Exploring Nutrient-Adequate Sustainable Diet Scenarios That Are Plant-Based but Animal-Optimized
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Optimization Algorithm
2.3. Scenario Exploration
- Carbon footprint, land, price, amount of different food groups, and concentrations of protein, fat, and carbohydrate in the calculated diet were expressed as a % of the value for original diet (see above);
- Micronutrient levels, i.e., of minerals and vitamins, were expressed as a % of the RDI of each nutrient, with the particular aim of identifying which nutrients are likely to have the most impact on diet optimization.
3. Results
3.1. Impact of Dietary Shifts on Climate Impact and Price
3.2. Impact of Dietary Shifts on the Food Group Composition of Diets
3.3. Impact of Dietary Shifts on the Macro- and Micronutrient Composition of Diets
4. Discussion
4.1. Impact of Dietary Shifts on Diet Composition and Impact
4.2. Sustainable Diets: Focus Beyond Protein
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Animal and plant-sourced nutrition: Complementary not competitive. Anim. Prod. Sci. 2021, 62, 701–711. [Google Scholar] [CrossRef]
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Modeling the contribution of milk to global nutrition. Front. Nutr. 2022, 8, 716100. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Modeling the contribution of meat to global nutrient availability. Front. Nutr. 2022, 9, 766796. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, Z.; Afarideh, M. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Nemecek, T.; Jungbluth, N.; Mila i Canals, L.M.; Schenck, R. Environmental impacts of food consumption and nutrition: Where are we and what is next? Int. J. Life Cycle Assess. 2016, 21, 607–620. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- McLaren, S.; Berardy, A.; Henderson, A.; Holden, N.; Huppertz, T.; Jolliet, O.; De Camillis, C.; Renouf, M.; Rugani, B.; Saarinen, M.; et al. Integration of Environment and Nutrition in Life Cycle Assessment of Food Items: Opportunities and Challenges; FAO: Rome, Italy, 2021. [Google Scholar]
- Bianchi, M.; Strid, A.; Winkvist, A.; Lindroos, A.K.; Sonesson, U.; Hallström, E. Systematic evaluation of nutrition indicators for use within food LCA studies. Sustainability 2020, 12, 8992. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Takahashi, T.; Lee, M.R. Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. Int. J. Life Cycle Assess. 2020, 25, 208–221. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, G.A.; Takahashi, T.; Beal, T.; Huppertz, T.; Leroy, F.; Buttriss, J.; Collins, A.L.; Drewnowski, A.; McLaren, S.J.; Ortenzi, F.; et al. Protein quality as a complementary functional unit in life cycle assessment (LCA). Int. J. Life Cycle Assess. 2023, 28, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Shkembi, B.; Huppertz, T. Calcium absorption from food products: Food matrix effects. Nutrients 2021, 14, 180. [Google Scholar] [CrossRef]
- Kramer, G.F.; Tyszler, M.; van’t Veer, P.; Blonk, H. Decreasing the overall environmental impact of the Dutch diet: How to find healthy and sustainable diets with limited changes. Public Health Nutr. 2017, 20, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Van Dooren, C.; Aiking, H. Defining a nutritionally healthy, environmentally friendly, and culturally acceptable Low Lands Diet. Int. J. Life Cycle Assess. 2016, 21, 688–700. [Google Scholar] [CrossRef]
- Van Dooren, C.; Tyszler, M.; Kramer, G.F.; Aiking, H. Combining low price, low climate impact and high nutritional value in one shopping basket through diet optimization by linear programming. Sustainability 2015, 7, 12837–12855. [Google Scholar] [CrossRef]
- Broekema, R.; Tyszler, M.; van’t Veer, P.; Kok, F.J.; Martin, A.; Lluch, A.; Blonk, H.T. Future-proof and sustainable healthy diets based on current eating patterns in the Netherlands. Am. J. Clin. Nutr. 2020, 112, 1338–1347. [Google Scholar] [CrossRef]
- Bruins, M.J.; Létinois, U. Adequate vitamin D intake cannot be achieved within carbon emission limits unless food is fortified: A simulation study. Nutrients 2021, 13, 592. [Google Scholar] [CrossRef]
- NEVO: Dutch Food Composition Database. Available online: https://nevo-online.rivm.nl (accessed on 2 December 2019).
- Payró, C.; Taherzadeh, O.; van Oorschot, M.; Koch, J.; Marselis, S. Consumer resistance diminishes environmental gains of dietary change. Environ. Res. Lett. 2024, 19, 054033. [Google Scholar] [CrossRef]
- Röös, E.; Tjärnemo, H. Challenges of carbon labelling of food products: A consumer research perspective. Br. Food J. 2011, 113, 982–996. [Google Scholar] [CrossRef]
- van Rossum, C.T.M.; Buurma-Rethans, E.J.M.; Dinnissen, C.S.; Beukers, M.H.; Brants, H.A.M.; Dekkers, A.L.M.; Ocké, M.C. The Diet of the Dutch: Results of the Dutch National Food Consumption Survey 2012–2016; National Institute for Public Health and the Environment RIVM: Bilthoven, The Netherlands, 2020. [Google Scholar]
- Miller, G.D.; Jarvis, J.K.; McBean, L.D. The importance of meeting calcium needs with foods. J. Am. Coll. Nutr. 2001, 20, 168S–185S. [Google Scholar] [CrossRef]
- Smith, N.W.; Fletcher, A.J.; Dave, L.A.; Hill, J.P.; McNabb, W.C. Use of the DELTA model to understand the food system and global nutrition. J. Nutr. 2021, 151, 3253–3261. [Google Scholar] [CrossRef]
- Hodgkinson, S.M.; Montoya, C.A.; Scholten, P.T.; Rutherfurd, S.M.; Moughan, P.J. Cooking conditions affect the true ileal digestible amino acid content and digestible indispensable amino acid score (DIAAS) of bovine meat as determined in pigs. J. Nutr. 2018, 148, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Schop, M.; de Boer, I.J.; Huppertz, T. Protein quality in perspective: A review of protein quality metrics and their applications. Nutrients 2022, 14, 947. [Google Scholar] [CrossRef] [PubMed]
- Dinnissen, C.S.; Ocké, M.C.; Buurma-Rethans, E.J.; van Rossum, C.T. Dietary changes among adults in The Netherlands in the period 2007–2010 and 2012–2016. Results from two cross-sectional national food consumption surveys. Nutrients 2021, 13, 1520. [Google Scholar] [CrossRef] [PubMed]
- Sanderman-Nawijn, E.L.; Brants, H.A.M.; Dinnissen, C.S.; Ocké, M.C.; van Rossum, C.T.M. Energy and Nutrient Intake in The Netherlands. Results of the Dutch National Food Consumption Survey 2019–2021; RIVM Report 2024-0071; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Aiking, H.; de Boer, J. The next protein transition. Trends Food Sci. Technol. 2020, 105, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Hundscheid, L.; Wurzinger, M.; Gühnemann, A.; Melcher, A.H.; Stern, T. Rethinking meat consumption–How institutional shifts affect the sustainable protein transition. Sustain. Prod. Consum. 2022, 31, 301–312. [Google Scholar] [CrossRef]
- Jenkins, W.M.; Trindade, L.M.; Pyett, S.; van Mierlo, B.; Welch, D.; van Zanten, H.H. Will the protein transition lead to sustainable food systems? Glob. Food Secur. 2024, 43, 100809. [Google Scholar] [CrossRef]
- Moughan, P.J. Population protein intakes and food sustainability indices: The metrics matter. Glob. Food Secur. 2021, 29, 100548. [Google Scholar] [CrossRef]
- Beal, T.; Gardner, C.D.; Herrero, M.; Iannotti, L.L.; Merbold, L.; Nordhagen, S.; Mottet, A. Friend or foe? The role of animal-source foods in healthy and environmentally sustainable diets. J. Nutr. 2023, 153, 409–425. [Google Scholar] [CrossRef]
Property | Property Group | Lower Boundary | Upper Boundary |
---|---|---|---|
Energy (kcal) | Macronutrients | 2000 | 2000 |
Protein total (g) | Macronutrients | 50 | 125 |
Fat total (g) | Macronutrients | 44.4 | 88.9 |
SAFA (g) | Macronutrients | 0 | 22.2 |
PUFA (g) | Macronutrients | 0 | 26.7 |
Linoleic acid (g) | Macronutrients | 4.44 | 1,000,000 |
ALA (g) | Macronutrients | 2.22 | 1,000,000 |
Trans fatty acids (g) | Macronutrients | 0 | 2.22 |
Cholesterol (mg) | Macronutrients | 0 | 300 |
Carbohydrates total (g) | Macronutrients | 200 | 350 |
Fiber (g) | Macronutrients | 30 | 1,000,000 |
Water (g) | Macronutrients | 2300 | 3800 |
Alcohol (g) | Macronutrients | 0 | 10 |
DHA + EPA (mg) | Macronutrients | 450 | 1,000,000 |
Retinol eq. (μg) | Vitamins | 0 | 1,000,000 |
Retinol act. eq. (μg) | Vitamins | 700 | 3000 |
Vitamin B1 (mg) | Vitamins | 1.1 | 1,000,000 |
Vitamin B2 (mg) | Vitamins | 1.1 | 1,000,000 |
Niacin (mg) | Vitamins | 13 | 1,000,000 |
Vitamin B6 (mg) | Vitamins | 1.5 | 25 |
Folate eq. (μg) | Vitamins | 300 | 1000 |
Vitamin B12 (μg) | Vitamins | 2.8 | 1,000,000 |
Vitamin C (mg) | Vitamins | 75 | 1,000,000 |
Vitamin D (μg) | Vitamins | 3.3 | 100 |
Vitamin E (mg) | Vitamins | 8 | 300 |
Vitamin K total (ug) | Vitamins | 90 | 1,000,000 |
Vitamin K2 (ug) | Vitamins | 0 | 1,000,000 |
Calcium (mg) | Minerals | 1000 | 2500 |
Phosphorus (mg) | Minerals | 600 | 3000 |
Iron (mg) | Minerals | 15 | 25 |
Sodium (mg) | Minerals | 0 | 1,000,000 |
Potassium (mg) | Minerals | 3100 | 2400 |
Magnesium (mg) | Minerals | 280 | 1,000,000 |
Zinc (mg) | Minerals | 7 | 530 |
Selenium (μg) | Minerals | 50 | 25 |
Copper (mg) | Minerals | 0.9 | 300 |
Iodine (μg) | Minerals | 150 | 5 |
Product Categories | |
---|---|
Vegetables | Beans and pulses |
Fruit | Fats |
Meat | Nuts and seeds |
Fish | Water, coffee tea |
Dairy | Candy and snacks |
Bread | Other drinks |
Potatoes, pasta, rice |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huppertz, T.; Blom, L.; van Est, L.; Peters, S. Exploring Nutrient-Adequate Sustainable Diet Scenarios That Are Plant-Based but Animal-Optimized. Nutrients 2025, 17, 343. https://doi.org/10.3390/nu17020343
Huppertz T, Blom L, van Est L, Peters S. Exploring Nutrient-Adequate Sustainable Diet Scenarios That Are Plant-Based but Animal-Optimized. Nutrients. 2025; 17(2):343. https://doi.org/10.3390/nu17020343
Chicago/Turabian StyleHuppertz, Thom, Luuk Blom, Lionel van Est, and Stephan Peters. 2025. "Exploring Nutrient-Adequate Sustainable Diet Scenarios That Are Plant-Based but Animal-Optimized" Nutrients 17, no. 2: 343. https://doi.org/10.3390/nu17020343
APA StyleHuppertz, T., Blom, L., van Est, L., & Peters, S. (2025). Exploring Nutrient-Adequate Sustainable Diet Scenarios That Are Plant-Based but Animal-Optimized. Nutrients, 17(2), 343. https://doi.org/10.3390/nu17020343