Exploring Gender Differences in the Effects of Diet and Physical Activity on Metabolic Parameters
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Adherence Monitoring
2.3. Body Composition and Biochemical Assessments
2.4. Diet Prescription and Nutritional Intervention
2.5. Physical Activity
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of Mediterranean-Style Diet on Glycemic Control, Weight Loss and Cardiovascular Risk Factors among Type 2 Diabetes Individuals: A Meta-Analysis. Eur. J. Clin. Nutr. 2014, 69, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Masulli, M.; Calabrese, I.; Rivellese, A.; Bonora, E.; Signorini, S.; Perriello, G.; Squatrito, S.; Buzzetti, R.; Sartore, G.; et al. Impact of a Mediterranean Dietary Pattern and Its Components on Cardiovascular Risk Factors, Glucose Control, and Body Weight in People with Type 2 Diabetes: A Real-Life Study. Nutrients 2018, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.; Feraco, A.; Camajani, E.; Gorini, S.; Strollo, R.; Armani, A.; Padua, E.; Caprio, M. Effects of Different Nutritional Patterns and Physical Activity on Body Composition: A Gender and Age Group Comparative Study. Foods 2024, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Varlamov, O.; Bethea, C.; Roberts, C. Sex-Specific Differences in Lipid and Glucose Metabolism. Front. Endocrinol. 2014, 5, 241. [Google Scholar] [CrossRef]
- Qi, L.; Shen, H.; Larson, I.; Barnard, J.R.; Schaefer, E.J.; Ordovás, J. Genetic Variation at the Hormone-Sensitive Lipase: Gender-Specific Association with Plasma Lipid and Glucose Concentrations. Clin. Genet. 2004, 65, 196. [Google Scholar] [CrossRef]
- Niemelä, O.; Bloigu, A.; Bloigu, R.; Halkola, A.S.; Niemelä, M.; Aalto, M.; Laatikainen, T. Associations Between Liver Enzymes, Lifestyle Risk Factors and Pre-Existing Medical Conditions in a Population-Based Cross-Sectional Sample. J. Clin. Med. 2023, 12, 4276. [Google Scholar] [CrossRef]
- Pradas, F.; García-Giménez, A.; Toro-Román, V.; Sánchez-Alcaraz, B.; Ochiană, N.; Castellar, C. Effect of a Padel Match on Biochemical and Haematological Parameters in Professional Players with Regard to Gender-Related Differences. Sustainability 2020, 12, 8633. [Google Scholar] [CrossRef]
- Banfi, G.; Colombini, A.; Lombardi, G.; Lubkowska, A. Metabolic markers in sports medicine. Adv. Clin. Chem. 2012, 56, 1–54. [Google Scholar] [CrossRef]
- Díaz Martínez, A.E.; Alcaide Martín, M.J.; González-Gross, M. Basal Values of Biochemical and Hematological Parameters in Elite Athletes. Int. J. Environ. Res. Public Health 2022, 19, 3059. [Google Scholar] [CrossRef] [PubMed]
- Mota, G.; Orsatti, F.; Delbin, M.A.; Zanesco, A. Resistance exercise improves metabolic parameters and changes adipocyte-derived leptin: A comparison between genders in untrained adults. Mot. Rev. Educ. Fis. 2016, 22, 217–222. [Google Scholar] [CrossRef]
- Martin, C.K.; Höchsmann, C.; Dorling, J.L.; Bhapkar, M.; Pieper, C.F.; Racette, S.B.; Das, S.K.; Redman, L.M.; Kraus, W.E.; Ravussin, E.; et al. Challenges in defining successful adherence to calorie restriction goals in humans: Results from CALERIE™ 2. Exp. Gerontol. 2022, 162, 111757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thomas, D.M.; Ivanescu, A.E.; Martin, C.K.; Heymsfield, S.B.; Marshall, K.; Bodrato, V.E.; Williamson, D.A.; Anton, S.D.; Sacks, F.M.; Ryan, D.; et al. Predicting successful long-term weight loss from short-term weight-loss outcomes: New insights from a dynamic energy balance model (the POUNDS Lost study). Am. J. Clin. Nutr. 2015, 101, 449–454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, L.; Cheng, X.-G.; Wang, J.; Cao, Q.; Sato, T.; Wang, M.; Zhao, X.; Liang, W. Comparisons of body-composition prediction accuracy: A study of 2 bioelectric impedance consumer devices in healthy Chinese persons using DXA and MRI as criteria methods. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2011, 14, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.-F.; Chen, Y.-Y.; Jang, T.-R.; Lin, W.-L.; Chen, J.; Hsieh, K. Total body composition estimated by standing-posture 8-electrode bioelectrical impedance analysis in male wrestlers. Biol. Sport 2015, 33, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Schautz, B.; Later, W.; Kehayias, J.J.; Gallagher, D.; Müller, M.J. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur. J. Clin. Nutr. 2013, 67 (Suppl. S1), S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Malakou, E.; Linardakis, M.; Armstrong, M.; Zannidi, D.; Foster, C.; Johnson, L.; Papadaki, A. The Combined Effect of Promoting the Mediterranean Diet and Physical Activity on Metabolic Risk Factors in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2018, 10, 1577. [Google Scholar] [CrossRef]
- Godos, J.; Scazzina, F.; Paternò Castello, C.; Giampieri, F.; Quiles, J.L.; Briones Urbano, M.; Battino, M.; Galvano, F.; Iacoviello, L.; de Gaetano, G.; et al. Underrated aspects of a true Mediterranean diet: Understanding traditional features for worldwide application of a “Planeterranean” diet. J. Transl. Med. 2024, 22, 294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sampaio, J.; Pizarro, A.; Pinto, J.; Oliveira, B.; Moreira, A.; Padrão, P.; Guedes de Pinho, P.; Moreira, P.; Barros, R.; Carvalho, J. Mediterranean Diet-Based Sustainable Healthy Diet and Multicomponent Training Combined Intervention Effect on Body Composition, Anthropometry, and Physical Fitness in Healthy Aging. Nutrients 2024, 16, 3527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mittendorfer, B.; Horowitz, J.; Klein, S. Gender differences in lipid and glucose kinetics during short-term fasting. Am. J. Physiol.-Endocrinol. Metab. 2001, 281, E1333–E1339. [Google Scholar] [CrossRef]
- Lombardo, M.; Feraco, A.; Armani, A.; Camajani, E.; Gorini, S.; Strollo, R.; Padua, E.; Caprio, M.; Bellia, A. Gender differences in body composition, dietary patterns, and physical activity: Insights from a cross-sectional study. Front. Nutr. 2024, 11, 1414217. [Google Scholar] [CrossRef] [PubMed]
- Feraco, A.; Gorini, S.; Camajani, E.; Filardi, T.; Karav, S.; Cava, E.; Strollo, R.; Padua, E.; Caprio, M.; Armani, A.; et al. Gender differences in dietary patterns and physical activity: An insight with principal component analysis (PCA). J. Transl. Med. 2024, 22, 1112. [Google Scholar] [CrossRef] [PubMed]
- Del Bo’, C.; Perna, S.; Allehdan, S.S.; Rafique, A.; Saad, S.; Alghareeb, F.; Rondanelli, M.; Tayyem, R.; Marino, M.; Martini, D.; et al. Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity, and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients 2023, 15, 2250. [Google Scholar] [CrossRef] [PubMed]
- Beazer, J.D.; Freeman, D.J. Estradiol and HDL Function in Women—A Partnership for Life. J. Clin. Endocrinol. Metab. 2022, 107, e2192–e2194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moore, C.J.; Holstege, C.; Papin, J. Metabolic modeling of sex-specific liver tissue suggests mechanism of differences in toxicological responses. PLoS Comput. Biol. 2023, 19, e1010927. [Google Scholar] [CrossRef]
- Ahmad, S.; Demler, O.V.; Sun, Q.; Moorthy, M.V.; Li, C.; Lee, I.M.; Ridker, P.M.; Manson, J.E.; Hu, F.B.; Fall, T.; et al. Association of the Mediterranean Diet with Onset of Diabetes in the Women’s Health Study. JAMA Netw. Open 2020, 3, e2025466. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bédard, A.; Dodin, S.; Corneau, L.; Lemieux, S. Impact of the Traditional Mediterranean Diet on the Framingham Risk Score and the Metabolic Syndrome According to Sex. Metab. Syndr. Relat. Disord. 2014, 12, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Nicolosi, R.; Lawton, C.; Babiak, J. Gender differences in response to a hypercholesterolemic diet in hamsters: Effects on plasma lipoprotein cholesterol concentrations and early aortic atherosclerosis. Atherosclerosis 1999, 146, 83–91. [Google Scholar] [CrossRef]
- Cho, K.; Nam, H.; Kang, D.-J.; Zee, S.; Park, M. Enhancement of High-Density Lipoprotein (HDL) Quantity and Quality by Regular and Habitual Exercise in Middle-Aged Women. Int. J. Mol. Sci. 2023, 24, 1151. [Google Scholar] [CrossRef] [PubMed]
- Kargin, D.; Tomaino, L.; Serra-Majem, L. Experimental Outcomes of the Mediterranean Diet: Lessons Learned from the Predimed Randomized Controlled Trial. Nutrients 2019, 11, 2991. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adeniyi, A.; Uloko, A.E.; Ogwumike, O.O.; Sanya, A.O.; Fasanmade, A.A. Time Course of Improvement of Metabolic Parameters after a 12-Week Physical Exercise Programme in Patients with Type 2 Diabetes: The Influence of Gender in a Nigerian Population. BioMed. Res. Int. 2013, 2013, 310574. [Google Scholar] [CrossRef]
- Cano, A.; Ventura, L.; Martínez, G.; Cugusi, L.; Caria, M.; Deriu, F.; Manca, A. Analysis of sex-based differences in energy substrate utilization during moderate-intensity aerobic exercise. Eur. J. Appl. Physiol. 2021, 122, 29–70. [Google Scholar] [CrossRef] [PubMed]
- Ardern, C.; Katzmarzyk, P.; Janssen, I.; Leon, A.; Wilmore, J.; Skinner, J.; Rao, D.; Després, J.; Rankinen, T.; Bouchard, C. Race and sex similarities in exercise-induced changes in blood lipids and fatness. Med. Sci. Sports Exerc. 2004, 36, 1610–1615. [Google Scholar] [CrossRef]
- Laaksonen, D.; Atalay, M.; Niskanen, L.; Mustonen, J.; Sen, C.; Lakka, T.; Uusitupa, M. Aerobic exercise and the lipid profile in type 1 diabetic men: A randomized controlled trial. Med. Sci. Sports Exerc. 2023, 32, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Khan, M.; Siddiqui, M.; Hanif, K. Effects of Mediterranean diet on glycemic control in diabetic patients. Nutrients 2022, 14, 3242. [Google Scholar] [CrossRef]
- Kelley, G.; Kelley, K.; Tran, Z. Aerobic exercise and lipids and lipoproteins in women: A meta-analysis of randomized controlled trials. J. Women’s Health 2022, 13, 1148–1164. [Google Scholar] [CrossRef]
- Oh, S.; Tsujimoto, T.; Kim, B.; Uchida, F.; Suzuki, H.; Iizumi, S.; Isobe, T.; Sakae, T.; Tanaka, K.; Shoda, J. Weight-loss-independent benefits of exercise on liver steatosis and stiffness in Japanese men with NAFLD. JHEP Rep. 2021, 3, 100253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variable | Total (n = 205) | Male (n = 107) | Female (n = 98) | p-Value |
---|---|---|---|---|
Age (years) | 48.4 ± 12.9 | 48.6 ± 13.5 | 48.2 ± 12.3 | 0.8265 |
BMI (kg/m2) | 29.8 ± 5.2 | 30.6 ± 5.5 | 28.8 ± 4.8 | 0.0128 |
FM (kg) | 27.9 ± 11.2 | 27.0 ± 12.4 | 29.0 ± 9.8 | 0.2076 |
FFM (kg) | 54.3 ± 11.3 | 63.2 ± 7.7 | 44.6 ± 4.8 | <0.0001 |
FMI (kg/m2) | 9.8 ± 3.8 | 8.8 ± 3.9 | 11.0 ± 3.5 | 0.0001 |
FFMI (kg/m2) | 18.8 ± 2.8 | 20.4 ± 2.7 | 16.9 ± 1.6 | <0.0001 |
AC (cm) | 102.5 ± 13.0 | 106.3 ± 13.1 | 98.5 ± 11.7 | <0.0001 |
BMR (kcal/day) | 1712.1 ± 345.6 | 1965.3 ± 268.4 | 1437.8 ± 160.9 | <0.0001 |
Smoker (%) | 17% | 12% | 23% | 0.033 |
Income (%) | ||||
<EUR 20,000 | 29% | 32% | 26% | 0.541 |
EUR 20,000–EUR 40,000 | 44% | 41% | 47% | 0.614 |
EUR 40,000–EUR 60,000 | 18% | 19% | 17% | 0.726 |
>EUR 60,000 | 9% | 8% | 10% | 0.833 |
Category Work (%) | ||||
Sales and Services | 49% | 51% | 47% | 0.489 |
Professional Services | 20% | 19% | 21% | 0.741 |
Healthcare and Wellness | 15% | 14% | 16% | 0.615 |
Other | 16% | 16% | 16% | 0.922 |
Sport | ||||
Do you play a sport? (%) | 0.5272 | |||
Yes | 50% | 54.9% | 45.1% | |
No | 50% | 49.5% | 50.5% | |
Sport hours per week (%) | 0.0088 | |||
<5 h | 72% | 45.8% | 54.2% | |
5–10 h | 25% | 73.1% | 26.9% | |
>10 h | 3% | 100% | 0% |
Balanced Group | TOTAL | MALE | FEMALE | TOTAL Δ (T0–T6) | MALE Δ (T0–T6) | FEMALE Δ (T0–T6) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n. | Mean | std | Mean | SD | Mean | SD | m vs. f p-values | Mean | std | Mean | SD | Mean | SD | p Δ males vs. females |
BMI T0 | 29.8 | 5.2 | 30.6 | 5.5 | 28.8 | 4.8 | 0.0128 | |||||||
BMI T3 | 28.0 | 5.0 | 28.8 | 5.2 | 27.0 | 4.5 | 0.0081 | |||||||
BMI T6 | 26.9 | 5.1 | 27.9 | 5.0 | 25.8 | 4.9 | 0.0022 | −2.8 | 1.9 | −2.7 | 1.4 | −3 | 2.3 | 0.201 |
FM T0 | 27.9 | 11.2 | 27.0 | 12.4 | 29.0 | 9.8 | 0.2076 | |||||||
FM T3 | 24.1 | 10.7 | 23.0 | 11.8 | 25.3 | 9.3 | 0.1342 | |||||||
FM T6 | 22.1 | 10.0 | 21.0 | 10.8 | 23.4 | 9.0 | 0.0853 | −5.8 | 3.8 | −6 | 4.1 | −5.6 | 3.3 | 0.4059 |
AC T0 | 102.5 | 13.0 | 106.3 | 13.1 | 98.5 | 11.7 | <0.0001 | |||||||
AC T3 | 96.8 | 12.4 | 100.7 | 13.1 | 92.4 | 10.1 | <0.0001 | |||||||
AC T6 | 93.9 | 11.8 | 97.7 | 12.1 | 89.9 | 10.0 | <0.0001 | −8.1 | 4.7 | −8.2 | 4.4 | −8 | 5.1 | 0.73 |
FFM T0 | 54.3 | 11.3 | 63.2 | 7.7 | 44.6 | 4.8 | <0.0001 | |||||||
FFM T3 | 53.1 | 10.9 | 61.7 | 7.5 | 43.8 | 4.4 | <0.0001 | |||||||
FFM T6 | 52.5 | 11.1 | 61.3 | 7.5 | 42.9 | 4.3 | <0.0001 | −1.8 | 2.1 | −1.9 | 2.4 | −1.7 | 1.7 | 0.442 |
Body Water (kg) | 40.4 | 8.7 | 47.1 | 6.0 | 33.2 | 4.0 | <0.0001 | |||||||
Body Water T3 | 39.3 | 8.3 | 45.7 | 5.8 | 32.3 | 3.7 | <0.0001 | |||||||
Body Water T6 | 38.7 | 8.2 | 45.1 | 5.7 | 31.9 | 3.8 | <0.0001 | −1.6 | 2.1 | −2 | 1.9 | −1.3 | 2.2 | 0.023 |
FMI T0 | 9.8 | 3.8 | 8.8 | 3.9 | 11 | 3.5 | 0.0001 | |||||||
FMI T6 | 7.6 | 3.5 | 6.8 | 3.4 | 8.8 | 3.3 | <0.0001 | −2 | 1.3 | −2 | 1.3 | −2.1 | 1.3 | 0.4184 |
FFMI T0 | 18.8 | 2.8 | 20.4 | 2.7 | 16.9 | 1.6 | <0.0001 | |||||||
FFMI T6 | 18.1 | 2.7 | 19.8 | 2.6 | 16.3 | 1.4 | <0.0001 | −0.6 | 0.7 | −0.6 | 0.8 | −0.6 | 0.6 | 0.8705 |
BMR T0 | 1712.1 | 345.6 | 1965.3 | 268.4 | 1437.8 | 160.9 | <0.0001 | |||||||
BMR T3 | 1654.5 | 347.2 | 1904.5 | 252.6 | 1377.8 | 193.4 | <0.0001 | |||||||
BMR T6 | 1632.7 | 332.1 | 1879.9 | 255.2 | 1362.1 | 139.0 | <0.0001 | −78.4 | 62.9 | −85.4 | 70.2 | −70.1 | 53.1 | 0.098 |
Topic | Our Findings | Take-Home Message |
---|---|---|
Gender Differences | Men showed more significant reductions in TC, LDL-C and ALT, while women had a notable increase in HDL levels. | Men benefit from lipid and liver function improvements, while women experience enhanced HDL levels, contributing to cardiovascular protection. |
Effects of Physical Activity | Anaerobic activities led to greater reductions in TC and LDL in men, whereas aerobic activity significantly increased HDL in women. | Tailored activity types (anaerobic for men, aerobic for women) may maximise lipid profile benefits. |
Glycaemic Control | Both genders exhibited reductions in fasting glucose with the intervention, regardless of activity type. | The MD combined with physical activity effectively improves fasting glucose control across genders. |
Liver Function | Reductions in AST and ALT were observed, with men showing a more pronounced decrease in ALT. | Physical activity improves liver enzyme levels, with men showing a stronger hepatic response. |
Renal Function | No significant changes in creatinine levels across activity types. | Physical activity combined with the MD is safe for renal function within the intervention’s timeframe. |
Clinical Implications | Our gender-stratified analysis highlights specific metabolic responses to different activity types. | Personalised, gender-specific intervention strategies can enhance metabolic and cardiovascular outcomes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorini, S.; Camajani, E.; Feraco, A.; Armani, A.; Karav, S.; Filardi, T.; Aulisa, G.; Cava, E.; Strollo, R.; Padua, E.; et al. Exploring Gender Differences in the Effects of Diet and Physical Activity on Metabolic Parameters. Nutrients 2025, 17, 354. https://doi.org/10.3390/nu17020354
Gorini S, Camajani E, Feraco A, Armani A, Karav S, Filardi T, Aulisa G, Cava E, Strollo R, Padua E, et al. Exploring Gender Differences in the Effects of Diet and Physical Activity on Metabolic Parameters. Nutrients. 2025; 17(2):354. https://doi.org/10.3390/nu17020354
Chicago/Turabian StyleGorini, Stefania, Elisabetta Camajani, Alessandra Feraco, Andrea Armani, Sercan Karav, Tiziana Filardi, Giovanni Aulisa, Edda Cava, Rocky Strollo, Elvira Padua, and et al. 2025. "Exploring Gender Differences in the Effects of Diet and Physical Activity on Metabolic Parameters" Nutrients 17, no. 2: 354. https://doi.org/10.3390/nu17020354
APA StyleGorini, S., Camajani, E., Feraco, A., Armani, A., Karav, S., Filardi, T., Aulisa, G., Cava, E., Strollo, R., Padua, E., Caprio, M., & Lombardo, M. (2025). Exploring Gender Differences in the Effects of Diet and Physical Activity on Metabolic Parameters. Nutrients, 17(2), 354. https://doi.org/10.3390/nu17020354