The Association of Malnutrition and Health-Related Factors among 474,467 Older Community-Dwellers: A Population-Based Data Mining Study in Guangzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. The Monitoring System of Health Management Service for Older Adults
2.2.1. Socio-Demographic Characteristics
2.2.2. Health-Related Factors
2.2.3. Malnutrition Measurement
2.3. Ethics Approval
3. Statistical Analysis
4. Results
4.1. Participant Selection
4.2. Participant Characteristics
4.3. Prevalence of Malnutrition and Its Three Patterns
4.4. Potential Influencing Factors and Interactions
4.5. Association Factors Validated by Logistic Regression
4.6. Sensitive Analysis
5. Discussion
6. Strengths and Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. World Population Ageing 2020: Highlights; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Jiang, Q.; Feng, Q. Editorial: Aging and health in China. Front. Public Health 2022, 10, 998769. [Google Scholar] [CrossRef] [PubMed]
- Statistics NBO. Bulletin of the Seventh National Population Census (NO. 5). 2021. Available online: https://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202105/t20210511_1817200.html (accessed on 10 December 2023).
- Poda, G.G.; Hsu, C.; Rau, H.; Chao, J.C. Impact of socio-demographic factors, lifestyle and health status on nutritional status among the elderly in Taiwan. Nutr. Res. Pract. 2019, 13, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Haboubi, N. Assessment and management of nutrition in older people and its importance to health. Clin. Interv. Aging. 2010, 5, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Abizanda, P.; Sinclair, A.; Barcons, N.; Lizán, L.; Rodríguez-Mañas, L. Costs of Malnutrition in Institutionalized and Community-Dwelling Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2016, 17, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Kong, D.; Peng, J.; Wang, Z.; Chen, Y. Association of malnutrition with all-cause mortality in the elderly population: A 6-year cohort study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Madeira, T.; Peixoto-Plácido, C.; Goulão, B.; Mendonça, N.; Alarcão, V.; Santos, N.; de Oliveira, R.M.; Yngve, A.; Bye, A.; Bergland, A.; et al. National survey of the Portuguese elderly nutritional status: Study protocol. BMC Geriatr. 2016, 16, 139. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wu, J.; Liu, G.; Yu, Y.; Chen, B.; Liu, J.; Wang, J.; Yu, P.; Zhang, C.; Wu, J.; et al. Chinese expert consensus on prevention and intervention for the elderly with malnutrition (2022). Aging Med. 2022, 5, 191–203. [Google Scholar] [CrossRef]
- Dent, E.; Wright, O.R.L.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef] [PubMed]
- WHO. Malnutrition. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 10 December 2023).
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Tzioumis, E.; Adair, L.S. Childhood dual burden of under- and overnutrition in low- and middle-income countries: A critical review. Food Nutr. Bull. 2014, 35, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, S.; Claytor, L.; Partridge, J.; Goates, S. Prevalence and predictors of malnutrition in elderly Chinese adults: Results from the China Health and Retirement Longitudinal Study. Public Health Nutr. 2018, 21, 3129–3134. [Google Scholar] [CrossRef]
- Zhang, J.; Song, P.K.; Zhao, L.Y.; Sun, Y.; Yu, K.; Yin, J.; Pang, S.J.; Liu, Z.; Man, Q.Q.; He, L.; et al. Malnutrition in Relation with Dietary, Geographical, and Socioeconomic Factors among Older Chinese. Biomed Environ. Sci. 2021, 34, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, S.S.; Wang, J.W.; Liu, S.H.; Chen, S.M.; Li, X.H.; Yang, S.S.; Liu, M.; He, Y. Prevalence of malnutrition among elderly in the community of China: A Meta-analysis. Zhonghua Liu Xing Bing Xue Za Zhi 2022, 43, 915–921. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Q.; Wang, H.; Yuan, L.X.; Li, B.; Jing, M.J.; Luo, J.L.; Tang, J.; Ye, B.K.; Wang, P.X. The Unhealthy Lifestyle Factors Associated with an Increased Risk of Poor Nutrition among the Elderly Population in China. J. Nutr. Health Aging 2017, 21, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Gołębiowska, J.; Zimny-Zając, A.; Makuch, S.; Dróżdż, M.; Dudek, K.; Żórawska, J.; Mazur, G.; Agrawal, S. The impact of different types of diet on the prevention of diseases among polish inhabitants, including COVID-19 disease. Nutrients 2023, 15, 3947. [Google Scholar] [CrossRef] [PubMed]
- Papier, K.; Tong, T.Y.; Appleby, P.N.; Bradbury, K.E.; Fensom, G.K.; Knuppel, A.; Perez-Cornago, A.; Schmidt, J.A.; Travis, R.C.; Key, T.J. Comparison of major protein-source foods and other food groups in meat-eaters and non-meat-eaters in the epic-oxford cohort. Nutrients 2019, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Park, K. Adherence to a vegetarian diet and diabetes risk: A systematic review and meta-analysis of observational studies. Nutrients 2017, 9, 603. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, A.R.; Valenzuela, S.H.; Huguet, N.; Ukhanova, M.; Marino, M.; Lucas, J.A.; O’malley, J.; Schmidt, T.D.; Voss, R.; Peak, K.; et al. Prevalent multimorbidity combinations among middle-aged and older adults seen in community health centers. J. Gen. Intern. Med. 2022, 37, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Little, M.; Humphries, S.; Dodd, W.; Patel, K.; Dewey, C. Socio-demographic patterning of the individual-level double burden of malnutrition in a rural population in South India: A cross-sectional study. BMC Public Health 2020, 20, 675. [Google Scholar] [CrossRef] [PubMed]
- Nishide, R.; Ando, M.; Funabashi, H.; Yoda, Y.; Nakano, M.; Shima, M. Association of serum hs-CRP and lipids with obesity in school children in a 12-month follow-up study in Japan. Environ. Health Prev. Med. 2015, 20, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Gauci, R.; Hunter, M.; Bruce, D.G.; Davis, W.A.; Davis, T.M.E. Anemia complicating type 2 diabetes: Prevalence, risk factors and prognosis. J. Diabetes Complicat. 2017, 31, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Andersson, T.; Alfredsson, L.; Källberg, H.; Zdravkovic, S.; Ahlbom, A. Calculating measures of biological interaction. Eur. J. Epidemiol. 2005, 20, 575–579. [Google Scholar] [CrossRef]
- Crichton, M.; Craven, D.; Mackay, H.; Marx, W.; de van der Schueren, M.; Marshall, S. A systematic review, meta-analysis and meta-regression of the prevalence of protein-energy malnutrition: Associations with geographical region and sex. Age Ageing 2019, 48, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Damayanthi, H.D.W.T.; Moy, F.M.; Abdullah, K.L.; Dharmaratne, S.D. Prevalence of malnutrition and associated factors among community-dwelling older persons in Sri Lanka: A cross-sectional study. BMC Geriatr. 2018, 18, 199. [Google Scholar] [CrossRef] [PubMed]
- Kaburagi, T.; Hirasawa, R.; Yoshino, H.; Odaka, Y.; Satomi, M.; Nakano, M.; Fujimoto, E.; Kabasawa, K.; Sato, K. Nutritional status is strongly correlated with grip strength and depression in community-living elderly Japanese. Public Health Nutr. 2011, 14, 1893–1899. [Google Scholar] [CrossRef] [PubMed]
- Abate, T.; Mengistu, B.; Atnafu, A.; Derso, T. Malnutrition and its determinants among older adults people in Addis Ababa, Ethiopia. BMC Geriatr. 2020, 20, 498. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.H.; Alamri, S.H. Prevalence of malnutrition and associated factors among hospitalized elderly patients in King Abdulaziz University Hospital, Jeddah, Saudi Arabia. BMC Geriatr. 2017, 17, 136. [Google Scholar] [CrossRef] [PubMed]
- Boulos, C.; Salameh, P.; Barberger-Gateau, P. The AMEL study, a cross sectional population-based survey on aging and malnutrition in 1200 elderly Lebanese living in rural settings: Protocol and sample characteristics. BMC Public Health 2013, 13, 573. [Google Scholar] [CrossRef] [PubMed]
- Agarwalla, R.; Saikia, A.M.; Baruah, R. Assessment of the nutritional status of the elderly and its correlates. J. Fam. Community Med. 2015, 22, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Qian, Y.; Yu, S.; Ji, H.; Teliewubai, J.; Chi, C.; Lu, Y.; Zhou, Y.; Fan, X.; Li, J.; et al. Somatotype and Its Impact on Asymptomatic Target Organ Damage in the Elderly Chinese: The Northern Shanghai Study. Clin. Interv. Aging 2021, 16, 887–895. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Liu, D.; Hu, F.; Cheng, G.; Xu, L.; Yan, P.; Tian, Y.; Hu, H.; Yu, Y.; et al. Urban–Rural Disparities in the Association Between Body Mass Index and Cognitive Impairment in Older Adults: A Cross–Sectional Study in Central China. J. Alzheimer’s Dis. 2021, 83, 1741–1752. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Yuan, X.; Sun, Y.; Zhang, H.; Zhang, Y.; Xu, J. Anaemia and associated factors among older adults in an urban district in China: A large-scale cross-sectional study. BMJ Open 2022, 12, e56100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef] [PubMed]
- Yang, L. Analysis of Physical Examination Results and Related Factors of the Elderly in Chengdu. Master’s Thesis, Chengdu Medical College, Chengdu, China, 2023. (In Chinese). [Google Scholar]
- Fangfang, F.; Jie, W. Analysis of Health Examination Results for Elderly People Aged 65 and above in Haining City from 2016 to 2018. Zhongguo Xiangcun Yiyao 2020, 27, 50–51. (In Chinese) [Google Scholar] [CrossRef]
- Chan, W. Epidemiological Investigation of CKD and the Correlation with CVAI, LAP among Elderly People in Rural Areas of Yangzhou City. Master’s Thesis, Yangzhou University, Yangzhou, China, 2023. (In Chinese). [Google Scholar]
- Shi, M.; Wang, H.; Ming, Z.; Wu, Y.; Wang, X.; Shang, L.; Wu, X. Investigation and analysis of anemia status of the residents over 65 years old in Wuhan city. J. Med. Pest Control. 2020, 36, 993–995. (In Chinese) [Google Scholar]
- Hébuterne, X.; Bermon, S.; Schneider, S.M. Ageing and muscle: The effects of malnutrition, re-nutrition, and physical exercise. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Boirie, Y.; Morio, B.; Caumon, E.; Cano, N.J. Nutrition and protein energy homeostasis in elderly. Mech. Ageing Dev. 2014, 136–137, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Parra-Soto, S.; Gray, S.; Anderson, J.; Welsh, P.; Gill, J.; Sattar, N.; Ho, F.K.; Celis-Morales, C.; Pell, J.P. Vegetarians, fish, poultry, and meat-eaters: Who has higher risk of cardiovascular disease incidence and mortality? A prospective study from UK Biobank. Eur. Heart J. 2021, 42, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Petridou, A.; Siopi, A.; Mougios, V. Exercise in the management of obesity. Metabolism 2019, 92, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Saghafi-Asl, M.; Aliasgharzadeh, S.; Asghari-Jafarabadi, M. Factors influencing weight management behavior among college students: An application of the Health Belief Model. PLoS ONE 2020, 15, e228058. [Google Scholar] [CrossRef] [PubMed]
- Phielix, E.; Mensink, M. Type 2 Diabetes Mellitus and Skeletal Muscle Metabolic Function. Physiol/Behav. 2008, 94, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S. Diabetes: Support for those at risk of malnutrition in the community. Br. J. Community Nurs. 2012, 17, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, A. Nutritional requirements in malnutrition and diabetes mellitus. Nurs. Stand. 2018, 33, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Xiong, S.; Liu, D. The Gastrointestinal Tract: An Initial Organ of Metabolic Hypertension? Cell. Physiol. Biochem. 2016, 38, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C. The high prevalence of anemia in diabetes is linked to functional erythropoietin deficiency. Semin. Nephrol. 2006, 26, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Sano, M. A Role of Sodium-Glucose Co-Transporter 2 in Cardiorenal Anemia Iron Deficiency Syndrome. Int. J. Mol. Sci. 2023, 24, 5983. [Google Scholar] [CrossRef]
- Shi, R.; Duan, J.; Deng, Y.; Tu, Q.; Cao, Y.; Zhang, M.; Zhu, Q.; Lü, Y. Nutritional status of an elderly population in Southwest China: A cross-sectional study based on comprehensive geriatric assessment. J. Nutr. Health Aging 2015, 19, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Tamang, M.K.; Yadav, U.N.; Hosseinzadeh, H.; Kafle, B.; Paudel, G.; Khatiwada, S.; Sekaran, V.C. Nutritional assessment and factors associated with malnutrition among the elderly population of Nepal: A cross-sectional study. BMC Res. Notes 2019, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- Papathanail, I.; Abdur Rahman, L.; Brigato, L.; Bez, N.S.; Vasiloglou, M.F.; van der Horst, K.; Mougiakakou, S.; Abate, T. The Nutritional Content of Meal Images in Free-Living Conditions-Automatic Assessment with goFOODTM. Nutrients 2023, 15, 3835. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall n (%) | Malnutrition n (%) | Underweight n (%) | Obesity n (%) | Low Hemoglobin n (%) |
---|---|---|---|---|---|
n = 474,467 | n = 105,717 | n = 21,379 | n = 52,665 | n = 38,093 | |
Age | |||||
65–69 | 191,377 (40.33) | 41,715 (39.46) | 8397 (39.28) | 21,463 (40.75) | 14,228 (37.35) |
70–74 | 135,157 (28.49) | 29,717 (28.11) | 5873 (27.47) | 15,056 (28.59) | 10,555 (27.71) |
75–79 | 73,573 (15.51) | 16,767 (15.86) | 3451 (16.14) | 8269 (15.70) | 6093 (16.00) |
80–84 | 44,688 (9.42) | 10,247 (9.69) | 2037 (9.53) | 4837 (9.18) | 4050 (10.63) |
≥85 | 29,672 (6.25) | 7271 (6.88) | 1621 (7.58) | 3040 (5.77) | 3167 (8.31) |
Gender | |||||
Male | 195,538 (41.21) | 47,019 (44.48) | 8957 (41.90) | 19,830 (37.65) | 21,810 (57.25) |
Female | 278,929 (58.79) | 58,698 (55.52) | 12,422 (58.10) | 32,835 (62.35) | 16,283 (42.75) |
Census register | |||||
Guangzhou | 429,837 (90.59) | 96,817 (91.58) | 19,721 (92.24) | 47,940 (91.03) | 35,085 (92.10) |
Non-Guangzhou | 44,630 (9.41) | 8900 (8.42) | 1658 (7.76) | 4725 (8.97) | 3008 (7.90) |
Living area | |||||
Urban | 318,793 (67.19) | 67,268 (63.63) | 13,270 (62.07) | 34,615 (65.73) | 23,159 (60.80) |
Rural | 155,674 (32.81) | 38,449 (36.37) | 8109 (37.93) | 18,050 (34.27) | 14,934 (39.20) |
Education level | |||||
No school | 48,904 (10.31) | 13,054 (12.35) | 2758 (12.90) | 5779 (10.97) | 5475 (14.37) |
Primary | 152,865 (32.22) | 36,389 (34.42) | 7275 (34.03) | 18,099 (34.37) | 13,313 (34.95) |
Secondary | 175,530 (37.00) | 33,752 (31.93) | 7280 (34.05) | 17,594 (33.41) | 10,514 (27.60) |
College | 97,168 (20.48) | 22,522 (21.30) | 4066 (19.02) | 11,193 (21.25) | 8791 (23.08) |
Marital status | |||||
Single | 54,679 (11.52) | 15,044 (14.23) | 3102 (14.51) | 6247 (11.86) | 6964 (18.28) |
Married | 419,788 (88.48) | 90,673 (85.77) | 18,277 (85.49) | 46,418 (88.14) | 31,129 (81.72) |
Medical insurance | |||||
Uninsured | 19,103 (4.03) | 3503 (3.31) | 632 (2.96) | 1932 (3.67) | 1115 (2.93) |
Insured | 455,364 (95.97) | 102,214 (96.69) | 20,747 (97.04) | 50,733 (96.33) | 36,978 (97.07) |
Current smoking a | |||||
No | 417,037 (87.91) | 95,135 (90.00) | 17,664 (82.63) | 48,427 (91.97) | 34,920 (91.67) |
Yes | 57,377 (12.09) | 10,571 (10.00) | 3712 (17.37) | 4231 (8.03) | 3172 (8.33) |
Alcohol consumption a | |||||
No | 424,755 (89.55) | 96,521 (91.33) | 19,414 (90.83) | 47,427 (90.08) | 35,783 (93.96) |
Yes | 49,563 (10.45) | 9167 (8.67) | 1961 (9.17) | 5223 (9.92) | 2299 (6.04) |
Dietary habits a | |||||
Balanced | 459,908 (97.49) | 102,431 (97.47) | 20,805 (97.75) | 50,810 (97.14) | 37,074 (97.86) |
Meat or fish diet | 2832 (0.60) | 689 (0.66) | 89 (0.42) | 466 (0.89) | 162 (0.43) |
Vegetarian diet | 9007 (1.91) | 1970 (1.87) | 390 (1.83) | 1028 (1.97) | 648 (1.71) |
Physical activity a | |||||
No | 237,550 (51.94) | 57,483 (56.39) | 12,075 (58.66) | 26,160 (51.71) | 23,298 (62.98) |
Yes | 219,831 (48.06) | 44,463 (43.61) | 8511 (41.34) | 24,430 (48.29) | 13,694 (37.02) |
Hypertension | |||||
No | 152,821 (32.21) | 32,666 (30.90) | 8339 (39.01) | 14,151 (26.87) | 12,231 (32.11) |
Yes | 321,646 (67.79) | 73,051 (69.10) | 13,040 (60.99) | 38,514 (73.13) | 25,862 (67.89) |
Diabetes | |||||
No | 360,094 (75.89) | 78,840 (74.58) | 17,177 (80.35) | 38,158 (72.45) | 28,282 (74.24) |
Yes | 114,373 (24.11) | 26,877 (25.42) | 4202 (19.65) | 14,507 (27.55) | 9811 (25.76) |
Dyslipidemia | |||||
No | 180,874 (38.12) | 42,336 (40.05) | 9613 (44.96) | 18,618 (35.35) | 17,088 (44.86) |
Yes | 293,593 (61.88) | 63,381 (59.95) | 11,766 (55.04) | 34,047 (64.65) | 21,005 (55.14) |
Characteristics | Malnutrition (%) | Underweight (%) | Obesity (%) | Low Hemoglobin (%) |
---|---|---|---|---|
Overall | 22.28 | 4.51 | 11.10 | 8.03 |
(22.16–22.40) | (4.45–4.57) | (11.01–11.19) | (7.95–8.11) | |
Age | ||||
65–69 | 21.80 | 4.39 | 11.22 | 7.43 |
(21.62–21.98) | (4.30–4.48) | (11.08–11.36) | (7.31–7.55) | |
70–74 | 21.99 | 4.35 | 11.14 | 7.81 |
(21.77–22.21) | (4.24–4.46) | (10.97–11.31) | (7.67–7.95) | |
75–79 | 22.79 | 4.69 | 11.24 | 8.28 |
(22.49–23.09) | (4.54–4.84) | (11.01–11.47) | (8.08–8.48) | |
80–84 | 22.93 | 4.56 | 10.82 | 9.06 |
(22.54–23.32) | (4.37–4.75) | (10.53–11.11) | (8.79–9.33) | |
≥85 | 24.50 | 5.46 | 10.25 | 10.67 |
(24.01–24.99) | (5.20–5.72) | (9.90–10.60) | (10.32–11.02) | |
Gender | ||||
Male | 24.05 | 4.58 | 10.14 | 11.15 |
(23.86–24.24) | (4.49–4.67) | (10.01–10.27) | (11.01–11.29) | |
Female | 21.04 | 4.45 | 11.77 | 5.84 |
(20.89–21.19) | (4.37–4.53) | (11.65–11.89) | (5.75–5.93) |
Left-Hand Side | Right-Hand Side | Support (%) | Confidence (%) | Lift | Count |
---|---|---|---|---|---|
{Dietary habits = balanced, Physical activity = no} | {BMI = underweight} | 2.59 | 5.10 | 1.13 | 11,769 |
{Physical activity = no} | {BMI = underweight} | 2.64 | 5.09 | 1.13 | 12,012 |
{Hypertension = yes, Diabetes = yes} | {BMI = obesity} | 2.51 | 13.34 | 1.21 | 11,437 |
{Diabetes = yes} | {BMI = obesity} | 3.06 | 12.67 | 1.15 | 13,910 |
{Dietary habits = balanced, Diabetes = yes} | {BMI = obesity} | 2.97 | 12.63 | 1.14 | 13,517 |
{Hypertension = yes, Dyslipidemia = yes} | {BMI = obesity} | 5.13 | 12.38 | 1.12 | 23,307 |
{Physical activity = no, Hypertension = yes} | {BMI = obesity} | 4.20 | 11.95 | 1.08 | 19,080 |
{Hypertension = yes} | {BMI = obesity} | 8.08 | 11.92 | 1.08 | 36,759 |
{Dietary habits = balanced, Hypertension = yes} | {BMI = obesity} | 7.85 | 11.89 | 1.08 | 35,721 |
{Physical activity = no, Dyslipidemia = yes} | {BMI = obesity} | 3.32 | 11.75 | 1.06 | 15,086 |
{Dyslipidemia = yes} | {BMI = obesity} | 7.01 | 11.56 | 1.05 | 31,876 |
{Dietary habits = balanced, Dyslipidemia = yes} | {BMI = obesity} | 6.82 | 11.52 | 1.04 | 31,029 |
{Physical activity = yes} | {BMI = obesity} | 5.34 | 11.11 | 1.01 | 24,291 |
{Dietary habits = balanced, Physical activity = yes} | {BMI = obesity} | 5.19 | 11.09 | 1.00 | 23,592 |
{Physical activity = no} | {Low hemoglobin = yes} | 5.09 | 9.81 | 1.21 | 23,166 |
{Diabetes = yes} | {Low hemoglobin = yes} | 2.09 | 8.65 | 1.07 | 9499 |
{Dietary habits = balanced} | {Low hemoglobin = yes} | 7.92 | 8.12 | 1.00 | 36,000 |
Outcome | Interaction | RERI (95% CI) | AP (95% CI) | S (95% CI) | OR (95% CI) |
---|---|---|---|---|---|
Underweight | Meat or fish diet × Hypertension | −0.24 (−0.65, 0.11) | −0.36 (−1.18, 0.16) | 3.54 (−19.59, 18.78) | 0.75 (0.49, 1.16) |
Vegetarian diet × Hypertension | 0.08 (−0.12, 0.28) | 0.10 (−0.15, 0.32) | 0.67 (0.22, 2.21) | 1.10 (0.88, 1.37) | |
Meat or fish diet × Diabetes | −0.12 (−0.51, 0.29) | −0.17 (−1.34, 0.30) | 1.57 (−4.67, 11.77) | 0.85 (0.48, 1.48) | |
Vegetarian diet × Diabetes | −0.02 (−0.26, 0.20) | −0.03 (−0.41, 0.21) | 1.16 (−0.23, 5.09) | 0.97 (0.75, 1.25) | |
Meat or fish diet × Physical activity | −0.25 (−0.64, 0.13) | −0.41 (−1.40, 0.17) | 2.82 (−33.86, 20) | 0.74 (0.46, 1.17) | |
Vegetarian diet × Physical activity | 0.09 (−0.11, 0.26) | 0.10 (−0.14, 0.27) | 0.56 (−0.14, 2.42) | 1.10 (0.89, 1.36) | |
Physical activity × Hypertension | 0.00 (−0.05, 0.05) | 0.00 (−0.08, 0.08) | 1.00 (0.87, 1.18) | 0.96 (0.91, 1.02) | |
Hypertension × Dyslipidemia | 0.18 (0.14, 0.23) | 0.30 (0.22, 0.37) | 0.67 (0.63, 0.73) | 1.20 (1.13, 1.27) | |
Physical activity × Dyslipidemia | 0.04 (−0.01, 0.09) | 0.06 (−0.01, 0.13) | 0.88 (0.78, 1.03) | 1.02 (0.96, 1.08) | |
Hypertension × Diabetes | 0.11 (0.05, 0.17) | 0.15 (0.07, 0.24) | 0.73 (0.62, 0.86) | 1.11 (1.02, 1.20) | |
Diabetes × Dyslipidemia | 0.13 (0.07, 0.18) | 0.18 (0.10, 0.26) | 0.72 (0.63, 0.83) | 1.12 (1.05, 1.21) | |
Obesity | Meat or fish diet × Hypertension | 0.79 (0.28, 1.29) | 0.27 (0.11, 0.41) | 1.72 (1.21, 2.61) | 1.23 (0.95, 1.58) |
Vegetarian diet × Hypertension | −0.25 (−0.45, −0.05) | −0.18 (−0.34, −0.04) | 0.61 (0.40, 0.90) | 0.81 (0.70, 0.94) | |
Meat or fish diet × Diabetes | 0.81 (0.19, 1.48) | 0.28 (0.08, 0.43) | 1.74 (1.16, 2.53) | 1.25 (0.99, 1.59) | |
Vegetarian diet × Diabetes | −0.19 (−0.37, 0.00) | −0.16 (−0.35, 0.00) | 0.48 (0.07, 0.99) | 0.84 (0.72, 0.98) | |
Meat or fish diet × Physical activity | −0.84 (−1.34, −0.43) | −0.53 (−0.94, −0.24) | 0.42 (0.22, 0.65) | 0.63 (0.50, 0.79) | |
Vegetarian diet × Physical activity | −0.06 (−0.20, 0.09) | −0.06 (−0.21, 0.08) | 0.46 (−0.82, 4.00) | 0.94 (0.82, 1.08) | |
Physical activity × Hypertension | −0.04 (−0.09, 0.01) | −0.03 (−0.06, 0.01) | 0.93 (0.86, 1.01) | 0.94 (0.90, 0.99) | |
Hypertension × Dyslipidemia | 0.00 (−0.05, 0.06) | 0.00 (−0.03, 0.03) | 1.00 (0.94, 1.09) | 0.94 (0.90, 0.98) | |
Physical activity × Dyslipidemia | −0.09 (−0.13, −0.04) | −0.07 (−0.11, −0.03) | 0.73 (0.64, 0.86) | 0.92 (0.88, 0.96) | |
Hypertension × Diabetes | 0.13 (0.07, 0.20) | 0.08 (0.04, 0.12) | 1.23 (1.10, 1.38) | 1.03 (0.98, 1.09) | |
Diabetes × Dyslipidemia | −0.01 (−0.07, 0.05) | −0.01 (−0.05, 0.03) | 0.97 (0.87, 1.10) | 0.95 (0.91, 0.99) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-Q.; Xiao, T.; Fang, Y.-Y.; Sun, M.-Y.; Yang, Y.-O.; Chen, J.-M.; Ou, C.-Q.; Liu, H. The Association of Malnutrition and Health-Related Factors among 474,467 Older Community-Dwellers: A Population-Based Data Mining Study in Guangzhou, China. Nutrients 2024, 16, 1338. https://doi.org/10.3390/nu16091338
Lin W-Q, Xiao T, Fang Y-Y, Sun M-Y, Yang Y-O, Chen J-M, Ou C-Q, Liu H. The Association of Malnutrition and Health-Related Factors among 474,467 Older Community-Dwellers: A Population-Based Data Mining Study in Guangzhou, China. Nutrients. 2024; 16(9):1338. https://doi.org/10.3390/nu16091338
Chicago/Turabian StyleLin, Wei-Quan, Ting Xiao, Ying-Ying Fang, Min-Ying Sun, Yun-Ou Yang, Jia-Min Chen, Chun-Quan Ou, and Hui Liu. 2024. "The Association of Malnutrition and Health-Related Factors among 474,467 Older Community-Dwellers: A Population-Based Data Mining Study in Guangzhou, China" Nutrients 16, no. 9: 1338. https://doi.org/10.3390/nu16091338
APA StyleLin, W. -Q., Xiao, T., Fang, Y. -Y., Sun, M. -Y., Yang, Y. -O., Chen, J. -M., Ou, C. -Q., & Liu, H. (2024). The Association of Malnutrition and Health-Related Factors among 474,467 Older Community-Dwellers: A Population-Based Data Mining Study in Guangzhou, China. Nutrients, 16(9), 1338. https://doi.org/10.3390/nu16091338