Sodium and Human Health: What Can Be Done to Improve Sodium Balance beyond Food Processing?
Abstract
:1. Introduction
2. Impact of Governmental Interventions: The Canadian Experience
3. Potential Contribution of the Food Industry
4. What Can Be Done beyond Food Processing to Reduce the Sodium Content of Food?
5. Modulation of Salt Taste of Food According to Consumer Preferences
6. Adopting the DASH Diet
7. Education on Salt Alternatives
8. Using Digital Strategies to Reduce Salt Intake
9. Modification of Certain Eating Behaviours
10. Effects of Physical Activity and Aerobic Fitness
11. Intervening on the Gut Microbiome
12. Conclusions
Funding
Conflicts of Interest
References
- Fitzsimons, J.T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 1998, 78, 583–686. [Google Scholar] [CrossRef] [PubMed]
- B.C. Cook Articulation Committee. Salt. In Understanding Ingredients for the Canadian Bake; BC Cook Articulation Committee: Victoria, BC, Canada, 2015. [Google Scholar]
- Henney, J.E.; Taylor, C.L.; Boon, C.S. Strategies to Reduce Sodim Intake in the United States; IoM CoStRS, Ed.; National Academy of Sciences: Washington, DC, USA, 2010. [Google Scholar]
- Man, C.M.D. Technological functions of salt in food products. In Reducing Salt in Foods; Da Kilcast, A.F., Ed.; Woodhead Publishing: Sawston, UK, 2007; pp. 157–173. [Google Scholar]
- Wang, J.; Huang, X.H.; Zhang, Y.Y.; Li, S.; Dong, X.; Qin, L. Effect of sodium salt on meat products and reduction sodium strategies—A review. Meat Sci. 2023, 205, 109296. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Singh, G.M.; Powles, J. Sodium and cardiovascular disease. N. Engl. J. Med. 2014, 371, 2138–2139. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.D. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar]
- WHO. WHO Global Report on Sodium Intake Reduction; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Eyles, H.; Webster, J.; Jebb, S.; Capelin, C.; Neal, B.; Ni Mhurchu, C. Impact of the UK voluntary sodium reduction targets on the sodium content of processed foods from 2006 to 2011: Analysis of household consumer panel data. Prev. Med. 2013, 57, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Levings, J.; Cogswell, M.; Curtis, C.J.; Gunn, J.; Neiman, A.; Angell, S.Y. Progress toward sodium reduction in the United States. Rev. Panam. Salud Publica 2012, 32, 301–306. [Google Scholar] [CrossRef]
- Rosewarne, E.; Santos, J.A.; Trieu, K.; Tekle, D.; Mhurchu, C.N.; Jones, A.; Ide, N.; Yamamoto, R.; Nishida, C.; Webster, J. A Global Review of National Strategies to Reduce Sodium Concentrations in Packaged Foods. Adv. Nutr. 2022, 13, 1820–1833. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.A.; Sparks, E.; Thout, S.R.; McKenzie, B.; Trieu, K.; Hoek, A.; Johnson, C.; McLean, R.; Arcand, J.; Campbell, N.R.C.; et al. The Science of Salt: A global review on changes in sodium levels in foods. J. Clin. Hypertens. 2019, 21, 1043–1056. [Google Scholar] [CrossRef]
- Wang, N.X.; Skeaff, S.; Cameron, C.; Fleming, E.; McLean, R.M. Sodium in the New Zealand diet: Proposed voluntary food reformulation targets will not meet the WHO goal of a 30% reduction in total sodium intake. Eur. J. Nutr. 2022, 61, 3067–3076. [Google Scholar] [CrossRef]
- Canada, H. Socium Intake of Canadians in 2017; Canada.ca: Toronto, ON, Canada, 2018; H164-233/2018E-PDF 2018. [Google Scholar]
- Canada, H. Front-of-Pack Nutrition Labelling; National Academies Press: Washington, DC, USA, 2022. [Google Scholar]
- Corriveau, A.P.J.; Pomerleau, S.; Gagnon, P.; Phéaume, C.J.; Provencher, V. Portrait Initial de 15 Catégories D’aliments Transformés Disponibles Dans Les Marchés D’alimentation au Québec, 2016–2022; Observatoire de la Qualité de L’offre Alimentaire: Québec City, QC, Canada, 2024. [Google Scholar]
- Santos, J.A.; Tekle, D.; Rosewarne, E.; Flexner, N.; Cobb, L.; Al-Jawaldeh, A.; Kim, W.J.; Breda, J.; Whiting, S.; Campbell, N.; et al. A Systematic Review of Salt Reduction Initiatives Around the World: A Midterm Evaluation of Progress Towards the 2025 Global Non-Communicable Diseases Salt Reduction Target. Adv. Nutr. 2021, 12, 1768–1780. [Google Scholar] [CrossRef]
- Cobb, L.K.; Appel, L.J.; Anderson, C.A. Strategies to reduce dietary sodium intake. Curr. Treat. Options Cardiovasc. Med. 2012, 14, 425–434. [Google Scholar] [CrossRef]
- Dunteman, A.; Yang, Y.; McKenzie, E.; Lee, Y.; Lee, S.-Y. Sodium reduction technologies applied to bread products and their impact on sensory properties: A review. Int. J. Food Sci. Technol. 2021, 56, 4396–4407. [Google Scholar] [CrossRef]
- Dunteman, A.N.; McKenzie, E.N.; Yang, Y.; Lee, Y.; Lee, S.Y. Compendium of sodium reduction strategies in foods: A scoping review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1300–1335. [Google Scholar] [CrossRef]
- Dunteman, A.N.; Lee, Y.; Lee, S.Y. A qualitative look at perception and experience of sodium reduction strategies in the food industry through focus groups and individual interviews. J. Food Sci. 2023, 88, 2203–2216. [Google Scholar] [CrossRef] [PubMed]
- Loren, N.; Niimi, J.; Hoglund, E.; Albin, R.; Rytter, E.; Bjerre, K.; Nielsen, T. Sodium reduction in foods: Challenges and strategies for technical solutions. J. Food Sci. 2023, 88, 885–900. [Google Scholar] [CrossRef]
- Nurmilah, S.; Cahyana, Y.; Utama, G.L.; Ait-Kaddour, A. Strategies to Reduce Salt Content and Its Effect on Food Characteristics and Acceptance: A Review. Foods 2022, 11, 3120. [Google Scholar] [CrossRef]
- O’Sullivan, M.G. Salt, Fat and Sugar Reduction: Sensory Approaches for Nutritional Reformulation of Foods and Beverages; Woodhead Publishing: Duxford, UK, 2020. [Google Scholar]
- Mitchell, M.; Brunton, N.P.; Wilkinson, M.G. Current salt reduction strategies and their effect on sensory acceptability: A study with reduced salt ready-meals. Eur. Food Res. Technol. 2011, 232, 529–539. [Google Scholar] [CrossRef]
- Li, Y.L.; Han, K.N.; Feng, G.X.; Wan, Z.L.; Wang, G.S.; Yang, X.Q. Salt reduction in bread via enrichment of dietary fiber containing sodium and calcium. Food Funct. 2021, 12, 2660–2671. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Tang, Y.; Hu, Y.; Lu, Y.; Sun, Q.; Lv, Y.; Zhang, Q.; Wu, C.; Zhu, M.; He, Q.; et al. Sodium Reduction in Traditional Fermented Foods: Challenges, Strategies, and Perspectives. J. Agric. Food Chem. 2021, 69, 8065–8080. [Google Scholar] [CrossRef]
- Akgün, B.; Genc, S.; Cheng, Q.; Isik, O. Impacts of sodium chloride reduction in tomato soup system using potassium chloride and amino acids. Czech J. Food Sci. 2019, 37, 93–98. [Google Scholar]
- Walker, J.C.; Dando, R. Sodium Replacement with KCl and MSG: Attitudes, Perception and Acceptance in Reduced Salt Soups. Foods 2023, 12, 2063. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Lee, S.M.; Kim, K.O. Use of Consumer Acceptability as a Tool to Determine the Level of Sodium Reduction: A Case Study on Beef Soup Substituted With Potassium Chloride and Soy-Sauce Odor. J. Food Sci. 2015, 80, S2570–S2577. [Google Scholar] [CrossRef] [PubMed]
- De Assis, F.S.; Rebellato, A.P.; Pallone, J.A.L.; Behrens, J.H. Salt reduction in potato chips using microparticulated salt and spices: A sensory study with consumers. J. Sens. Stud. 2022, 37, e12772. [Google Scholar] [CrossRef]
- Kwon, T.; Lee, H.; Choi, J.; Kim, K.; Kim, A.Y. Potential Reduction of Salt Consumption by Preparing Noodles with Entrapped NaCl in Mycelial Cell Wall Cavities of Lentinus edodes. Food Bioprocess Technol. 2019, 12, 704–713. [Google Scholar] [CrossRef]
- Rios-Mera, J.D.; Selani, M.M.; Patinho, I.; Saldaña, E.; Contreras-Castillo, C.J. Modification of NaCl structure as a sodium reduction strategy in meat products: An overview. Meat Sci. 2021, 174, 108417. [Google Scholar] [CrossRef]
- Buechler, A.E.; Lee, S.Y. Consumer Acceptance of Reduced Sodium Potato Chips and Puffed Rice: How Does Ingredient Information and Education Influence Liking? J. Food Sci. 2019, 84, 3763–3773. [Google Scholar] [CrossRef] [PubMed]
- Jinap, S.; Hajeb, P.; Karim, R.; Norliana, S.; Yibadatihan, S.; Abdul-Kadir, R. Reduction of sodium content in spicy soups using monosodium glutamate. Food Nutr. Res. 2016, 60, 30463. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Qin, X.; li, L.; Guo, H.; Li, P. Study on Salt Reduction of Yeast Extract and Its Application in Broth Powder. Sci. Technol. Food Ind. 2022, 43, 307–314. [Google Scholar]
- Park, H.-S.; Cho, H.-Y.; Shin, J.-K. Sodium reduction in salad dressing using fermented soy sauce. Food Eng. Prog. 2015, 19, 167–171. [Google Scholar]
- Kieliszek, M.; Misiewicz, A. Microbial transglutaminase and its application in the food industry A review. Folia Microbiol. 2014, 59, 241–250. [Google Scholar] [CrossRef]
- James, S.; James, C. Minimal Processing of Ready Meals. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 599–612. [Google Scholar]
- Zhang, R.; Realini, C.E.; Kim, Y.H.B.; Farouk, M.M. Challenges and processing strategies to produce high quality frozen meat. Meat Sci. 2023, 205, 109311. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Yildirim, S.; Rocker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Song, H.; Zou, T.; Raza, A.; Li, P.; Li, K.; Xiong, J. Reduction of sodium chloride: A review. J. Sci. Food Agric. 2022, 102, 3931–3939. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Pashaei, M.; Zare, L.; Khalili Sadrabad, E.; Hosseini Sharif Abad, A.; Mollakhalili-Meybodi, N.; Abedi, A.S. The impacts of salt reduction strategies on technological characteristics of wheat bread: A review. J. Food Sci. Technol. 2022, 59, 4141–4151. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-H. A salt substitute with low sodium content from plant aqueous extracts. Food Res. Int. 2011, 44, 537–543. [Google Scholar] [CrossRef]
- Aprilia, G.H.S.; Kim, H.S. Development of strategies to manufacture low-salt meat products—A review. J. Anim. Sci. Technol. 2022, 64, 218–234. [Google Scholar] [CrossRef]
- Triki, M.; Khemakhem, I.; Trigui, I.; Ben Salah, R.; Jaballi, S.; Ruiz-Capillas, C.; Ayadi, M.A.; Attia, H.; Besbes, S. Free-sodium salts mixture and AlgySalt(R) use as NaCl substitutes in fresh and cooked meat products intended for the hypertensive population. Meat Sci. 2017, 133, 194–203. [Google Scholar] [CrossRef]
- Skřivan, P.; Sluková, M.; Švec, I.; Čížková, H.; Horsáková, I.; Rezková, E. The use of modern fermentation techniques in the production of traditional wheat bread. Czech J. Food Sci. 2023, 41, 173–181. [Google Scholar] [CrossRef]
- Cauvain, S.P. Reduced salt in bread and other baked products. In Reducing Salt in Foods; Angus, D.K.F., Ed.; Woodhead Publishing: Duxford, UK, 2007; pp. 283–295. [Google Scholar] [CrossRef]
- Pétel, C.; Onno, B.; Prost, C. Sourdough volatile compounds and their contribution to bread: A review. Trends Food Sci. Technol. 2017, 59, 105–123. [Google Scholar] [CrossRef]
- Batenburg, M.; Velden, R. Saltiness enhancement by savory aroma compounds. J. Food Sci. 2011, 76, S280–S288. [Google Scholar] [CrossRef] [PubMed]
- Chokumnoyporn, N.; Sriwattana, S.; Phimolsiripol, Y.; Torrico, D.D.; Prinyawiwatkul, W. Soy sauce odour induces and enhances saltiness perception. Int. J. Food Sci. Technol. 2015, 50, 2215–2221. [Google Scholar] [CrossRef]
- Freire, T.V.M.; Freire, D.O.; de Souza, V.R.; Gonçalves, C.S.; Carneiro, J.d.D.S.; Nunes, C.A.; Pinheiro, A.C.M. Salting Potency and Time-Intensity Profile of Microparticulated Sodium Chloride in Shoestring Potatoes. J. Sens. Stud. 2015, 30, 1–9. [Google Scholar] [CrossRef]
- Rama, R.; Chiu, N.; Da Silva, M.C.; Hewson, L.; Hort, J.; Fisk, I.D. Impact of Salt Crystal Size on in-Mouth Delivery of Sodium and Saltiness Perception from Snack Foods. J. Texture Stud. 2013, 44, 338–345. [Google Scholar] [CrossRef]
- Story, M.; Kaphingst, K.M.; O’Brien, R.; Glanz, K. Creating healthy food and eating environments: Policy and environmental approaches. Annu. Rev. Public. Health 2008, 29, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Arcand, J.; Au, J.T.; Schermel, A.; L’Abbe, M.R. A comprehensive analysis of sodium levels in the Canadian packaged food supply. Am. J. Prev. Med. 2014, 46, 633–642. [Google Scholar] [CrossRef]
- Arcand, J.; Blanco-Metzler, A.; Benavides Aguilar, K.; L’Abbe, M.R.; Legetic, B. Sodium Levels in Packaged Foods Sold in 14 Latin American and Caribbean Countries: A Food Label Analysis. Nutrients 2019, 11, 369. [Google Scholar] [CrossRef]
- Blanco-Metzler, A.; Vega-Solano, J.; Franco-Arellano, B.; Allemandi, L.; Larroza, R.B.; Saavedra-Garcia, L.; Weippert, M.; Sivakumar, B.; Benavides-Aguilar, K.; Tiscornia, V.; et al. Changes in the Sodium Content of Foods Sold in Four Latin American Countries: 2015 to 2018. Nutrients 2021, 13, 4108. [Google Scholar] [CrossRef]
- Brown, I.J.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef]
- McMahon, E.; Webster, J.; Brimblecombe, J. Effect of 25% Sodium Reduction on Sales of a Top-Selling Bread in Remote Indigenous Australian Community Stores: A Controlled Intervention Trial. Nutrients 2017, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Lobo, C.P.; Ferreira, T. Hedonic thresholds and ideal sodium content reduction of bread loaves. Food Res. Int. 2021, 140, 110090. [Google Scholar] [CrossRef] [PubMed]
- El Ati, J.; Doggui, R.; El Ati-Hellal, M. A Successful Pilot Experiment of Salt Reduction in Tunisian Bread: 35% Gradual Decrease of Salt Content without Detection by Consumers. Int. J. Environ. Res. Public. Health 2021, 18, 1590. [Google Scholar] [CrossRef] [PubMed]
- Codină, G.G.; Voinea, A.; Dabija, A. Strategies for reducing sodium intake in bakery products: A review. Appl. Sci. 2021, 11, 3093. [Google Scholar] [CrossRef]
- Campbell, A.P. DASH Eating Plan: An Eating Pattern for Diabetes Management. Diabetes Spectr. 2017, 30, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R., III; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Saneei, P.; Salehi-Abargouei, A.; Esmaillzadeh, A.; Azadbakht, L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: A systematic review and meta-analysis on randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Fard, N.R.; Karimi, M.; Baghaei, M.H.; Surkan, P.J.; Rahimi, M.; Esmaillzadeh, A.; Willett, W.C. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: A randomized crossover clinical trial. Diabetes Care 2011, 34, 55–57. [Google Scholar] [CrossRef]
- Paula, T.P.; Viana, L.V.; Neto, A.T.; Leitao, C.B.; Gross, J.L.; Azevedo, M.J. Effects of the DASH Diet and Walking on Blood Pressure in Patients With Type 2 Diabetes and Uncontrolled Hypertension: A Randomized Controlled Trial. J. Clin. Hypertens. 2015, 17, 895–901. [Google Scholar] [CrossRef]
- Appel, L.J.; Champagne, C.M.; Harsha, D.W.; Cooper, L.S.; Obarzanek, E.; Elmer, P.J.; Stevens, V.J.; Vollmer, W.M.; Lin, P.H.; Svetkey, L.P.; et al. Effects of comprehensive lifestyle modification on blood pressure control: Main results of the PREMIER clinical trial. JAMA 2003, 289, 2083–2093. [Google Scholar] [CrossRef]
- Nicoll, R.; Henein, M.Y. Hypertension and lifestyle modification: How useful are the guidelines? Br. J. Gen. Pract. 2010, 60, 879–880. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Fulgoni, V.L., III; Hopfer, H.; Hayes, J.E.; Gooding, R.; Kris-Etherton, P. Using Herbs/Spices to Enhance the Flavor of Commonly Consumed Foods Reformulated to Be Lower in Overconsumed Dietary Components Is an Acceptable Strategy and Has the Potential to Lower Intake of Saturated Fat and Sodium: A National Health and Nutrition Examination Survey Analysis and Blind Tasting. J. Acad. Nutr. Diet. 2024, 124, 15–27.e11. [Google Scholar] [CrossRef] [PubMed]
- Brand, A.; Visser, M.E.; Schoonees, A.; Naude, C.E. Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women. Cochrane Database Syst. Rev. 2022, 8, CD015207. [Google Scholar] [CrossRef] [PubMed]
- Jarrar, A.H.; Al Dhaheri, A.S.; Lightowler, H.; Cheikh Ismail, L.; Al-Meqbaali, F.; Bataineh, M.F.; Alhefeiti, A.; Albreiki, M.; Albadi, N.; Alkaabi, S.; et al. Using Digital Platform Approach to Reduce Salt Intake in a Sample of UAE Population: An Intervention Study. Front. Public Health 2022, 10, 860835. [Google Scholar] [CrossRef]
- Alnooh, G.; Alessa, T.; Noorwali, E.; Albar, S.; Williams, E.; de Witte, L.P.; Hawley, M.S. Identification of the Most Suitable Mobile Apps to Support Dietary Approaches to Stop Hypertension (DASH) Diet Self-Management: Systematic Search of App Stores and Content Analysis. Nutrients 2023, 15, 3476. [Google Scholar] [CrossRef]
- Alnooh, G.; Alessa, T.; Hawley, M.; de Witte, L. The Use of Dietary Approaches to Stop Hypertension (DASH) Mobile Apps for Supporting a Healthy Diet and Controlling Hypertension in Adults: Systematic Review. JMIR Cardio 2022, 6, e35876. [Google Scholar] [CrossRef]
- Miller, H.N.; Berger, M.B.; Askew, S.; Kay, M.C.; Hopkins, C.M.; Iragavarapu, M.S.; de Leon, M.; Freed, M.; Barnes, C.N.; Yang, Q.; et al. The Nourish Protocol: A digital health randomized controlled trial to promote the DASH eating pattern among adults with hypertension. Contemp. Clin. Trials 2021, 109, 106539. [Google Scholar] [CrossRef]
- Sookrah, R.; Dhowtal, J.D.; Nagowah, S.D. A DASH diet recommendation system for hypertensive patients using machine learning. In Proceedings of the 7th International Conference on Information and Communication Technology, Kuala Lumpur, Malaysia, 24–26 July 2019; pp. 1–6. [Google Scholar]
- Loucks, E.B.; Kronish, I.M.; Saadeh, F.B.; Scarpaci, M.M.; Proulx, J.A.; Gutman, R.; Britton, W.B.; Schuman-Olivier, Z. Adapted Mindfulness Training for Interoception and Adherence to the DASH Diet: A Phase 2 Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2339243. [Google Scholar] [CrossRef]
- Betancourt-Nunez, A.; Torres-Castillo, N.; Martinez-Lopez, E.; De Loera-Rodriguez, C.O.; Duran-Barajas, E.; Marquez-Sandoval, F.; Bernal-Orozco, M.F.; Garaulet, M.; Vizmanos, B. Emotional Eating and Dietary Patterns: Reflecting Food Choices in People with and without Abdominal Obesity. Nutrients 2022, 14, 1371. [Google Scholar] [CrossRef]
- Nguyen-Michel, S.T.; Unger, J.B.; Spruijt-Metz, D. Dietary correlates of emotional eating in adolescence. Appetite 2007, 49, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Meza, J.; Gonzalez-Rocha, A.; Campos-Nonato, I.; Nilson, E.A.F.; Basto-Abreu, A.; Barquera, S.; Denova-Gutierrez, E. Effective and Scalable Interventions to Reduce Sodium Intake: A Systematic Review and Meta-Analysis. Curr. Nutr. Rep. 2023, 12, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Grimes, C.A.; Wright, J.D.; Liu, K.; Nowson, C.A.; Loria, C.M. Dietary sodium intake is associated with total fluid and sugar-sweetened beverage consumption in US children and adolescents aged 2–18 y: NHANES 2005–2008. Am. J. Clin. Nutr. 2013, 98, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, F.J.; MacGregor, G.A. High salt intake: Independent risk factor for obesity? Hypertension 2015, 66, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.S.; Firestone, M.J.; Beasley, J.M. Independent associations of sodium intake with measures of body size and predictive body fatness. Obesity 2015, 23, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Li, J.; Yu, Y.; Song, Y. A positive association between dietary sodium intake and obesity and central obesity: Results from the National Health and Nutrition Examination Survey 1999–2006. Nutr. Res. 2018, 55, 33–44. [Google Scholar] [CrossRef]
- Tremblay, A.; Perusse, L.; Bertrand, C.; Jacob, R.; Couture, C.; Drapeau, V. Effects of sodium intake and cardiorespiratory fitness on body composition and genetic susceptibility to obesity: Results from the Quebec Family Study. Br. J. Nutr. 2023, 129, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Tonnies, T.; Schlesinger, S.; Lang, A.; Kuss, O. Mediation Analysis in Medical Research. Dtsch. Arztebl. Int. 2023, 120, 681–687. [Google Scholar] [CrossRef]
- Lara, B.; Gallo-Salazar, C.; Puente, C.; Areces, F.; Salinero, J.J.; Del Coso, J. Interindividual variability in sweat electrolyte concentration in marathoners. J. Int. Soc. Sports Nutr. 2016, 13, 31. [Google Scholar] [CrossRef]
- Braconnier, P.; Loncle, N.; Lourenco, J.D.S.; Guérin, H.; Burnier, M.; Pruijm, M. Sodium concentration of sweat correlates with dietary sodium intake. J. Hypertens. 2018, 36, e170. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Gu, D.; Chen, J.; Huang, J.F.; Cao, J.; Chen, J.C.; Li, J.; Lu, F.; Mu, J.; Ma, J.; et al. Physical activity reduces salt sensitivity of blood pressure: The Genetic Epidemiology Network of Salt Sensitivity Study. Am. J. Epidemiol. 2012, 176 (Suppl. S7), S106–S113. [Google Scholar] [CrossRef] [PubMed]
- Kitada, K.; Daub, S.; Zhang, Y.; Klein, J.D.; Nakano, D.; Pedchenko, T.; Lantier, L.; LaRocque, L.M.; Marton, A.; Neubert, P.; et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Invest. 2017, 127, 1944–1959. [Google Scholar] [CrossRef] [PubMed]
- Carraro, F.; Kimbrough, T.D.; Wolfe, R.R. Urea kinetics in humans at two levels of exercise intensity. J. Appl. Physiol. (1985) 1993, 75, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Falduto, M.T.; Czerwinski, S.M.; Hickson, R.C. Glucocorticoid-induced muscle atrophy prevention by exercise in fast-twitch fibers. J. Appl. Physiol. (1985) 1990, 69, 1058–1062. [Google Scholar] [CrossRef]
- Choi, B.S.; Brunelle, L.; Pilon, G.; Cautela, B.G.; Tompkins, T.A.; Drapeau, V.; Marette, A.; Tremblay, A. Lacticaseibacillus rhamnosus HA-114 improves eating behaviors and mood-related factors in adults with overweight during weight loss: A randomized controlled trial. Nutr. Neurosci. 2023, 26, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.; Darimont, C.; Drapeau, V.; Emady-Azar, S.; Lepage, M.; Rezzonico, E.; Ngom-Bru, C.; Berger, B.; Philippe, L.; Ammon-Zuffrey, C.; et al. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Br. J. Nutr. 2014, 111, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mahler, A.; Balogh, A.; Marko, L.; et al. Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature 2017, 551, 585–589. [Google Scholar] [CrossRef]
- Wyatt, C.M.; Crowley, S.D. Intersection of salt- and immune-mediated mechanisms of hypertension in the gut microbiome. Kidney Int. 2018, 93, 532–534. [Google Scholar] [CrossRef]
Strategy | Examples | Reduction Rate Achieved (Range) | Food Categories Where the Strategy Is Applied | References | |
---|---|---|---|---|---|
Reduction in sodium content in the formulation | Reduction in salt content added to formulations | Radically reduce added salt. Gradually reduce added salt | Reduction between 0 and 50% in sodium content | Processed meat and poultry products, bread, crackers, snack foods, salad dressings, soups, sauces, broths | [19] |
Up to 40% | Ready-to-eat meals | [25] | |||
Substituting high-sodium ingredients with low-sodium alternatives | Substitute versions of crushed tomatoes, sauces, broths, regular spices with their reduced sodium alternatives | ||||
Substitution of salt with alternatives containing little or less sodium | Use of potassium chloride (KCl), calcium chloride (CaCl2), magnesium chloride (MgCl2) | 0–50% (KCl) | Bread | [19,26] | |
30–75% (KCl and mixtures) | Dairy products (cheese) | [27] | |||
20–33% (KCl and mixtures) | Processed meat products (sausages) | [27] | |||
30–50% (KCl and mixtures) | Seafood (smoked fish, sauce) | [27] | |||
Up to 40% (KCl) | Soups | [28] | |||
18% (KCl + MSG) | Soups | [29] | |||
Up to 75% (KCl + soy sauce odor) | Soups | [30] | |||
Use of mineral salt mixtures, sea salt | |||||
Use of structurally modified salts | Use micronized, flaked, liquefied, encapsulated salts | Up to 65% | Potato chips | [31] | |
n.d. NaCl trapped in duckweed | Soup noodles | [32] | |||
Up to 25–50% | Crackers | [20] | |||
Up to 33% | Meat products | [33] | |||
Addition of ingredients to formulations to compensate for the effects associated with sodium reduction | Addition of flavour enhancers/maskers | Add yeast extract, amino acids, algae, vegetable extracts or powder (mushrooms, tomatoes, etc.), spices to formulations | Up to 65% | Potato chips | [31] |
12.25% | Potato chips | [34] | |||
18–57% | Bread | [19] | |||
22% | Processed meat products (ham) | [27] | |||
Up to 40% | Soups | [28] | |||
32.5% (MSG) | Soups | [35] | |||
20% (yeast extract) | Soups | [36] | |||
18% (KCl + MSG) | Soups | [29] | |||
n.d. (fermented soy sauce) | Dressings | [37] | |||
Addition of textural agents | Add dietary fibre, proteins, food gums, enzymes to formulations | Up to 20% | Bread | [26] | |
Processed meat products | [38] | ||||
Addition of antimicrobial agents | Add to formulations weak organic acids and its salts, nitrates/nitrites, phosphates, modified vinegar and fermentation products, biopreservative microbial cultures and bacteriocins, essential oils, plant extracts, phenolic compounds | 10–50% using bioprotective cultures | Various products (miso/soy sauce, cheeses, sausages) | [27] | |
Modification or addition to manufacturing processes to compensate for the effects associated with sodium reduction | Use of conservation processes | Use pasteurization, cold pasteurization (high hydrostatic pressure (HPP)), refrigeration/freezing, under vacuum and other emerging technologies (microwave, electric fields/pulsed light, ultrasound) | n.d. Freezing/deep-freezing techniques | Frozen meals | [39,40] |
Use of active packaging for conservation | Use modified atmosphere, vacuum, antimicrobial packaging with intelligent indicators | n.d. (active packaging) | Processed meat products | [41,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremblay, A.; Gagné, M.-P.; Pérusse, L.; Fortier, C.; Provencher, V.; Corcuff, R.; Pomerleau, S.; Foti, N.; Drapeau, V. Sodium and Human Health: What Can Be Done to Improve Sodium Balance beyond Food Processing? Nutrients 2024, 16, 1199. https://doi.org/10.3390/nu16081199
Tremblay A, Gagné M-P, Pérusse L, Fortier C, Provencher V, Corcuff R, Pomerleau S, Foti N, Drapeau V. Sodium and Human Health: What Can Be Done to Improve Sodium Balance beyond Food Processing? Nutrients. 2024; 16(8):1199. https://doi.org/10.3390/nu16081199
Chicago/Turabian StyleTremblay, Angelo, Marie-Pascale Gagné, Louis Pérusse, Catherine Fortier, Véronique Provencher, Ronan Corcuff, Sonia Pomerleau, Nicoletta Foti, and Vicky Drapeau. 2024. "Sodium and Human Health: What Can Be Done to Improve Sodium Balance beyond Food Processing?" Nutrients 16, no. 8: 1199. https://doi.org/10.3390/nu16081199
APA StyleTremblay, A., Gagné, M. -P., Pérusse, L., Fortier, C., Provencher, V., Corcuff, R., Pomerleau, S., Foti, N., & Drapeau, V. (2024). Sodium and Human Health: What Can Be Done to Improve Sodium Balance beyond Food Processing? Nutrients, 16(8), 1199. https://doi.org/10.3390/nu16081199