual Coagulant Activity in Different Cheese Varieties. J. Dairy Res. 2009, 76, 290–293. [Google Scholar] [CrossRef]
- Lane, C.N.; Fox, P.F.; Johnston, D.E.; McSweeney, P.L.H. Contribution of Coagulant to Proteolysis and Textural Changes in Cheddar Cheese during Ripening. Int. Dairy J. 1997, 7, 453–464. [Google Scholar] [CrossRef]
- Urbach, G. Relations between Cheese Flavour and Chemical Composition. Int. Dairy J. 1993, 3, 389–422. [Google Scholar] [CrossRef]
- Ardö, Y. Flavour Formation by Amino Acid Catabolism. Biotechnol. Adv. 2006, 24, 238–242. [Google Scholar] [CrossRef]
- Drake, M.A.; Miracle, R.E.; McMahon, D.J. Impact of Fat Reduction on Flavor and Flavor Chemistry of Cheddar Cheeses. J. Dairy Sci. 2010, 93, 5069–5081. [Google Scholar] [CrossRef]
- Ardö, Y. Flavour and Texture in Low-Fat Cheese. In Microbiology and Biochemistry of Cheese and Fermented Milk; Springer: Boston, MA, USA, 1997; pp. 207–218. [Google Scholar]
- Mistry, V.V. Low Fat Cheese Technology. Int. Dairy J. 2001, 11, 413–422. [Google Scholar] [CrossRef]
- Moughan, P.J. Holistic Properties of Foods: A Changing Paradigm in Human Nutrition. J. Sci. Food Agric. 2020, 100, 5056–5063. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. A Shift toward a New Holistic Paradigm Will Help to Preserve and Better Process Grain Products’ Food Structure for Improving Their Health Effects. Food Funct. 2015, 6, 363–382. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dairy Foods, Obesity, and Metabolic Health: The Role of the Food Matrix Compared with Single Nutrients. Adv. Nutr. 2019, 10, 917S–923S. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.P.; Kraenzlin, M.; Levasseur, R.; Warren, M.; Whiting, S. Dairy in Adulthood: From Foods to Nutrient Interactions on Bone and Skeletal Muscle Health. J. Am. Coll. Nutr. 2013, 32, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Dror, D.K.; Allen, L.H. Dairy Product Intake in Children and Adolescents in Developed Countries: Trends, Nutritional Contribution, and a Review of Association with Health Outcomes. Nutr. Rev. 2014, 72, 68–81. [Google Scholar] [CrossRef]
- Geiker, N.R.W.; Mølgaard, C.; Iuliano, S.; Rizzoli, R.; Manios, Y.; van Loon, L.J.C.; Lecerf, J.M.; Moschonis, G.; Reginster, J.Y.; Givens, I.; et al. Impact of Whole Dairy Matrix on Musculoskeletal Health and Aging–Current Knowledge and Research Gaps. Osteoporos. Int. 2020, 31, 601–615. [Google Scholar] [CrossRef]
- Boland, R. Role of Vitamin D in Skeletal Muscle Function. Endocr. Rev. 1986, 7, 434–448. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, K.R.; Cruzat, V.; Carlessi, R.; Newsholme, P. Mechanisms of Vitamin D Action in Skeletal Muscle. Nutr. Res. Rev. 2019, 32, 192–204. [Google Scholar] [CrossRef]
- Horstman, A.M.H.; Ganzevles, R.A.; Kudla, U.; Kardinaal, A.F.M.; van den Borne, J.J.G.C.; Huppertz, T. Postprandial Blood Amino Acid Concentrations in Older Adults after Consumption of Dairy Products: The Role of the Dairy Matrix. Int. Dairy J. 2021, 113, 104890. [Google Scholar] [CrossRef]
- Huppertz, T.; Lambers, T.T. Influence of Micellar Calcium Phosphate on in Vitro Gastric Coagulation and Digestion of Milk Proteins in Infant Formula Model Systems. Int. Dairy J. 2020, 107, 104717. [Google Scholar] [CrossRef]
- Wang, K.; Liu, D.; Tao, X.; Zhang, J.; Huppertz, T.; Regenstein, J.M.; Liu, X.; Zhou, P. Decalcification Strongly Affects in Vitro Gastrointestinal Digestion of Bovine Casein Micelles under Infant, Adult and Elderly Conditions. Food Hydrocoll. 2023, 139, 108515. [Google Scholar] [CrossRef]
- Van Eijnatten, E.J.M.; Roelofs, J.J.M.; Camps, G.; Huppertz, T.; Lambers, T.T.; Smeets, P.A.M. Gastric Coagulation and Postprandial Amino Acid Absorption of Milk Is Affected by Mineral Composition: A Randomized Crossover Trial. Food Funct. 2024, 15, 3098–3107. [Google Scholar] [CrossRef]
- Ahlborn, N.G.; Montoya, C.A.; Hodgkinson, S.M.; Dave, A.; Ye, A.; Samuelsson, L.M.; Roy, N.C.; McNabb, W.C. Heat Treatment and Homogenization of Bovine Milk Loosened Gastric Curd Structure and Increased Gastric Emptying in Growing Pigs. Food Hydrocoll. 2023, 137, 108380. [Google Scholar] [CrossRef]
- de Hart, N.M.; Mahmassani, Z.S.; Reidy, P.T.; Kelley, J.J.; McKenzie, A.I.; Petrocelli, J.J.; Bridge, M.J.; Baird, L.M.; Bastian, E.D.; Ward, L.S.; et al. Acute Effects of Cheddar Cheese Consumption on Circulating Amino Acids and Human Skeletal Muscle. Nutrients 2021, 13, 614. [Google Scholar] [CrossRef]
- Hermans, W.J.H.; Fuchs, C.J.; Hendriks, F.K.; Houben, L.H.P.; Senden, J.M.; Verdijk, L.B.; Van Loon, L.J.C. Cheese Ingestion Increases Muscle Protein Synthesis Rates Both at Rest and during Recovery from Exercise in Healthy, Young Males: A Randomized Parallel-Group Trial. J. Nutr. 2022, 152, 1022–1030. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, P.; Wang, J.; Dupont, D.; Menard, O.; Jeantet, R.; Chen, X.D. Achieving Realistic Gastric Emptying Curve in an Advanced Dynamic: In Vitro Human Digestion System: Experiences with Cheese—A Difficult to Empty Material. Food Funct. 2021, 12, 3965–3977. [Google Scholar] [CrossRef]
- Gaudichon, C.; Roos, N.; Mahe, S.; Sick, H.; Bouley, C.; Tome, D. Gastric Emptying Regulates the Kinetics of Nitrogen Absorption from 15N- Labeled Milk and 15N-Labeled Yogurt in Miniature Pigs. J. Nutr. 1994, 124, 1970–1977. [Google Scholar] [CrossRef] [PubMed]
- Gaudichon, C.; Mahé, S.; Roos, N.; Benamouzig, R.; Luengo, C.; Huneau, J.-F.; Sick, H.; Bouley, C.; Rautureau, J.; Tome, D. Exogenous and Endogenous Nitrogen Flow Rates and Level of Protein Hydrolysis in the Human Jejunum after [15N]Milk and [15N]Yoghurt Ingestion. Br. J. Nutr. 1995, 74, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Moynihan, P.; Petersen, P.E. Diet, Nutrition and the Prevention of Dental Diseases. Public Health Nutr. 2004, 7, 201–226. [Google Scholar] [CrossRef]
- Mobley, C.; Marshall, T.A.; Milgrom, P.; Coldwell, S.E. The Contribution of Dietary Factors to Dental Caries and Disparities in Caries. Acad. Pediatr. 2009, 9, 410–414. [Google Scholar] [CrossRef]
- Petti, S.; Simonetti, R.; D’Arca, A.S. The Effect of Milk and Sucrose Consumption on Caries in 6-to-11-Year-Old Italian Schoolchildren. Eur. J. Epidemiol. 1997, 13, 659–664. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916. [Google Scholar]
- Moynihan, P. Sugars and Dental Caries: Evidence for Setting a Recommended Threshold for Intake. Adv. Nutr. 2016, 7, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Abou Neel, E.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.; Bozec, L.; Mudera, V. Demineralization–remineralization Dynamics in Teeth and Bone. Int. J. Nanomed. 2016, 11, 4743–4763. [Google Scholar] [CrossRef]
- Loveren, C.V. Oral and Dental Health: Prevention of Dental Caries, Erosion, Gingivitis and Periodontitis; ILSI Europe: Brussels, Belgium, 2009. [Google Scholar]
- Moynihan, P. Foods and Factors That Protect against Dental Caries. Nutr. Bull. 2000, 25, 281–286. [Google Scholar] [CrossRef]
- Lingström, P. Impact of Food Sugars and Polysaccharides on Dental Caries; Woodhead Publishing: Sawston, UK, 2009. [Google Scholar]
- Gupta, P.; Gupta, N.; Pawar, A.P.; Birajdar, S.S.; Natt, A.S.; Singh, H.P. Role of Sugar and Sugar Substitutes in Dental Caries: A Review. ISRN Dent. 2013, 2013, 519421. [Google Scholar] [CrossRef] [PubMed]
- Aimutis, W.R. Lactose Cariogenicity with an Emphasis on Childhood Dental Caries. Int. Dairy J. 2012, 22, 152–158. [Google Scholar] [CrossRef]
- Chen, Y.Y.M.; Betzenhauser, M.J.; Snyder, J.A.; Burne, R.A. Pathways for Lactose/Galactose Catabolism by Streptococcus Salivarius. FEMS Microbiol. Lett. 2002, 209, 72–76. [Google Scholar] [CrossRef]
- Woodward, M.; Rugg-Gunn, A.J. Milk, Yoghurts and Dental Caries. Impact Nutr. Diet Oral Health 2020, 28, 77–90. [Google Scholar]
- Huppertz, T. Lactose in Milk: Properties, Nutritional Characteristics and Role in Dairy Products. In Understanding and Improving the Functional and Nutritional Properties of Milk; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2022. [Google Scholar]
- Damodaran, S.; Parkin, K.L.; Fennema, O.R. Fennema’s Food Chemistry, 4th ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-8247-2345-3. [Google Scholar]
- Lempert, S.M.; Christensen, L.B.; Froberg, K.; Raymond, K.; Heitmann, B.L. Association between Dairy Intake and Caries among Children and Adolescents. Results from the Danish EYHS Follow-up Study. Caries Res. 2015, 49, 251–258. [Google Scholar] [CrossRef]
- Levy, S.M.; Warren, J.J.; Broffitt, B.; Hillis, S.L.; Kanellis, M.J. Fluoride, Beverages and Dental Caries in the Primary Dentition. Caries Res. 2003, 37, 157–165. [Google Scholar] [CrossRef]
- Petridou, E.; Athanassouli, T.; Panagopoulos, H.; Revinthi, K. Sociodemographic and Dietary Factors in Relation to Dental Health among Greek Adolescents. Community Dent. Oral Epidemiol. 1996, 24, 307–311. [Google Scholar] [CrossRef]
- Shen, P.; Walker, G.D.; Yuan, Y.; Reynolds, C.; Stanton, D.P.; Fernando, J.R.; Reynolds, E.C. Effects of Soy and Bovine Milk Beverages on Enamel Mineral Content in a Randomized, Double-Blind in Situ Clinical Study. J. Dent. 2019, 88, 103160. [Google Scholar] [CrossRef]
- Johansson, I. Milk and Dairy Products: Possible Effects on Dental Health. Scan. J. Nutr. 2002, 46, 119–122. [Google Scholar] [CrossRef]
- Rugg-Gunn, A. Dental Caries: Strategies to Control This Preventable Disease. Acta Med. Acad. 2013, 42, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Sreshtaa, V.S.; Anjaneyulu, K. Cariostatic Effect of Dairy Products-A Review. J. Arch. Egyptol. 2020, 17, 608–617. [Google Scholar]
- Herod, E.L. The Effect of Cheese on Dental Caries: A Review of the Literature. Aust. Dent. J. 1991, 36, 120–125. [Google Scholar] [CrossRef]
- Tunick, M.H.; van Hekken, D.L. Dairy Products and Health: Recent Insights. J. Agric. Food Chem. 2015, 63, 9381–9388. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Impact of Dairy Products and Plant-Based Alternatives on Dental Health: Food Matrix Effects. Nutrients 2023, 15, 1469. [Google Scholar] [CrossRef]
- Romero-Velarde, E.; Delgado-Franco, D.; García-Gutiérrez, M.; Gurrola-Díaz, C.; Larrosa-Haro, A.; Montijo-Barrios, E.; Muskiet, F.A.J.; Vargas-Guerrero, B.; Geurts, J. The Importance of Lactose in the Human Diet: Outcomes of a Mexican Consensus Meeting. Nutrients 2019, 11, 2737. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Wolever, T.M.S.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Goff, D.V. Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R.F. Fructose, Galactose and Glucose—In Health and Disease. Clin. Nutr. ESPEN 2019, 33, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Shkembi, B.; Huppertz, T. Glycemic Responses of Milk and Plant-Based Drinks: Food Matrix Effects. Foods 2023, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.J.K.; Lightowler, H.J.; Strik, C.M.; Renton, H.; Hails, S. Glycaemic Index and Glycaemic Load Values of Commercially Available Products in the UK. Br. J. Nutr. 2005, 94, 922–930. [Google Scholar] [CrossRef]
- Östman, E.M.; Liljeberg Elmståhl, H.G.M.; Björck, I.M.E. Inconsistency between Glycemic and Insulinemic Responses to Regular and Fermented Milk Products. Am. J. Clin. Nutr. 2001, 74, 96–100. [Google Scholar] [CrossRef] [PubMed]
- McQuilken, S.A. Digestion and Absorption. Anaesth. Intensive Care Med. 2024. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic Index, Glycemic Load and Glycemic Response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.P.; Maubois, J.L.; Beaufrère, B. Slow and Fast Dietary Proteins Differently Modulate Postprandial Protein Accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef]
- Gao, K.P.; Mitsui, T.; Fujiki, K.; Ishiguro, H.; Kondo, T. Effect of Lactase Preparations in Asymptomatic Individuals with Lactase Deficiency--Gastric Digestion of Lactose and Breath Hydrogen Analysis. Nagoya J. Med. Sci. 2002, 65, 21–28. [Google Scholar]
- Nouri, M.; Pourghassem Gargari, B.; Tajfar, P.; Tarighat-Esfanjani, A. A Systematic Review of Whey Protein Supplementation Effects on Human Glycemic Control: A Mechanistic Insight. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102540. [Google Scholar] [CrossRef]
- Chiang, S.W.; Liu, H.W.; Loh, E.W.; Tam, K.W.; Wang, J.Y.; Huang, W.L.; Kuan, Y.C. Whey Protein Supplementation Improves Postprandial Glycemia in Persons with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Res. Rev. 2022, 104, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Taylor, G.S.; Brunsgaard, L.H.; Walker, M.; Bowden Davies, K.A.; Stevenson, E.J.; West, D.J. Thrice Daily Consumption of a Novel, Premeal Shot Containing a Low Dose of Whey Protein Increases Time in Euglycemia during 7 Days of Free-Living in Individuals with Type 2 Diabetes. BMJ Open Diabetes Res. Care 2022, 10, e002820. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Tan, K.W.J.; Siow, P.C.; Henry, C.J. Soya Milk Exerts Different Effects on Plasma Amino Acid Responses and Incretin Hormone Secretion Compared with Cows’ Milk in Healthy, Young Men. Br. J. Nutr. 2016, 116, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Collier, G.; McLean, A.; O’Dea, K. Effect of Co-Ingestion of Fat on the Metabolic Responses to Slowly and Rapidly Absorbed Carbohydrates. Diabetologia 1984, 26, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, E.; Vogt, J.A.; Wolever, T.M.S. The Effects of Fat and Protein on Glycemic Responses in Nondiabetic Humans Vary with Waist Circumference, Fasting Plasma Insulin, and Dietary Fiber Intake. J. Nutr. 2006, 136, 2506–2511. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Mooradian, A.D.; Gannon, M.C.; Billington, C.J.; Krezowski, P. Effect of Protein Ingestion on the Glucose and Insulin Response to a Standardized Oral Glucose Load. Diabetes Care 1984, 7, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Salaün, F.; Mietton, B.; Gaucheron, F. Buffering Capacity of Dairy Products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- van Rossum, C.T.M.; Buurma-Rethans, E.J.M.; Dinnissen, C.S.; Beukers, M.H.; Brants, H.A.M.; Dekkers, A.L.M.; Ocké, M.C. The Diet of the Dutch: Results of the Dutch National Food Consumption Survey 2012–2016; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2020. [Google Scholar]
- Cormick, G.; Belizan, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [PubMed]
- Theobald, H.E. Dietary Calcium and Health. Nutr. Bull. 2005, 30, 237–277. [Google Scholar] [CrossRef]
- Schachter, D.; Dowdle, E.B.; Schenker, H. Active Transport of Calcium by the Small Intestine of the Rat. Am. J. Physiol.-Leg. Content 1960, 198, 263–268. [Google Scholar] [CrossRef]
- Guéguen, L.; Pointillart, A. The Bioavailability of Dietary Calcium. J. Am. Coll. Nutr. 2000, 19, 119S–136S. [Google Scholar] [CrossRef]
- Nieuwenhuijse, H.; Huppertz, T. Heat-Induced Changes in Milk Salts: A Review. Int. Dairy J. 2022, 126, 105220. [Google Scholar] [CrossRef]
- Mekmene, O.; Le Graët, Y.; Gaucheron, F. A Model for Predicting Salt Equilibria in Milk and Mineral-Enriched Milks. Food Chem. 2009, 116, 233–239. [Google Scholar] [CrossRef]
- Holt, C. The Milk Salts and Their Interaction with Casein. In Advanced Dairy Chemistry Volume 3; Springer: Boston, MA, USA, 1997. [Google Scholar]
- Weaver, C.M.; Heaney, R.P. (Eds.) Calcium in Human Health; Humana Press: Totowa, NJ, USA, 2006. [Google Scholar]
- Dalgleish, D.G.; Law, A.J.R. PH-Induced Dissociation of Bovine Casein Micelles II. Mineral Solubilization and Its Relation to Casein Release. J. Dairy Res. 1989, 56, 727–735. [Google Scholar] [CrossRef]
- Le Graët, Y.; Gaucheron, F. PH-Induced Solubilization of Minerals from Casein Micelles: Influence of Casein Concentration and Ionic Strength. J. Dairy Res. 1999, 66, 215–224. [Google Scholar] [CrossRef]
- Weaver, C.M.; Heaney, R.P.; Nickel, K.P.; Packard, P.I. Calcium Bioavailability from High Oxalate Vegetables: Chinese Vegetables, Sweet Potatoes and Rhubarb. J. Food Sci. 1997, 62, 524–525. [Google Scholar] [CrossRef]
- Weaver, C.M.; Heaney, R.P.; Martin, B.R.; Fitzsimmons, M.L. Human Calcium Absorption from Whole-Wheat Products. J. Nutr. 1991, 121, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Weaver, C.M.; Lee Fitzsimmons, M. Influence of Calcium Load on Absorption Fraction. J. Bone Miner. Res. 1990, 5, 1135–1138. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D. Antinutrients in Plant-Based Foods: A Review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef]
- Heaney, R.P.; Weaver, C.M.; Recker, R.R. Calcium Absorbability from Spinach. Am. J. Clin. Nutr. 1988, 47, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Favé, G.; Coste, T.C.; Armand, M. Physicochemical Properties of Lipids: New Strategies to Manage Fatty Acid Bioavailability. Cell Mol. Biol. 2004, 50, 815–831. [Google Scholar] [PubMed]
- Favé, G.; Lévêque, C.; Peyrot, J.; Pieroni, G.; Coste, T.C.; Armand, M. Modulation of Gastric Lipolysis by the Phospholipid Specie: Link to Specific Lipase-phospholipid Interaction at the Lipid/Water Interface? FASEB J. 2007, 21, A1010. [Google Scholar]
- Bernard, A.; Carlier, H. Absorption and Intestinal Catabolism of Fatty Acids in the Rat: Effect of Chain Length and Unsaturation. Exp. Physiol. 1991, 76, 445–455. [Google Scholar] [CrossRef]
- Duchateau, G.S.; Klaffke, W. Health Food Product Composition, Structure and Bioavailability. In Designing Functional Foods: Measuring and Controlling Food Structure Breakdown and Nutrient Absorption; Woodhead Publishing Limited: Sawston, UK, 2009. [Google Scholar]
- Borén, J.; Matikainen, N.; Adiels, M.; Taskinen, M.R. Postprandial Hypertriglyceridemia as a Coronary Risk Factor. Clin. Chim. Acta 2014, 431, 131–142. [Google Scholar]
- Nakamura, K.; Miyoshi, T.; Yunoki, K.; Ito, H. Postprandial Hyperlipidemia as a Potential Residual Risk Factor. J. Cardiol. 2016, 67, 131–142. [Google Scholar] [CrossRef]
- Macgibbon, A.K.H. Composition and Structure of Bovine Milk Lipids. In Advanced Dairy. Chemistry: Volume 2: Lipids, 4th ed.; Springer: Cham, Switzerland, 2020; Volume 2. [Google Scholar]
- Karrar, E.; Ahmed, I.A.M.; Huppertz, T.; Wei, W.; Jin, J.; Wang, X. Fatty acid composition and stereospecificity and sterol composition of milk fat from different species. Int. Dairy J. 2022, 128, 105313. [Google Scholar] [CrossRef]
- Grummer, R.R. Effect of feed on the composition of milk fat. J. Dairy Sci. 1991, 74, 3244–3257. [Google Scholar] [CrossRef]
- Lopez, C. Milk Fat Globules Enveloped by Their Biological Membrane: Unique Colloidal Assemblies with a Specific Composition and Structure. Curr. Opin. Colloid. Interface Sci. 2011, 16, 391–404. [Google Scholar] [CrossRef]
- Singh, H. The Milk Fat Globule Membrane-A Biophysical System for Food Applications. Curr. Opin. Colloid. Interface Sci. 2006, 11, 154–163. [Google Scholar] [CrossRef]
- Gallier, S.; Ye, A.; Singh, H. Structural Changes of Bovine Milk Fat Globules during in Vitro Digestion. J. Dairy Sci. 2012, 95, 3579–3592. [Google Scholar] [CrossRef] [PubMed]
- Phosanam, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. In Vitro Digestion of Infant Formula Model Systems: Influence of Casein to Whey Protein Ratio. Int. Dairy J. 2021, 117, 105008. [Google Scholar] [CrossRef]
- van Aken, G.A.; Bomhof, E.; Zoet, F.D.; Verbeek, M.; Oosterveld, A. Differences in in Vitro Gastric Behaviour between Homogenized Milk and Emulsions Stabilised by Tween 80, Whey Protein, or Whey Protein and Caseinate. Food Hydrocoll. 2011, 25, 781–788. [Google Scholar] [CrossRef]
- Ye, A. Gastric Colloidal Behaviour of Milk Protein as a Tool for Manipulating Nutrient Digestion in Dairy Products and Protein Emulsions. Food Hydrocoll. 2021, 115, 106599. [Google Scholar] [CrossRef]
- Singh, H. Symposium Review: Fat Globules in Milk and Their Structural Modifications during Gastrointestinal Digestion. J. Dairy Sci. 2019, 102, 2749–2759. [Google Scholar] [CrossRef] [PubMed]
- Mulet-Cabero, A.I.; Rigby, N.M.; Brodkorb, A.; Mackie, A.R. Dairy Food Structures Influence the Rates of Nutrient Digestion through Different In Vitro Gastric Behaviour. Food Hydrocoll. 2017, 67, 63–73. [Google Scholar] [CrossRef]
- Mulet-Cabero, A.I.; Mackie, A.R.; Wilde, P.J.; Fenelon, M.A.; Brodkorb, A. Structural Mechanism and Kinetics of in Vitro Gastric Digestion Are Affected by Process-Induced Changes in Bovine Milk. Food Hydrocoll. 2019, 86, 172–183. [Google Scholar] [CrossRef]
- Fruekilde, M.B.; Høy, C.E. Lymphatic Fat Absorption Varies among Rats Administered Dairy Products Differing in Physiochemical Properties. J. Nutr. 2004, 134, 1110–1113. [Google Scholar] [CrossRef]
- Clemente, G.; Mancini, M.; Nazzaro, F.; Lasorella, G.; Rivieccio, A.; Palumbo, A.M.; Rivellese, A.A.; Ferrara, L.; Giacco, R. Effects of Different Dairy Products on Postprandial Lipemia. Nutr. Metab. Cardiovasc. Dis. 2003, 13, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Vors, C.; Pineau, G.; Gabert, L.; Drai, J.; Louche-Peĺissier, C.; Defoort, C.; Lairon, D.; Deśage, M.; Danthine, S.; Lambert-Porcheron, S.; et al. Modulating Absorption and Postprandial Handling of Dietary Fatty Acids by Structuring Fat in the Meal: A Randomized Crossover Clinical Trial. Am. J. Clin. Nutr. 2013, 97, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Tholstrup, T.; Høy, C.E.; Andersen, L.N.; Christensen, R.D.K.; Sandström, B. Does Fat in Milk, Butter and Cheese Affect Blood Lipids and Cholesterol Differently? J. Am. Coll. Nutr. 2004, 23, 169–176. [Google Scholar] [CrossRef]
- Soerensen, K.V.; Thorning, T.K.; Astrup, A.; Kristensen, M.; Lorenzen, J.K. Effect of Dairy Calcium from Cheese and Milk on Fecal Fat Excretion, Blood Lipids, and Appetite in Young Men. Am. J. Clin. Nutr. 2014, 99, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, J.K.; Jensen, S.K.; Astrup, A. Milk Minerals Modify the Effect of Fat Intake on Serum Lipid Profile: Results from an Animal and a Human Short-Term Study. Br. J. Nutr. 2014, 111, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, J.K.; Nielsen, S.; Holst, J.J.; Tetens, I.; Rehfeld, J.F.; Astrup, A. Effect of Dairy Calcium or Supplementary Calcium Intake on Postprandial Fat Metabolism, Appetite, and Subsequent Energy Intake. Am. J. Clin. Nutr. 2007, 85, 678–687. [Google Scholar] [CrossRef]
- Talsma, E.F.; Moretti, D.; Ly, S.C.; Dekkers, R.; van den Heuvel, E.G.; Fitri, A.; Boelsma, E.; Stomph, T.J.; Zeder, C.; Melse-Boonstra, A. Zinc Absorption from Milk Is Affected by Dilution but Not by Thermal Processing, and Milk Enhances Absorption of Zinc from High-Phytate Rice in Young Dutch Women. J. Nutr. 2017, 147, 1086–1093. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Influence of Dairy Products on Bioavailability of Zinc from Other Food Products: A Review of Complementarity at a Meal Level. Nutrients 2021, 13, 4253. [Google Scholar] [CrossRef]
- Fanelli, N.S.; Bailey, H.M.; Guardiola, L.V.; Stein, H.H. Values for Digestible Indispensable Amino Acid Score (DIAAS) Determined in Pigs Are Greater for Milk Than for Breakfast Cereals, but DIAAS Values for Individual Ingredients Are Additive in Combined Meals. J. Nutr. 2021, 151, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, N.S.; Bailey, H.M.; Thompson, T.W.; Delmore, R.; Nair, M.N.; Stein, H.H. Digestible Indispensable Amino Acid Score (DIAAS) Is Greater in Animal-Based Burgers than in Plant-Based Burgers If Determined in Pigs. Eur. J. Nutr. 2022, 61, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Schop, M.; de Boer, I.J.M.; Huppertz, T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients 2022, 14, 947. [Google Scholar] [CrossRef] [PubMed]
- Van den Borne, J.J.G.C.; Alferink, S.J.J.; Heetkamp, M.J.W.; Jacobs, A.A.A.; Verstegen, M.W.A.; Gerrits, W.J.J. Asynchronous Supply of Indispensable Amino Acids Reduces Protein Deposition in Milk-Fed Calves. J. Nutr. 2012, 142, 2075–2082. [Google Scholar] [CrossRef]
- Kashyap, S.; Shivakumar, N.; Varkey, A.; Preston, T.; Devi, S.; Kurpad, A.V. Co-Ingestion of Black Tea Reduces the Indispensable Amino Acid Digestibility of Hens’ Egg in Indian Adults. J. Nutr. 2019, 149, 1363–1368. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huppertz, T.; Shkembi, B.; Brader, L.; Geurts, J. Dairy Matrix Effects: Physicochemical Properties Underlying a Multifaceted Paradigm. Nutrients 2024, 16, 943. https://doi.org/10.3390/nu16070943
Huppertz T, Shkembi B, Brader L, Geurts J. Dairy Matrix Effects: Physicochemical Properties Underlying a Multifaceted Paradigm. Nutrients. 2024; 16(7):943. https://doi.org/10.3390/nu16070943
Chicago/Turabian StyleHuppertz, Thom, Blerina Shkembi, Lea Brader, and Jan Geurts. 2024. "Dairy Matrix Effects: Physicochemical Properties Underlying a Multifaceted Paradigm" Nutrients 16, no. 7: 943. https://doi.org/10.3390/nu16070943
APA StyleHuppertz, T., Shkembi, B., Brader, L., & Geurts, J. (2024). Dairy Matrix Effects: Physicochemical Properties Underlying a Multifaceted Paradigm. Nutrients, 16(7), 943. https://doi.org/10.3390/nu16070943