The Role of Soy in Vegetarian Diets
Abstract
:1. Introduction
2. Understanding Isoflavones
3. How Much and What Kinds of Soyfoods are Consumed in Asia?
4. Vegetarian Soy Intake
5. Role of Soy in Reducing Vegetarian Risk of Chronic Disease
5.1. Cardiovascular Disease
5.2. Cancer
5.3. Osteoporosis
5.4. Renal Function
6. Mineral Balance
7. Safety Concerns
7.1. Breast Cancer
7.2. Feminization and Infertility
7.3. Thyroid
8. Are all Soyfoods Created Equal?
9. Vegetarian Soy In take Recommendations
Conflict of Interest
References
- Rand, W.M.; Pellett, P.L.; Young, V.R. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am. J. Clin. Nutr. 2003, 77, 109–127. [Google Scholar]
- Wu, Z.; Rodgers, R.P.; Marshall, A.G. Characterization of vegetable oils: detailed compositional fingerprints derived from electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. J. Agric. Food Chem. 2004, 52, 5322–5328. [Google Scholar]
- Messina, M.; Lane, B. Soy protein, soybean isoflavones, and coronary heart disease risk: Where do we stand? Future Lipidology 2007, 2, 55–74. [Google Scholar] [CrossRef]
- Koh, W.P.; Wu, A.H.; Wang, R.; Ang, L.W.; Heng, D.; Yuan, J.M.; Yu, M.C. Gender-specific associations between soy and risk of hip fracture in the Singapore Chinese Health Study. Am. J. Epidemiol. 2009, 170, 901–909. [Google Scholar]
- Zhang, X.; Shu, X.O.; Li, H.; Yang, G.; Li, Q.; Gao, Y.T.; Zheng, W. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch. Intern. Med. 2005, 165, 1890–1895. [Google Scholar]
- Wu, A.H.; Yu, M.C.; Tseng, C.C.; Pike, M.C. Epidemiology of soy exposures and breast cancer risk. Br. J. Cancer 2008, 98, 9–14. [Google Scholar]
- Yan, L.; Spitznagel, E.L. Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am. J. Clin. Nutr. 2009, 89, 1155–1163. [Google Scholar]
- Howes, L.G.; Howes, J.B.; Knight, D.C. Isoflavone therapy for menopausal flushes: a systematic review and meta-analysis. Maturitas 2006, 55, 203–211. [Google Scholar]
- Franke, A.A.; Custer, L.J.; Wang, W.; Shi, C.Y. HPLC analysis of isoflavonoids and other phenolic agents from foods and from human fluids. Proc. Soc. Exp. Biol. Med. 1998, 217, 263–273. [Google Scholar]
- Oseni, T.; Patel, R.; Pyle, J.; Jordan, V.C. Selective estrogen receptor modulators and phytoestrogens. Planta Med. 2008, 74, 1656–1665. [Google Scholar]
- Patisaul, H.B.; Jefferson, W. The Pros and Cons of Phytoestrogens. Front Neuroendocrinol. 2010. [Epub ahead of print]. [Google Scholar]
- Messina, M.; Nagata, C.; Wu, A.H. Estimated Asian adult soy protein and isoflavone intakes. Nutr. Cancer 2006, 55, 1–12. [Google Scholar]
- Murphy, P.A.; Barua, K.; Hauck, C.C. Solvent extraction selection in the determination of isoflavones in soy foods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 777, 129–138. [Google Scholar]
- Murphy, P.A.; Song, T.; Buseman, G.; Barua, K.; Beecher, G.R.; Trainer, D.; Holden, J. Isoflavones in retail and institutional soy foods. J. Agric. Food Chem. 1999, 47, 2697–2704. [Google Scholar]
- Setchell, K.D.; Brown, N.M.; Desai, P.B.; Zimmer-Nechimias, L.; Wolfe, B.; Jakate, A.S.; Creutzinger, V.; Heubi, J.E. Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J. Nutr. 2003, 133, 1027–1035. [Google Scholar] [PubMed]
- Setchell, K.D.; Faughnan, M.S.; Avades, T.; Zimmer-Nechemias, L.; Brown, N.M.; Wolfe, B.E.; Brashear, W.T.; Desai, P.; Oldfield, M.F.; Botting, N.P.; Cassidy, A. Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am. J. Clin. Nutr. 2003, 77, 411–419. [Google Scholar]
- Rowland, I.; Faughnan, M.; Hoey, L.; Wahala, K.; Williamson, G.; Cassidy, A. Bioavailability of phyto-oestrogens. Br. J. Nutr. 2003, 89, S45–58. [Google Scholar]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar]
- Pinkerton, J.V.; Goldstein, S.R. Endometrial safety: a key hurdle for selective estrogen receptor modulators in development. Menopause 2010, 17, 642–653. [Google Scholar]
- Sarkar, F.H.; Li, Y. Soy isoflavones and cancer prevention. Cancer Invest. 2003, 21, 744–757. [Google Scholar]
- Reiter, E.; Beck, V.; Medjakovic, S.; Jungbauer, A. Isoflavones are safe compounds for therapeutical applications—evaluation of in vitro data. Gynecol. Endocrinol. 2009, 25, 554–580. [Google Scholar]
- Zhou, J.R.; Gugger, E.T.; Tanaka, T.; Guo, Y.; Blackburn, G.L.; Clinton, S.K. Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice. J. Nutr. 1999, 129, 1628–1635. [Google Scholar]
- Zhou, J.R.; Yu, L.; Zhong, Y.; Nassr, R.L.; Franke, A.A.; Gaston, S.M.; Blackburn, G.L. Inhibition of orthotopic growth and metastasis of androgen-sensitive human prostate tumors in mice by bioactive soybean components. Prostate 2002, 53, 143–153. [Google Scholar]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar]
- Wiseman, H.; Casey, K.; Bowey, E.A.; Duffy, R.; Davies, M.; Rowland, I.R.; Lloyd, A.S.; Murray, A.; Thompson, R.; Clarke, D.B. Influence of 10 wk of soy consumption on plasma concentrations and excretion of isoflavonoids and on gut microflora metabolism in healthy adults. Am. J. Clin. Nutr. 2004, 80, 692–699. [Google Scholar]
- Atkinson, C.; Frankenfeld, C.L.; Lampe, J.W. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med. (Maywood) 2005, 230, 155–170. [Google Scholar] [PubMed]
- Setchell, K.D.; Brown, N.M.; Lydeking-Olsen, E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr. 2002, 132, 3577–3584. [Google Scholar]
- Setchell, K.D.; Cole, S.J. Method of defining equol-producer status and its frequency among vegetarians. J. Nutr. 2006, 136, 2188–2193. [Google Scholar]
- Gardana, C.; Canzi, E.; Simonetti, P. The role of diet in the metabolism of daidzein by human faecal microbiota sampled from Italian volunteers. J. Nutr. Biochem. 2009, 20, 940–947. [Google Scholar]
- Nagata, C.; Nakamura, K.; Oba, S.; Hayashi, M.; Takeda, N.; Yasuda, K. Association of intakes of fat, dietary fibre, soya isoflavones and alcohol with uterine fibroids in Japanese women. Br. J. Nutr. 2009, 101, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.; Inoue, M.; Kurahashi, N.; Iwasaki, M.; Sasazuki, S.; Tsugane, S. Dietary soy and isoflavone intake and risk of colorectal cancer in the Japan public health center-based prospective study. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 2128–2135. [Google Scholar]
- Nagata, C.; Shimizu, H.; Takami, R.; Hayashi, M.; Takeda, N.; Yasuda, K. Soy product intake is inversely associated with serum homocysteine level in premenopausal Japanese women. J. Nutr. 2003, 133, 797–800. [Google Scholar]
- Nagata, C.; Takatsuka, N.; Kawakami, N.; Shimizu, H. Association of diet with the onset of menopause in Japanese women. Am. J. Epidemiol. 2000, 152, 863–867. [Google Scholar]
- Nagata, C.; Takatsuka, N.; Kawakami, N.; Shimizu, H. A prospective cohort study of soy product intake and stomach cancer death. Br. J. Cancer 2002, 87, 31–36. [Google Scholar]
- Takata, Y.; Maskarinec, G.; Franke, A.; Nagata, C.; Shimizu, H. A comparison of dietary habits among women in Japan and Hawaii. Public Health Nutr. 2004, 7, 319–326. [Google Scholar]
- Nagata, C.; Takatsuka, N.; Kurisu, Y.; Shimizu, H. Decreased serum total cholesterol concentration is associated with high intake of soy products in Japanese men and women. J. Nutr. 1998, 128, 209–213. [Google Scholar]
- Ho, S.C.; Chan, S.G.; Yip, Y.B.; Chan, C.S.; Woo, J.L.; Sham, A. Change in bone mineral density and its determinants in pre- and perimenopausal Chinese women: the Hong Kong perimenopausal women osteoporosis study. Osteoporos. Int. 2008, 19, 1785–1796. [Google Scholar]
- Kim, M.K.; Kim, J.H.; Nam, S.J.; Ryu, S.; Kong, G. Dietary intake of soy protein and tofu in association with breast cancer risk based on a case-control study. Nutr. Cancer 2008, 60, 568–576. [Google Scholar]
- Yang, G.; Shu, X.O.; Jin, F.; Zhang, X.; Li, H.L.; Li, Q.; Gao, Y.T.; Zheng, W. Longitudinal study of soy food intake and blood pressure among middle-aged and elderly Chinese women. Am. J. Clin. Nutr. 2005, 81, 1012–1017. [Google Scholar]
- Yang, G.; Shu, X.O.; Li, H.; Chow, W.H.; Cai, H.; Zhang, X.; Gao, Y.T.; Zheng, W. Prospective cohort study of soy food intake and colorectal cancer risk in women. Am. J. Clin. Nutr. 2009, 89, 577–583. [Google Scholar]
- Lee, S.A.; Wen, W.; Xiang, Y.B.; Barnes, S.; Liu, D.; Cai, Q.; Zheng, W.; Shu, X.O. Assessment of Dietary Isoflavone Intake among Middle-Aged Chinese Men. J. Nutr. 2007, 137, 1011–1016. [Google Scholar]
- Cui, X.; Dai, Q.; Tseng, M.; Shu, X.O.; Gao, Y.T.; Zheng, W. Dietary patterns and breast cancer risk in the shanghai breast cancer study. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1443–1448. [Google Scholar]
- Pan, Y.; Anthony, M.; Watson, S.; Clarkson, T.B. Soy phytoestrogens improve radial arm maze performance in ovariectomized retired breeder rats and do not attenuate benefits of 17 beta-estradiol treatment. Menopause 2000, 7, 230–235. [Google Scholar]
- Wakai, K.; Egami, I.; Kato, K.; Kawamura, T.; Tamakoshi, A.; Lin, Y.; Nakayama, T.; Wada, M.; Ohno, Y. Dietary intake and sources of isoflavones among Japanese. Nutr. Cancer 1999, 33, 139–145. [Google Scholar]
- Somekawa, Y.; Chiguchi, M.; Ishibashi, T.; Aso, T. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet. Gynecol. 2001, 97, 109–115. [Google Scholar] [PubMed]
- Zhang, X.; Shu, X.O.; Gao, Y.T.; Yang, G.; Li, Q.; Li, H.; Jin, F.; Zheng, W. Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J. Nutr. 2003, 133, 2874–2878. [Google Scholar]
- FDA. 2004Q-0151: Qualified Health Claim (QHC): Soy Protein and Cancer. 2004, 15 April 2004. Available online: http://www.fda.gov/ohrms/dockets/dockets/04q0151/04q0151.htm (Accessed on 03 August 2004).
- Jaceldo-Siegl, K.; Fraser, G.E.; Chan, J.; Franke, A.; Sabate, J. Validation of soy protein estimates from a food-frequency questionnaire with repeated 24-h recalls and isoflavonoid excretion in overnight urine in a Western population with a wide range of soy intakes. Am. J. Clin. Nutr. 2008, 87, 1422–1427. [Google Scholar]
- Ritchie, M.R.; Cummings, J.H.; Morton, M.S.; Michael Steel, C.; Bolton-Smith, C.; Riches, A.C. A newly constructed and validated isoflavone database for the assessment of total genistein and daidzein intake. Br. J. Nutr. 2006, 95, 204–213. [Google Scholar]
- Clarke, D.B.; Barnes, K.A.; Castle, L.; Rose, M.; Wilson, L.A.; Baxter, M.J.; Price, K.R.; DuPont, M.S. Levels of phytoestrogens, inorganic trace-elements, natural toxicants and nitrate in vegetarian duplicate diets. Food Chem. 2003, 81, 287–300. [Google Scholar]
- Rosell, M.S.; Appleby, P.N.; Spencer, E.A.; Key, T.J. Soy intake and blood cholesterol concentrations: a cross-sectional study of 1033 pre- and postmenopausal women in the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2004, 80, 1391–1396. [Google Scholar]
- Waldmann, A.; Koschizke, J.W.; Leitzmann, C.; Hahn, A. Dietary iron intake and iron status of German female vegans: results of the German vegan study. Ann. Nutr. Metab. 2004, 48, 103–108. [Google Scholar]
- Frankenfeld, C.L.; Patterson, R.E.; Kalhorn, T.F.; Skor, H.E.; Howald, W.N.; Lampe, J.W. Validation of a soy food frequency questionnaire with plasma concentrations of isoflavones in US adults. J. Am. Diet. Assoc. 2002, 102, 1407–1413. [Google Scholar]
- Kirk, P.; Patterson, R.E.; Lampe, J. Development of a soy food frequency questionnaire to estimate isoflavone consumption in US adults. J. Am. Diet. Assoc. 1999, 99, 558–563. [Google Scholar]
- Jakobsen, M.U.; O'Reilly, E.J.; Heitmann, B.L.; Pereira, M.A.; Balter, K.; Fraser, G.E.; Goldbourt, U.; Hallmans, G.; Knekt, P.; Liu, S.; Pietinen, P.; Spiegelman, D.; Stevens, J.; Virtamo, J.; Willett, W.C.; Ascherio, A. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 2009, 89, 1425–1432. [Google Scholar]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7 e1000252. [Google Scholar]
- Food labeling: health claims; soy protein and coronary heart disease. Food and Drug Administration, HHS. Final rule. Fed. Regist. 1999, 64, 57700–57733. [PubMed]
- Harland, J.I.; Haffner, T.A. Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis 2008, 200, 13–27. [Google Scholar]
- Anderson, J.W.; Johnstone, B.M.; Cook-Newell, M.E. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 1995, 333, 276–282. [Google Scholar]
- Sacks, F.M.; Lichtenstein, A.; Van Horn, L.; Harris, W.; Kris-Etherton, P.; Winston, M. Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation 2006, 113, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Ho, S.C. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am. J. Clin. Nutr. 2005, 81, 397–408. [Google Scholar]
- Ferdowsian, H.R.; Barnard, N.D. Effects of plant-based diets on plasma lipids. Am. J. Cardiol. 2009, 104, 947–956. [Google Scholar]
- Messina, M.; Erdman, J.W., Jr. Need to establish threshold soy protein intake for cholesterol reduction. Am. J. Clin. Nutr. 2005, 81, 942. [Google Scholar]
- Messina, M. Potential public health implications of the hypocholesterolemic effects of soy protein. Nutr 2003, 19, 280–281. [Google Scholar]
- Ho, S.C.; Woo, J.L.; Leung, S.S.; Sham, A.L.; Lam, T.H.; Janus, E.D. Intake of soy products is associated with better plasma lipid profiles in the Hong Kong Chinese population. J. Nutr. 2000, 130, 2590–2593. [Google Scholar]
- Gardner, C.D.; Messina, M.; Kiazand, A.; Morris, J.L.; Franke, A.A. Effect of two types of soy milk and dairy milk on plasma lipids in hypercholesterolemic adults: a randomized trial. J. Am. Coll. Nutr. 2007, 26, 669–677. [Google Scholar]
- Jenkins, D.J.; Kendall, C.W.; Faulkner, D.; Vidgen, E.; Trautwein, E.A.; Parker, T.L.; Marchie, A.; Koumbridis, G.; Lapsley, K.G.; Josse, R.G.; Leiter, L.A.; Connelly, P.W. A dietary portfolio approach to cholesterol reduction: combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metabolism. 2002, 51, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Faulkner, D.A.; Wong, J.M.; de Souza, R.; Emam, A.; Parker, T.L.; Vidgen, E.; Lapsley, K.G.; Trautwein, E.A.; Josse, R.G.; Leiter, L.A.; Connelly, P.W. Effects of a dietary portfolio of cholesterol-lowering foods vs. lovastatin on serum lipids and C-reactive protein. JAMA 2003, 290, 502–510. [Google Scholar] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Faulkner, D.A.; Wong, J.M.; de Souza, R.; Emam, A.; Parker, T.L.; Vidgen, E.; Trautwein, E.A.; Lapsley, K.G.; Josse, R.G.; Leiter, L.A.; Singer, W.; Connelly, P.W. Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants. Am. J. Clin. Nutr. 2005, 81, 380–387. [Google Scholar]
- Slavin, M.; Kenworthy, W.; Yu, L.L. Antioxidant properties, phytochemical composition, and antiproliferative activity of Maryland-grown soybeans with colored seed coats. J. Agric. Food Chem. 2009, 57, 11174–11185. [Google Scholar] [PubMed]
- Whent, M.; Hao, J.; Slavin, M.; Zhou, M.; Song, J.; Kenworthy, W.; Yu, L.L. Effect of genotype, environment, and their interaction on chemical composition and antioxidant properties of low-linolenic soybeans grown in Maryland. J. Agric. Food Chem. 2009, 57, 10163–10174. [Google Scholar]
- Balk, E.M.; Lichtenstein, A.H.; Chung, M.; Kupelnick, B.; Chew, P.; Lau, J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis 2006, 189, 19–30. [Google Scholar]
- Brouwer, I.A.; Katan, M.B.; Zock, P.L. Dietary alpha-linolenic acid is associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: a meta-analysis. J. Nutr. 2004, 134, 919–922. [Google Scholar]
- Brenna, J.T.; Salem, N., Jr.; Sinclair, A.J.; Cunnane, S.C. alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fatty Acids 2009, 80, 85–91. [Google Scholar]
- Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 2006, 83, 1467S–1476S. [Google Scholar]
- Dai, J.; Ziegler, T.R.; Bostick, R.M.; Manatunga, A.K.; Jones, D.P.; Goldberg, J.; Miller, A.; Vogt, G.; Wilson, P.W.; Jones, L.; Shallenberger, L.; Vaccarino, V. High habitual dietary {alpha}-linolenic acid intake is associated with decreased plasma soluble interleukin-6 receptor concentrations in male twins. Am. J. Clin. Nutr. 2010, 92, 177–185. [Google Scholar]
- Mangat, I. Do vegetarians have to eat fish for optimal cardiovascular protection? Am. J. Clin. Nutr. 2009, 89, 1597–1601. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Sievenpiper, J.L.; Pauly, D.; Sumaila, U.R.; Kendall, C.W.; Mowat, F.M. Are dietary recommendations for the use of fish oils sustainable? CMAJ 2009, 180, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Arterburn, L.M.; Oken, H.A.; Hoffman, J.P.; Bailey-Hall, E.; Chung, G.; Rom, D.; Hamersley, J.; McCarthy, D. Bioequivalence of Docosahexaenoic acid from different algal oils in capsules and in a DHA-fortified food. Lipids 2007, 42, 1011–1024. [Google Scholar]
- Whelan, J. Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J. Nutr. 2009, 139, 5–10. [Google Scholar]
- Sasazuki, S. Case-control study of nonfatal myocardial infarction in relation to selected foods in Japanese men and women. Jpn. Circ. J. 2001, 65, 200–206. [Google Scholar]
- Kokubo, Y.; Iso, H.; Ishihara, J.; Okada, K.; Inoue, M.; Tsugane, S. Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center-based (JPHC) study cohort I. Circulation 2007, 116, 2553–2562. [Google Scholar] [PubMed]
- Liang, W.; Lee, A.H.; Binns, C.W.; Huang, R.; Hu, D.; Shao, H. Soy consumption reduces risk of ischemic stroke: a case-control study in southern china. Neuroepidemiology 2009, 33, 111–116. [Google Scholar]
- Li, S.H.; Liu, X.X.; Bai, Y.Y.; Wang, X.J.; Sun, K.; Chen, J.Z.; Hui, R.T. Effect of oral isoflavone supplementation on vascular endothelial function in postmenopausal women: a meta-analysis of randomized placebo-controlled trials. Am. J. Clin. Nutr. 2010, 91, 480–486. [Google Scholar]
- Messina, M.; Barnes, S. The role of soy products in reducing risk of cancer. J. Natl. Cancer Inst. 1991, 83, 541–546. [Google Scholar]
- Pisani, P.; Bray, F.; Parkin, D.M. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int. J. Cancer 2002, 97, 72–81. [Google Scholar]
- Messina, M. Western soy intake is too low to produce health effects. Am. J. Clin. Nutr. 2004, 80, 528–529. [Google Scholar]
- Travis, R.C.; Allen, N.E.; Appleby, P.N.; Spencer, E.A.; Roddam, A.W.; Key, T.J. A prospective study of vegetarianism and isoflavone intake in relation to breast cancer risk in British women. Int. J. Cancer 2008, 122, 705–710. [Google Scholar]
- Kim, K.; Johnson, J.A.; Derendorf, H. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J. Clin. Pharmacol. 2004, 44, 1083–1105. [Google Scholar]
- Kim, H.; Hall, P.; Smith, M.; Kirk, M.; Prasain, J.K.; Barnes, S.; Grubbs, C. Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet dependent. J. Nutr. 2004, 134, 3445S–3452S. [Google Scholar]
- Messina, M.; Wu, A.H. Perspectives on the soy-breast cancer relation. Am. J. Clin. Nutr. 2009, 89, 1673S–1679S. [Google Scholar]
- Messina, M.; Hilakivi-Clarke, L. Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer. Nutr. Cancer 2009, 61, 792–798. [Google Scholar]
- Shu, X.O.; Jin, F.; Dai, Q.; Wen, W.; Potter, J.D.; Kushi, L.H.; Ruan, Z.; Gao, Y.T.; Zheng, W. Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol. Biomarkers Prev. 2001, 10, 483–488. [Google Scholar]
- Korde, L.A.; Wu, A.H.; Fears, T.; Nomura, A.M.; West, D.W.; Kolonel, L.; Pike, M.C.; However, R.; Ziegler, R.G. Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidem. Biomarker. Prev. 2009, 18, 1–9. [Google Scholar]
- Wu, A.H.; Yu, M.C.; Tseng, C.C.; Stanczyk, F.Z.; Pike, M.C. Dietary patterns and breast cancer risk in Asian American women. Am. J. Clin. Nutr. 2009, 89, 1145–1154. [Google Scholar]
- Lee, S.A.; Shu, X.O.; Li, H.; Yang, G.; Cai, H.; Wen, W.; Ji, B.T.; Gao, J.; Gao, Y.T.; Zheng, W. Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women's Health Study. Am. J. Clin. Nutr. 2009, 89, 1920–1926. [Google Scholar]
- Peng, J.H.; Zhang, F.; Zhang, H.X.; Fan, H.Y. Prepubertal octylphenol exposure up-regulate BRCA1 expression, down-regulate ERalpha expression and reduce rat mammary tumorigenesis. Cancer Epidemiol. 2009, 33, 51–55. [Google Scholar]
- Lamartiniere, C.A.; Zhao, Y.X.; Fritz, W.A. Genistein: mammary cancer chemoprevention, in vivo mechanisms of action, potential for toxicity and bioavailability in rats. J. Womens Cancer 2000, 2, 11–19. [Google Scholar]
- Messina, M.J.; Wood, C.E. Soy isoflavones, estrogen therapy, and breast cancer risk: Analysis and commentary. Nutr. J. 2008, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.E. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists. Am. J. Clin. Nutr. 1999, 70, 532S–538S. [Google Scholar] [PubMed]
- Key, T.J.; Appleby, P.N.; Spencer, E.A.; Travis, R.C.; Allen, N.E.; Thorogood, M.; Mann, J.I. Cancer incidence in British vegetarians. Br. J. Cancer 2009, 101, 192–197. [Google Scholar]
- Key, T.J.; Fraser, G.E.; Thorogood, M.; Appleby, P.N.; Beral, V.; Reeves, G.; Burr, M.L.; Chang-Claude, J.; Frentzel-Beyme, R.; Kuzma, J.W.; Mann, J.; McPherson, K. Mortality in vegetarians and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. Am. J. Clin. Nutr. 1999, 70, 516S–524S. [Google Scholar]
- Koh, K.A.; Sesso, H.D.; Paffenbarger, R.S., Jr.; Lee, I.M. Dairy products, calcium and prostate cancer risk. Br. J. Cancer 2006, 95, 1582–1585. [Google Scholar] [PubMed]
- Mitrou, P.N.; Albanes, D.; Weinstein, S.J.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Leitzmann, M.F. A prospective study of dietary calcium, dairy products and prostate cancer risk (Finland). Int. J. Cancer 2007, 120, 2466–2473. [Google Scholar]
- Park, S.Y.; Murphy, S.P.; Wilkens, L.R.; Stram, D.O.; Henderson, B.E.; Kolonel, L.N. Calcium, vitamin D, and dairy product intake and prostate cancer risk: the Multiethnic Cohort Study. Am. J. Epidemiol. 2007, 166, 1259–1269. [Google Scholar] [PubMed]
- Newmark, H.L.; Heaney, R.P. Dairy products and prostate cancer risk. Nutr. Cancer 2010, 62, 297–299. [Google Scholar]
- Crowe, F.L.; Key, T.J.; Allen, N.E.; Appleby, P.N.; Roddam, A.; Overvad, K.; Gronbaek, H.; Tjonneland, A.; Halkjaer, J.; Dossus, L.; Boeing, H.; Kroger, J.; Trichopoulou, A.; Dilis, V.; Trichopoulos, D.; Boutron-Ruault, M.C.; De Lauzon, B.; Clavel-Chapelon, F.; Palli, D.; Berrino, F.; Panico, S.; Tumino, R.; Sacerdote, C.; Bueno-de-Mesquita, H.B.; Vrieling, A.; van Gils, C.H.; Peeters, P.H.; Gram, I.T.; Skeie, G.; Lund, E.; Rodriguez, L.; Jakszyn, P.; Molina-Montes, E.; Tormo, M.J.; Barricarte, A.; Larranaga, N.; Khaw, K.T.; Bingham, S.; Rinaldi, S.; Slimani, N.; Norat, T.; Gallo, V.; Riboli, E.; Kaaks, R. The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 1333–1340. [Google Scholar] [PubMed]
- Allen, N.E.; Appleby, P.N.; Davey, G.K.; Kaaks, R.; Rinaldi, S.; Key, T.J. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol. Biomarkers Prev. 2002, 11, 1441–1448. [Google Scholar] [PubMed]
- Allen, N.E.; Appleby, P.N.; Davey, G.K.; Key, T.J. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br. J. Cancer 2000, 83, 95–97. [Google Scholar]
- Hikosaka, A.; Asamoto, M.; Hokaiwado, N.; Kato, K.; Kuzutani, K.; Kohri, K.; Shirai, T. Inhibitory effects of soy isoflavones on rat prostate carcinogenesis induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis 2004, 25, 381–387. [Google Scholar]
- Mentor-Marcel, R.; Lamartiniere, C.A.; Eltoum, I.A.; Greenberg, N.M.; Elgavish, A. Dietary Genistein Improves Survival and Reduces Expression of Osteopontin in the Prostate of Transgenic Mice with Prostatic Adenocarcinoma (TRAMP). J. Nutr. 2005, 135, 989–995. [Google Scholar]
- Hwang, Y.W.; Kim, S.Y.; Jee, S.H.; Kim, Y.N.; Nam, C.M. Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutr. Cancer 2009, 61, 598–606. [Google Scholar]
- Xu, L.; Ding, Y.; Catalona, W.J.; Yang, X.J.; Anderson, W.F.; Jovanovic, B.; Wellman, K.; Killmer, J.; Huang, X.; Scheidt, K.A.; Montgomery, R.B.; Bergan, R.C. MEK4 function, genistein treatment, and invasion of human prostate cancer cells. J. Natl. Cancer Inst. 2009, 101, 1141–1155. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, M.; Xu, L.; Ananthanarayanan, V.; Cooper, J.; Takimoto, C.H.; Helenowski, I.; Pelling, J.C.; Bergan, R.C. Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res. 2008, 68, 2024–2032. [Google Scholar]
- Stamey, T.A.; Yang, N.; Hay, A.R.; McNeal, J.E.; Freiha, F.S.; Redwine, E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 1987, 317, 909–916. [Google Scholar]
- Messina, M.; Kucuk, O.; Lampe, J.W. An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate-specific antigen levels. J. AOAC Int. 2006, 89, 1121–1134. [Google Scholar]
- Pendleton, J.M.; Tan, W.W.; Anai, S.; Chang, M.; Hou, W.; Shiverick, K.T.; Rosser, C.J. Phase II Trial of Isoflavone in prostate specific antigen recurrent prostate cancer after previous local therapy. BMC Cancer 2008, 8, 132. [Google Scholar]
- Kwan, W.; Duncan, G.; Van Patten, C.; Liu, M.; Lim, J. A phase II trial of a soy beverage for subjects without clinical disease with rising prostate-specific antigen after radical radiation for prostate cancer. Nutr. Cancer 2010, 62, 198–207. [Google Scholar]
- Ide, H.; Tokiwa, S.; Sakamaki, K.; Nishio, K.; Isotani, S.; Muto, S.; Hama, T.; Masuda, H.; Horie, S. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 2010, 70, 1127–1133. [Google Scholar]
- Heaney, R.P. Protein intake and the calcium economy. J. Am. Diet. Assoc. 1993, 93, 1259–1260. [Google Scholar]
- Schuette, S.A.; Zemel, M.B.; Linkswiler, H.M. Studies on the mechanism of protein-induced hypercalciuria in older men and women. J. Nutr. 1980, 110, 305–315. [Google Scholar]
- Abelow, B.J.; Holford, T.R.; Insogna, K.L. Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif. Tissue Int. 1992, 50, 14–18. [Google Scholar]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C., Jr.; Sebastian, A. Worldwide incidence of hip fracture in elderly women: relation to consumption of animal and vegetable foods. J. Gerontol. A. Biol. Sci. Med. Sci. 2000, 55, M585–592. [Google Scholar]
- Darling, A.L.; Millward, D.J.; Torgerson, D.J.; Hewitt, C.E.; Lanham-New, S.A. Dietary protein and bone health: a systematic review and meta-analysis. Am. J. Clin. Nutr. 2009, 90, 1674–1692. [Google Scholar]
- Meng, X.; Zhu, K.; Devine, A.; Kerr, D.A.; Binns, C.W.; Prince, R.L. A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. J. Bone Miner. Res. 2009, 24, 1827–1834. [Google Scholar]
- Goldfarb, S. Diet and nephrolithiasis. Annu. Rev. Med. 1994, 45, 235–243. [Google Scholar]
- Lemann, J., Jr. Relationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: a review. Nephron 1999, 81, 18–25. [Google Scholar]
- Barzel, U.S. The skeleton as an ion exchange system: implications for the role of acid-base imbalance in the genesis of osteoporosis. J. Bone Miner. Res. 1995, 10, 1431–1436. [Google Scholar]
- WHO/FAO/UNU Expert ConsultationUnited Nations University.World Health Organization Protein and Amino Acid Requirements in Human Nutrition. World Technical Series 935,; Joint WHO/FAO/UNU Expert Consultation, United Nations University: Geneva, Switzerland, 2007.
- Breslau, N.A.; Brinkley, L.; Hill, K.D.; Pak, C.Y. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J. Clin. Endocrinol. Metab. 1988, 66, 140–146. [Google Scholar]
- Kaneko, K.; Masaki, U.; Aikyo, M.; Yabuki, K.; Haga, A.; Matoba, C.; Sasaki, H.; Koike, G. Urinary calcium and calcium balance in young women affected by high protein diet of soy protein isolate and adding sulfur-containing amino acids and/or potassium. J. Nutr. Sci. Vitaminol. (Tokyo). 1990, 36, 105–116. [Google Scholar] [PubMed]
- Fenton, T.R.; Lyon, A.W.; Eliasziw, M.; Tough, S.C.; Hanley, D.A. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J. Bone Miner. Res. 2009, 24, 1835–1840. [Google Scholar]
- Roughead, Z.K.; Hunt, J.R.; Johnson, L.K.; Badger, T.M.; Lykken, G.I. Controlled substitution of soy protein for meat protein: effects on calcium retention, bone, and cardiovascular health indices in postmenopausal women. J. Clin. Endocrinol. Metab. 2005, 90, 181–189. [Google Scholar] [PubMed]
- Wengreen, H.J.; Munger, R.G.; Cutler, D.R.; Corcoran, C.D.; Zhang, J.; Sassano, N.E. Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. J. Bone Miner. Res. 2004, 19, 537–545. [Google Scholar]
- Spence, L.A.; Lipscomb, E.R.; Cadogan, J.; Martin, B.; Wastney, M.E.; Peacock, M.; Weaver, C.M. The effect of soy protein and soy isoflavones on calcium metabolism in postmenopausal women: a randomized crossover study. Am. J. Clin. Nutr. 2005, 81, 916–922. [Google Scholar]
- Brandi, M.L.; Gennari, C. Ipriflavone: new insights into its mechanisms of action on bone remodeling. Calcif. Tissue Int. 1993, 52, 151–152. [Google Scholar]
- Atmaca, A.; Kleerekoper, M.; Bayraktar, M.; Kucuk, O. Soy isoflavones in the management of postmenopausal osteoporosis. Menopause 2008, 15, 748–757. [Google Scholar]
- Messina, M.; Ho, S.; Alekel, D.L. Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 649–658. [Google Scholar]
- Marini, H.; Bitto, A.; Altavilla, D.; Burnett, B.P.; Polito, F.; Di Stefano, V.; Minutoli, L.; Atteritano, M.; Levy, R.M.; D'Anna, R.; Frisina, N.; Mazzaferro, S.; Cancellieri, F.; Cannata, M.L.; Corrado, F.; Frisina, A.; Adamo, V.; Lubrano, C.; Sansotta, C.; Marini, R.; Adamo, E.B.; Squadrito, F. Breast safety and efficacy of genistein aglycone for postmenopausal bone loss: a follow-up study. J. Clin. Endocrinol. Metab. 2008, 93, 4787–4796. [Google Scholar]
- Brink, E.; Coxam, V.; Robins, S.; Wahala, K.; Cassidy, A.; Branca, F. Long-term consumption of isoflavone-enriched foods does not affect bone mineral density, bone metabolism, or hormonal status in early postmenopausal women: a randomized, double-blind, placebo controlled study. Am. J. Clin. Nutr. 2008, 87, 761–770. [Google Scholar] [PubMed]
- Vupadhyayula, P.M.; Gallagher, J.C.; Templin, T.; Logsdon, S.M.; Smith, L.M. Effects of soy protein isolate on bone mineral density and physical performance indices in postmenopausal women—a 2-year randomized, double-blind, placebo-controlled trial. Menopause 2009, 16, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Kenny, A.M.; Mangano, K.M.; Abourizk, R.H.; Bruno, R.S.; Anamani, D.E.; Kleppinger, A.; Walsh, S.J.; Prestwood, K.M.; Kerstetter, J.E. Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial. Am. J. Clin. Nutr. 2009, 90, 234–242. [Google Scholar]
- Alekel, D.L.; Van Loan, M.D.; Koehler, K.J.; Hanson, L.N.; Stewart, J.W.; Hanson, K.B.; Kurzer, M.S.; Peterson, C.T. The soy isoflavones for reducing bone loss (SIRBL) study: a 3-y randomized controlled trial in postmenopausal women. Am. J. Clin. Nutr. 2010, 91, 218–230. [Google Scholar]
- Writing Group for the Women's Health Initiative. Investigators Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 2002, 288, 321–333. [CrossRef] [PubMed]
- Zhao, Y.; Martin, B.R.; Weaver, C.M. Calcium bioavailability of calcium carbonate fortified soymilk is equivalent to cow's milk in young women. J. Nutr. 2005, 135, 2379–2382. [Google Scholar]
- Holick, M.F.; Biancuzzo, R.M.; Chen, T.C.; Klein, E.K.; Young, A.; Bibuld, D.; Reitz, R.; Salameh, W.; Ameri, A.; Tannenbaum, A.D. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J. Clin. Endocrinol. Metab. 2008, 93, 677–681. [Google Scholar]
- Biancuzzo, R.M.; Young, A.; Bibuld, D.; Cai, M.H.; Winter, M.R.; Klein, E.K.; Ameri, A.; Reitz, R.; Salameh, W.; Chen, T.C.; Holick, M.F. Fortification of orange juice with vitamin D(2) or vitamin D(3) is as effective as an oral supplement in maintaining vitamin D status in adults. Am. J. Clin. Nutr. 2010, 91, 1621–1626. [Google Scholar]
- Brenner, B.M.; Meyer, T.W.; Hostetter, T.H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 1982, 307, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.L.; Stampfer, M.J.; Hankinson, S.E.; Spiegelman, D.; Curhan, G.C. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann. Intern. Med. 2003, 138, 460–467. [Google Scholar]
- Kopple, J.D. National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2001, 37, S66–70. [Google Scholar]
- Franz, M.J.; Wheeler, M.L. Nutrition therapy for diabetic nephropathy. Curr. Diab. Rep. 2003, 3, 412–417. [Google Scholar]
- Smit, E.; Nieto, F.J.; Crespo, C.J.; Mitchell, P. Estimates of animal and plant protein intake in US adults: results from the Third National Health and Nutrition Examination Survey, 1988–1991. J. Am. Diet. Assoc. 1999, 99, 813–820. [Google Scholar]
- Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of chronic kidney disease in the United States. JAMA 2007, 298, 2038–2047. [Google Scholar]
- Kontessis, P.; Jones, S.; Dodds, R.; Trevisan, R.; Nosadini, R.; Fioretto, P.; Borsato, M.; Sacerdoti, D.; Viberti, G. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990, 38, 136–144. [Google Scholar]
- D'Amico, G.; Gentile, M.G. Effect of dietary manipulation on the lipid abnormalities and urinary protein loss in nephrotic patients. Miner. Electrolyte Metab. 1992, 18, 203–206. [Google Scholar]
- Kontessis, P.A.; Bossinakou, I.; Sarika, L.; Iliopoulou, E.; Papantoniou, A.; Trevisan, R.; Roussi, D.; Stipsanelli, K.; Grigorakis, S.; Souvatzoglou, A. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients. Diabetes Care 1995, 18, 1233–1240. [Google Scholar] [PubMed]
- Guijarro, C.; Keane, W.F. Lipid-induced glomerular injury. Nephron 1994, 67, 1–6. [Google Scholar]
- Fried, L.F.; Orchard, T.J.; Kasiske, B.L. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001, 59, 260–269. [Google Scholar]
- Anderson, J.W.; Blake, J.E.; Turner, J.; Smith, B.M. Effects of soy protein on renal function and proteinuria in patients with type 2 diabetes. Am. J. Clin. Nutr. 1998, 68, 1347S–1353S. [Google Scholar]
- Soroka, N.; Silverberg, D.S.; Greemland, M.; Birk, Y.; Blum, M.; Peer, G.; Iaina, A. Comparison of a vegetable-based (soya) and an animal-based low-protein diet in predialysis chronic renal failure patients. Nephron 1998, 79, 173–180. [Google Scholar]
- Teixeira, S.R.; Tappenden, K.A.; Carson, L.; Jones, R.; Prabhudesai, M.; Marshall, W.P.; Erdman, J.W., Jr. Isolated soy protein consumption reduces urinary albumin excretion and improves the serum lipid profile in men with type 2 diabetes mellitus and nephropathy. J. Nutr. 2004, 134, 1874–1880. [Google Scholar]
- Bernstein, A.M.; Treyzon, L.; Li, Z. Are high-protein, vegetable-based diets safe for kidney function? A review of the literature. J. Am. Diet. Assoc. 2007, 107, 644–650. [Google Scholar]
- Anderson, J.W. Beneficial effects of soy protein consumption for renal function. Asia Pac. J. Clin. Nutr. 2008, 17, 324–328. [Google Scholar]
- Pecis, M.; de Azevedo, M.J.; Gross, J.L. Chicken and fish diet reduces glomerular hyperfiltration in IDDM patients. Diabetes Care 1994, 17, 665–672. [Google Scholar]
- Nakamura, H.; Takasawa, M.; Kashara, S.; Tsuda, A.; Momotsu, T.; Ito, S.; Shibata, A. Effects of acute protein loads of different sources on renal function of patients with diabetic nephropathy. Tohoku J. Exp. Med. 1989, 159, 153–162. [Google Scholar]
- Kitazato, H.; Fujita, H.; Shimotomai, T.; Kagaya, E.; Narita, T.; Kakei, M.; Ito, S. Effects of chronic intake of vegetable protein added to animal or fish protein on renal hemodynamics. Nephron 2002, 90, 31–36. [Google Scholar]
- Chan, A.Y.; Cheng, M.L.; Keil, L.C.; Myers, B.D. Functional response of healthy and diseased glomeruli to a large, protein-rich meal. J. Clin. Invest. 1988, 81, 245–254. [Google Scholar]
- D'Amico, G.; Gentile, M.G. Influence of diet on lipid abnormalities in human renal disease. Am. J. Kidney Dis. 1993, 22, 151–157. [Google Scholar]
- Barsotti, G.; Navalesi, R.; Giampietro, O.; Ciardella, F.; Morelli, E.; Cupisti, A.; Mantovanelli, A.; Giovannetti, S. Effects of a vegetarian, supplemented diet on renal function, proteinuria, and glucose metabolism in patients with 'overt' diabetic nephropathy and renal insufficiency. Contrib. Nephrol. 1988, 65, 87–94. [Google Scholar] [PubMed]
- Azadbakht, L.; Esmaillzadeh, A. Soy-protein consumption and kidney-related biomarkers among type 2 diabetics: a crossover, randomized clinical trial. J. Ren. Nutr. 2009, 19, 479–486. [Google Scholar]
- Azadbakht, L.; Atabak, S.; Esmaillzadeh, A. Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial. Diabetes Care 2008, 31, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.T.; Chen, J.R.; Yang, C.S.; Peng, S.J.; Ferng, S.H. Effect of soya protein on serum lipid profile and lipoprotein concentrations in patients undergoing hypercholesterolaemic haemodialysis. Br. J. Nutr. 2006, 95, 366–371. [Google Scholar]
- Chen, S.T.; Ferng, S.H.; Yang, C.S.; Peng, S.J.; Lee, H.R.; Chen, J.R. Variable effects of soy protein on plasma lipids in hyperlipidemic and normolipidemic hemodialysis patients. Am. J. Kidney Dis. 2005, 46, 1099–1106. [Google Scholar]
- Fanti, P.; Asmis, R.; Stephenson, T.J.; Sawaya, B.P.; Franke, A.A. Positive effect of dietary soy in ESRD patients with systemic inflammation—correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrol. Dial. Transplant. 2006, 21, 2239–2246. [Google Scholar]
- Imani, H.; Tabibi, H.; Atabak, S.; Rahmani, L.; Ahmadinejad, M.; Hedayati, M. Effects of soy consumption on oxidative stress, blood homocysteine, coagulation factors, and phosphorus in peritoneal dialysis patients. J. Ren. Nutr. 2009, 19, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Cupisti, A.; Ghiadoni, L.; D'Alessandro, C.; Kardasz, I.; Morelli, E.; Panichi, V.; Locati, D.; Morandi, S.; Saba, A.; Barsotti, G.; Taddei, S.; Arnoldi, A.; Salvetti, A. Soy protein diet improves endothelial dysfunction in renal transplant patients. Nephrol. Dial. Transplant. 2007, 22, 229–234. [Google Scholar]
- Tonstad, S.; Butler, T.; Yan, R.; Fraser, G.E. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 2009, 32, 791–796. [Google Scholar]
- Tolonen, N.E.; Groop, P.-H. Can lipid abnormalities predict renal disease in patients with diabetes? Clin. Lipid 2010, 5, 151–155. [Google Scholar] [CrossRef]
- Sandberg, A.S. Bioavailability of minerals in legumes. Br. J. Nutr. 2002, 88, S281–285. [Google Scholar]
- Champ, M.M. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 2002, 88, S307–319. [Google Scholar]
- Harland, B.F.; Morris, E.R. Phytate: a good or bad food component? Nutr. Res. 1995, 15, 733–754. [Google Scholar] [CrossRef]
- Vucenik, I.; Shamsuddin, A.M. Protection against cancer by dietary IP6 and inositol. Nutr. Cancer 2006, 55, 109–125. [Google Scholar]
- Hídvégi, M.; Lásztity, R. Phytic acid content of cereals and legumes and interaction with proteins. Periodica polytechnica Chem. Eng 2002, 46, 59–64. [Google Scholar]
- Hunt, J.R.; Gallagher, S.K.; Johnson, L.K. Effect of ascorbic acid on apparent iron absorption by women with low iron stores. Am. J. Clin. Nutr. 1994, 59, 1381–1385. [Google Scholar]
- Garcia-Casal, M.N.; Layrisse, M.; Solano, L.; Baron, M.A.; Arguello, F.; Llovera, D.; Ramirez, J.; Leets, I.; Tropper, E. Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J. Nutr. 1998, 128, 646–650. [Google Scholar]
- Macfarlane, B.J.; van der Riet, W.B.; Bothwell, T.H.; Baynes, R.D.; Siegenberg, D.; Schmidt, U.; Tal, A.; Taylor, J.R.; Mayet, F. Effect of traditional oriental soy products on iron absorption. Am. J. Clin. Nutr. 1990, 51, 873–880. [Google Scholar]
- Lynch, S.R.; Husaini, S.; Dassenko, S.A.; Beard, J.L.; Cook, J.D. A soybean product with improved iron bioavailability for humans. Am. J. Clin. Nutr. 1984, 39, 664. [Google Scholar]
- Brune, M.; Rossander-Hulten, L.; Hallberg, L.; Gleerup, A.; Sandberg, A.S. Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J. Nutr. 1992, 122, 442–449. [Google Scholar]
- Huisheng, Q.; Jilin, Y.; Weiping, Y.; Chaoxu, W.; Ling, Z.; Yalan, W.; Shoyang, Y. The effect of fermented soy food in preventing iron deficiency anemia in children. Acta Nutrimenta Sinica 1989, 11, 295–298. [Google Scholar]
- Cook, J.D.; Morck, T.A.; Lynch, S.R. The inhibitory effect of soy products on nonheme iron absorption in man. Am. J. Clin. Nutr. 1981, 34, 2622–2629. [Google Scholar]
- Derman, D.P.; Ballot, D.; Bothwell, T.H.; MacFarlane, B.J.; Baynes, R.D.; MacPhail, A.P.; Gillooly, M.; Bothwell, J.E.; Bezwoda, W.R.; Mayet, F. Factors influencing the absorption of iron from soya-bean protein products. Br. J. Nutr. 1987, 57, 345–353. [Google Scholar]
- Lynch, S.R.; Beard, J.L.; Dassenko, S.A.; Cook, J.D. Iron absorption from legumes in humans. Am. J. Clin. Nutr. 1984, 40, 42–47. [Google Scholar]
- Murray-Kolb, L.E.; Welch, R.; Theil, E.C.; Beard, J.L. Women with low iron stores absorb iron from soybeans. Am. J. Clin. Nutr. 2003, 77, 180–184. [Google Scholar]
- Lonnerdal, B. Soybean ferritin: implications for iron status of vegetarians. Am. J. Clin. Nutr. 2009, 89, 1680S–1685S. [Google Scholar]
- Lonnerdal, B.; Bryant, A.; Liu, X.; Theil, E.C. Iron absorption from soybean ferritin in nonanemic women. Am. J. Clin. Nutr. 2006, 83, 103–107. [Google Scholar]
- Beard, J.L.; Burton, J.W.; Theil, E.C. Purified ferritin and soybean meal can be sources of iron for treating iron deficiency in rats. J. Nutr. 1996, 126, 154–160. [Google Scholar]
- Hambidge, K.M.; Krebs, N.F. Zinc deficiency: a special challenge. J. Nutr. 2007, 137, 1101–1105. [Google Scholar]
- Young, V.R.; Janghorbani, M. Soy protein in human diets in relation to bioavailability of iron and zinc. Cereal Chem. 1981, 58, 12–17. [Google Scholar]
- Sandstrom, B.; Cederblad, A. Zinc absorption from composite meals. II. Influence of the main protein source. Am. J. Clin. Nutr. 1980, 33, 1778–1783. [Google Scholar] [PubMed]
- Sandstrom, B.; Kivisto, B.; Cederblad, A. Absorption of zinc from soy protein meals in humans. J. Nutr. 1987, 117, 321–327. [Google Scholar]
- Davidsson, L.; Almgren, A.; Sandstrom, B.; Juillerat, M.; Hurrell, R.F. Zinc absorption in adult humans: the effect of protein sources added to liquid test meals. Br. J. Nutr. 1996, 75, 607–613. [Google Scholar]
- Lonnerdal, B.; Cederblad, A.; Davidsson, L.; Sandstrom, B. The effect of individual components of soy formula and cows' milk formula on zinc bioavailability. Am. J. Clin. Nutr. 1984, 40, 1064–1070. [Google Scholar]
- Davidsson, L.; Ziegler, E.E.; Kastenmayer, P.; van Dael, P.; Barclay, D. Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants. Br. J. Nutr. 2004, 91, 287–294. [Google Scholar]
- Etcheverry, P.; Hawthorne, K.M.; Liang, L.K.; Abrams, S.A.; Griffin, I.J. Effect of beef and soy proteins on the absorption of non-heme iron and inorganic zinc in children. J. Am. Coll. Nutr. 2006, 25, 34–40. [Google Scholar]
- Fredlund, K.; Isaksson, M.; Rossander-Hulthen, L.; Almgren, A.; Sandberg, A.S. Absorption of zinc and retention of calcium: dose-dependent inhibition by phytate. J. Trace Elem. Med. Biol. 2006, 20, 49–57. [Google Scholar]
- Weaver, C.M.; Plawecki, K.L. Dietary calcium: adequacy of a vegetarian diet. Am. J. Clin. Nutr. 1994, 59, 1238S–1241S. [Google Scholar]
- Heaney, R.P.; Weaver, C.M. Oxalate in vegetables: Effects on calcium absorbability. (Abstract). Exp. Biol. 1997. [Google Scholar]
- Weaver, C.M.; Heaney, R.P.; Nickel, K.P.; Packard, P.I. Calcium bioavailability from high oxalate vegetables: Chinese vegetables, sweet potatoes and rhubarb. J. Food Sci. 1997, 63, 524–525. [Google Scholar]
- Heaney, R.P.; Weaver, C.M.; Recker, R.R. Calcium absorbability from spinach. Am. J. Clin. Nutr. 1988, 47, 707–709. [Google Scholar]
- Heaney, R.P.; Weaver, C.M.; Fitzsimmons, M.L. Soybean phytate content: effect on calcium absorption. Am. J. Clin. Nutr. 1991, 53, 745–747. [Google Scholar]
- Heaney, R.P.; Dowell, M.S.; Rafferty, K.; Bierman, J. Bioavailability of the calcium in fortified soy imitation milk, with some observations on method. Am. J. Clin. Nutr. 2000, 71, 1166–1169. [Google Scholar]
- Weaver, C.M.; Heaney, R.P.; Connor, L.; Martin, B.R.; Smith, D.L.; Nielsen, E. Bioavailability of calcium from tofu vs. milk in premenopausal women. J. Food Sci. 2002, 68, 3144–3147. [Google Scholar]
- Helferich, W.G.; Andrade, J.E.; Hoagland, M.S. Phytoestrogens and breast cancer: a complex story. Inflammopharmacology 2008, 16, 219–226. [Google Scholar]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar]
- Allred, C.D.; Allred, K.F.; Ju, Y.H.; Goeppinger, T.S.; Doerge, D.R.; Helferich, W.G. Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis 2004, 25, 1649–1657. [Google Scholar]
- Conner, P.; Skoog, L.; Soderqvist, G. Breast epithelial proliferation in postmenopausal women evaluated through fine-needle-aspiration cytology. Climacteric 2001, 4, 7–12. [Google Scholar]
- Conner, P.; Soderqvist, G.; Skoog, L.; Graser, T.; Walter, F.; Tani, E.; Carlstrom, K.; von Schoultz, B. Breast cell proliferation in postmenopausal women during HRT evaluated through fine needle aspiration cytology. Breast Cancer Res. Treat. 2003, 78, 159–165. [Google Scholar]
- Shu, X.O.; Zheng, Y.; Cai, H.; Gu, K.; Chen, Z.; Zheng, W.; Lu, W. Soy food intake and breast cancer survival. JAMA 2009, 302, 2437–2443. [Google Scholar]
- Guha, N.; Kwan, M.L.; Quesenberry, C.P., Jr.; Weltzien, E.K.; Castillo, A.L.; Caan, B.J. Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the life after cancer epidemiology study. Breast Cancer Res. Treat. 2009, 118, 395–405. [Google Scholar]
- Messina, M.; Abrams, D.I.; Hardy, M. Can clinicians now assure their breast cancer patients that soyfoods are safe? Womens Health 2010, 6, 335–338. [Google Scholar]
- Pan, L.; Xia, X.; Feng, Y.; Jiang, C.; Huang, Y. Exposure to the phytoestrogen daidzein attenuates apomorphine-induced penile erection concomitant with plasma testosterone level reduction in dose and time-related manner in adult rats. Urology 2007, 70, 613–617. [Google Scholar]
- Faqi, A.S.; Johnson, W.D.; Morrissey, R.L.; McCormick, D.L. Reproductive toxicity assessment of chronic dietary exposure to soy isoflavones in male rats. Reprod. Toxicol. 2004, 18, 605–611. [Google Scholar]
- Chavarro, J.E.; Toth, T.L.; Sadio, S.M.; Hauser, R. Soy food and isoflavone intake in relation to semen quality parameters among men from an infertility clinic. Hum. Reprod. 2008, 23, 2584–2590. [Google Scholar]
- Martinez, J.; Lewi, J.E. An unusual case of gynecomastia associated with soy product consumption. Endocr. Pract. 2008, 14, 415–418. [Google Scholar]
- Hamilton-Reeves, J.M.; Vazquez, G.; Duval, S.J.; Phipps, W.R.; Kurzer, M.S.; Messina, M.J. Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis. Fertil. Steril. 2009. [Google Scholar]
- Messina, M. Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil. Steril. 2010, 93, 2095–2104. [Google Scholar]
- Mitchell, J.H.; Cawood, E.; Kinniburgh, D.; Provan, A.; Collins, A.R.; Irvine, D.S. Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. (Lond) 2001, 100, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Beaton, L.K.; McVeigh, B.L.; Dillingham, B.L.; Lampe, J.W.; Duncan, A.M. Soy protein isolates of varying isoflavone content do not adversely affect semen quality in healthy young men. Fertil. Steril. 2009. [Google Scholar]
- Messina, M.; Watanabe, S.; Setchell, K.D. Report on the 8th International Symposium on the Role of Soy in Health Promotion and Chronic Disease Prevention and Treatment. J. Nutr. 2009, 139, 796S–802S. [Google Scholar]
- Casini, M.L.; Gerli, S.; Unfer, V. An infertile couple suffering from oligospermia by partial sperm maturation arrest: can phytoestrogens play a therapeutic role? A case report study. Gynecol. Endocrinol. 2006, 22, 399–401. [Google Scholar]
- Doerge, D.; Chang, H. Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 777, 269. [Google Scholar]
- Poirier, L.A.; Doerge, D.R.; Gaylor, D.W.; Miller, M.A.; Lorentzen, R.J.; Casciano, D.A.; Kadlubar, F.F.; Schwetz, B.A. An FDA review of sulfamethazine toxicity. Regul. Toxicol. Pharmacol. 1999, 30, 217–222. [Google Scholar]
- Capen, C.C. Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol. Pathol. 1997, 25, 39–48. [Google Scholar]
- Divi, R.L.; Chang, H.C.; Doerge, D.R. Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem. Pharmacol. 1997, 54, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Redmond, G. Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: a review of the relevant literature. Thyroid 2006, 16, 249–258. [Google Scholar]
- Bosland, M.C.; Zeleniuch-Jacquotte, A.; Melamed, J.; Macias, V.; Kajdacsy-Balla, A.; Schmoll, J.; Meserve-Watanabe, H.; Enk, E. Design and accrual of a randomized, placebo-controlled clinical trial with soy protein isolate in men at high risk for PSA failure after radical prostatectomy. 25-30 April 2009; Presented at the American Urological Association Annual Meeting, Chicago, IL, USA, Abstract 1861. [Google Scholar]
- Sharma, P.; Wisniewski, A.; Braga-Basaria, M.; Xu, X.; Yep, M.; Denmeade, S.; Dobs, A.S.; DeWeese, T.; Carducci, M.; Basaria, S. Lack of an effect of high dose isoflavones in men with prostate cancer undergoing androgen deprivation therapy. J. Urol. 2009, 182, 2265–2272. [Google Scholar]
- Ryan-Borchers, T.; Boon, C.; Park, J.S.; McGuire, M.; Fournier, L.; Beerman, K. Effects of dietary and supplemental forms of isoflavones on thyroid function in healthy postmenopausal women. Top. Clin. Nutr. 2008, 23, 13–22. [Google Scholar]
- Bitto, A.; Polito, F.; Atteritano, M.; Altavilla, D.; Mazzaferro, S.; Marini, H.; Adamo, E.B.; D'Anna, R.; Granese, R.; Corrado, F.; Russo, S.; Minutoli, L.; Squadrito, F. Genistein aglycone does not affect thyroid function: results from a three-year, randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 2010, 95, 3067–3072. [Google Scholar] [PubMed]
- Conrad, S.C.; Chiu, H.; Silverman, B.L. Soy formula complicates management of congenital hypothyroidism. Arch. Dis. Child. 2004, 89, 37–40. [Google Scholar]
- Liwanpo, L.; Hershman, J.M. Conditions and drugs interfering with thyroxine absorption. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 781–792. [Google Scholar]
- Villar, H.C.; Saconato, H.; Valente, O.; Atallah, A.N. Thyroid hormone replacement for subclinical hypothyroidism. Cochrane Database Syst. Rev. 2007, 3, CD003419. [Google Scholar]
- Aoki, Y.; Belin, R.M.; Clickner, R.; Jeffries, R.; Phillips, L.; Mahaffey, K.R. Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999-2002). Thyroid 2007, 17, 1211–1223. [Google Scholar]
- Caldwell, K.L.; Miller, G.A.; Wang, R.Y.; Jain, R.B.; Jones, R.L. Iodine status of the U.S. population, National Health and Nutrition Examination Survey 2003-2004. Thyroid 2008, 18, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Delange, F.; de Benoist, B.; Burgi, H. Determining median urinary iodine concentration that indicates adequate iodine intake at population level. Bull. World Health Organ. 2002, 80, 633–636. [Google Scholar]
- Perrine, C.G.; Herrick, K.; Serdula, M.K.; Sullivan, K.M. Some subgroups of reproductive age women in the United States may be at risk for iodine deficiency. J. Nutr. 2010, 140, 1489–1494. [Google Scholar]
- Remer, T.; Neubert, A.; Manz, F. Increased risk of iodine deficiency with vegetarian nutrition. Br. J. Nutr. 1999, 81 [see comments], 45–49. [Google Scholar]
- Draper, A.; Lewis, J.; Malhotra, N.; Wheeler, E. The energy and nutrient intakes of different types of vegetarian: a case for supplements? Br. J. Nutr. 1993, 69, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, M.; Andersson, I.; Asp, N.G.; Berthelsen, K.; Birkhed, D.; Dencker, I.; Johansson, C.G.; Jagerstad, M.; Kolar, K.; Nair, B.M.; Nilsson-Ehle, P.; Norden, A.; Rassner, S.; Akesson, B.; Ockerman, P.A. Nutrient intake and health status of vegans. Chemical analyses of diets using the duplicate portion sampling technique. Am. J. Clin. Nutr. 1981, 34, 2464–2477. [Google Scholar] [PubMed]
- Krajcovicova-Kudlackova, M.; Buckova, K.; Klimes, I.; Sebokova, E. Iodine deficiency in vegetarians and vegans. Ann. Nutr. Metab. 2003, 47, 183–185. [Google Scholar]
- Waldmann, A.; Koschizke, J.W.; Leitzmann, C.; Hahn, A. Dietary intakes and lifestyle factors of a vegan population in Germany: results from the German Vegan Study. Eur. J. Clin. Nutr. 2003, 57, 947–955. [Google Scholar]
- Hu, Y.; Ge, C.; Yuan, W.; Zhu, R.; Zhang, W.; Du, L.; Xue, J. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci. Food Agric. 2010, 90, 1194–1202. [Google Scholar]
- Fan, J.; Zhang, Y.; Chang, X.; Saito, M.; Li, Z. Changes in the radical scavenging activity of bacterial-type douchi, a traditional fermented soybean product, during the primary fermentation process. Biosci. Biotechnol. Biochem. 2009, 73, 2749–2753. [Google Scholar] [PubMed]
- Kurahashi, N.; Inoue, M.; Iwasaki, M.; Tanaka, Y.; Mizokami, M.; Tsugane, S. Isoflavone consumption and subsequent risk of hepatocellular carcinoma in a population-based prospective cohort of Japanese men and women. Int. J. Cancer 2009, 124, 1644–1649. [Google Scholar]
- Suarez, F.L.; Springfield, J.; Furne, J.K.; Lohrmann, T.T.; Kerr, P.S.; Levitt, M.D. Gas production in human ingesting a soybean flour derived from beans naturally low in oligosaccharides. Am. J. Clin. Nutr. 1999, 69, 135–139. [Google Scholar]
- Feng, S.; Saw, C.L.; Lee, Y.K.; Huang, D. Novel process of fermenting black soybean [Glycine max (L.) Merrill] yogurt with dramatically reduced flatulence-causing oligosaccharides but enriched soy phytoalexins. J. Agric. Food Chem. 2008, 56, 10078–10084. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.J. Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999, 70, 439S–450S. [Google Scholar]
- Guenther, P.M.; Dodd, K.W.; Reedy, J.; Krebs-Smith, S.M. Most Americans eat much less than recommended amounts of fruits and vegetables. J. Am. Diet. Assoc. 2006, 106, 1371–1379. [Google Scholar]
- Phillips, R.D. Starchy legumes in human nutrition, health and culture. Plant Foods Hum. Nutr. 1993, 44, 195–211. [Google Scholar]
- Leterme, P. Recommendations by health organizations for pulse consumption. Br. J. Nutr. 2002, 88, S239–242. [Google Scholar]
- Haddad, E.H.; Tanzman, J.S. What do vegetarians in the United States eat? Am. J. Clin. Nutr. 2003, 78, 626S–632S. [Google Scholar] [PubMed]
- Vierk, K.A.; Koehler, K.M.; Fein, S.B.; Street, D.A. Prevalence of self-reported food allergy in American adults and use of food labels. J. Allergy Clin. Immunol. 2007, 119, 1504–1510. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Messina, M.; Messina, V. The Role of Soy in Vegetarian Diets. Nutrients 2010, 2, 855-888. https://doi.org/10.3390/nu2080855
Messina M, Messina V. The Role of Soy in Vegetarian Diets. Nutrients. 2010; 2(8):855-888. https://doi.org/10.3390/nu2080855
Chicago/Turabian StyleMessina, Mark, and Virginia Messina. 2010. "The Role of Soy in Vegetarian Diets" Nutrients 2, no. 8: 855-888. https://doi.org/10.3390/nu2080855
APA StyleMessina, M., & Messina, V. (2010). The Role of Soy in Vegetarian Diets. Nutrients, 2(8), 855-888. https://doi.org/10.3390/nu2080855