Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract
Abstract
:1. Introduction
2. Chemical and Structural Characteristics of Dietary Proteins
2.1. Food Source
2.2. Composition
2.3. Processing and Matrix Effects
3. Fate of Dietary Proteins in the Gastrointestinal Tract
3.1. Digestion and Absorption of Proteins
3.1.1. Digestion
3.1.2. Absorption
3.2. Physiological Significance of Bioactive Peptides in the GI Tract
4. Protein Sensing in the GI Tract
4.1. Oral and Gastrointestinal Chemosensing
4.2. Stomach and Small Intestine
4.3. Large Intestine
5. Role of the GI Tract in Regulation of Metabolism and Food Intake in Response to Dietary Proteins
5.1. Metabolism
5.1.1. Amino Acid Metabolism
5.1.2. Glucose Metabolism
5.1.3. Lipid Metabolism
5.2. Food Intake
6. Assessment of Protein Quality
7. Summary and Conclusion
Acknowledgements
Conflicts of Interest
References
- Xiong, Y.L. Muscle Proteins. In Proteins in Food Processing; Yada, R.Y., Ed.; Woodhead Publishing: Cambridge, UK, 2004; pp. 100–122. [Google Scholar]
- Fox, P.; McSweeney, P. Dairy Chemistry and Biochemistry, 1st ed; Blackie Academic & Professional: London, UK, 1998. [Google Scholar]
- Deeth, H.C.; Hartanto, J. Chemistry of Milk-Role of Constituents in Evaporation and Drying. In Dairy Powders and Concentrated Milk Products; Tamime, A.Y., Ed.; Blackwell Publishing: Chichester, UK, 2009; pp. 1–27. [Google Scholar]
- Luhovyy, B.L.; Akhavan, T.; Anderson, G.H. Whey proteins in the regulation of food intake and satiety. J. Am. Coll. Nutr. 2007, 26, 704S–712S. [Google Scholar]
- Anderson, G.; Luhovyy, B.; Akhavan, T.; Panahi, S. Milk Proteins in the Regulation of Body Weight, Satiety, Food Intake and Glycemia. In The Role of Milk in Health and Disease; Clemens, R.K., Fleischer-Michaelsen, O.H., Eds.; Nestlé Nutrition Institute Workshops Series: Basel, Switzerland, 2010. [Google Scholar]
- Akhavan, T.; Panahi, S.; Anderson, G.; Luhovyy, B. Application of Dairy-Derived. In gredients in Food Intake and Metabolic Regulation. In Dairy-Derived Ingredients: Food and Nutraceutical Uses; Corredig, M., Ed.; Woodhead Publishing: Cambridge, UK, 2009; pp. 212–237. [Google Scholar]
- Nakamura, R.; Doi, E. Egg Processing. In Food Proteins: Processing Applications; Nakai, S., Modler, H.W., Eds.; Wiley-VCH: New York, NY, USA, 2000; pp. 171–207. [Google Scholar]
- Lásztity, R. The Chemistry of Cereal Proteins, 2nd ed; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and fee. Food Res. Int. 2010, 43, 414–431. [Google Scholar]
- Torres, N.; Torre-Villalvazo, I.; Tovar, A.R. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J. Nutr. Biochem. 2006, 17, 365–373. [Google Scholar]
- Fukushima, D. Soy Proteins. In Proteins in Food Processing; Yada, R.Y., Ed.; Woodhead Publishing: Cambridge, UK, 2004; pp. 100–122. [Google Scholar]
- Arntfield, S.D. Proteins From Oil-Producing Plants. In Proteins in Food Processing; Yada, R.Y., Ed.; Woodhead Publishing: Cambridge, UK, 2004; pp. 146–175. [Google Scholar]
- Nagao, T.; Yoshimura, S.; Saito, Y.; Nakagomi, M.; Usumi, K.; Ono, H. Reproductive effects in male and female rats of neonatal exposure to genistein. Reprod. Toxicol. 2001, 15, 399–411. [Google Scholar]
- Kavanagh, K.; Jones, K.L.; Zhang, L.; Flynn, D.M.; Shadoan, M.K.; Wagner, J.D. High isoflavone soy diet increases insulin secretion without decreasing insulin sensitivity in premenopausal nonhuman primates. Nutr. Res. 2008, 28, 368–376. [Google Scholar]
- Lu, M.P.; Wang, R.; Song, X.; Chibbar, R.; Wang, X.; Wu, L.; Meng, Q.H. Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutr. Res. 2008, 28, 464–471. [Google Scholar]
- Cotterchio, M.; Boucher, B.A.; Kreiger, N.; Mills, C.A.; Thompson, L.U. Dietary phytoestrogen intake-lignans and isoflavones-and breast cancer risk (Canada). Proc. Nutr. Soc. 2008, 19, 259–272. [Google Scholar]
- Cassidy, A.; Griffin, B. Phyto-oestrogens: A potential role in the prevention of CHD? Proc. Nutr. Soc. 1999, 58, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Chobert, J.M. Milk protein modification to improve functional and biological properties. Adv. Food Nutr. Res. 2003, 47, 1–71. [Google Scholar]
- Shukla, T.P. Food Protein Deterioration. In Chemical Modification of Food Proteins; Krause Milling Company: Milwaukee, WI, USA, 1982. [Google Scholar]
- Belitz, H.D. Amino Acids, Peptides, Protein. Food. Chem. 2009, 116, 401–412. [Google Scholar]
- Puri, M.; Pahuja, P.; Kanwar, J.R. Structure, Rhelogy and Texturization of Food Proteins. In Food Biotechnology: Principles and Practices; Joshi, V.K., Singh, R.S., Eds.; Ane Publisher: New Delhi, India, 2008. [Google Scholar]
- Pedrosa, C.; Trisciuzzi, C.; Ferreira, S.T. Effects of glycosylation on functional properties of vicilin, the 7S storage globulin from Pea (Pisum sativum). J. Agric. Food. Chem. 1997, 45, 2025–2030. [Google Scholar]
- Yvon, M.; Beucher, S.; Guilloteau, P.; Le Huerou-Luron, I.; Corring, T. Effects of caseinomacropeptide (CMP) on digestion regulation. Reprod. Nutr. Dev. 1994, 34, 527–537. [Google Scholar]
- Venter, C.S. Health benefits of soy beans and soy products: A review. J. Fam. Ecol. Consum. Sci. 1999, 27, 24–33. [Google Scholar]
- Hernandez-Ledesma, B.; Del Mar Contreras, M.; Recio, I. Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv. Colloid Interface Sci. 2011, 165, 23–35. [Google Scholar] [Green Version]
- Shimizu, M. Food-derived peptides and intestinal functions. Biofactors 2004, 21, 43–47. [Google Scholar]
- Cox, C.L.; Secor, S.M. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus. J. Exp. Biol. 2008, 211, 1131–1140. [Google Scholar]
- Schultz, S.G.; Curran, P.F. Stimulation of intestinal sodium absorption by sugars. Am. J. Clin. Nutr. 1970, 23, 437–440. [Google Scholar]
- Silk, D.B.; Grimble, G.K.; Rees, R.G. Protein digestion and amino acid and peptide absorption. Proc. Nutr. Soc. 1985, 44, 63–72. [Google Scholar]
- Schaart, M.W.; Schierbeek, H.; van der Schoor, S.R.; Stoll, B.; Burrin, D.G.; Reeds, P.J.; van Goudoever, J.B. Threonine utilization is high in the intestine of piglets. J. Nutr. 2005, 135, 765–770. [Google Scholar]
- Chapman, K.P.; Courtney-Martin, G.; Moore, A.M.; Langer, J.C.; Tomlinson, C.; Ball, R.O.; Pencharz, P.B. Lysine requirement in parenterally fed postsurgical human neonates. Am. J. Clin. Nutr. 2010, 91, 958–965. [Google Scholar]
- Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 1998, 128, 606–614. [Google Scholar]
- Self, J.T.; Spencer, T.E.; Johnson, G.A.; Hu, J.; Bazer, F.W.; Wu, G. Glutamine synthesis in the developing porcine placenta. Biol. Reprod. 2004, 70, 1444–1451. [Google Scholar]
- Hoerr, R.A.; Matthews, D.E.; Bier, D.M.; Young, V.R. Leucine kinetics from [2H3]- and [13C]leucine infused simultaneously by gut and vein. Am. J. Physiol. 1991, 260, E111–E117. [Google Scholar]
- Biolo, G.; Tessari, P.; Inchiostro, S.; Bruttomesso, D.; Fongher, C.; Sabadin, L.; Fratton, M.G.; Valerio, A.; Tiengo, A. Leucine and phenylalanine kinetics during mixed meal ingestion: A multiple tracer approach. Am. J. Physiol. 1992, 262, E455–E463. [Google Scholar]
- Layman, D.K.; Baum, J.I. Dietary protein impact on glycemic control during weight loss. J. Nutr. 2004, 134, 968S–973S. [Google Scholar]
- Chen, L.; Li, P.; Wang, J.; Li, X.; Gao, H.; Yin, Y.; Hou, Y.; Wu, G. Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 2009, 37, 143–152. [Google Scholar]
- Korhonen, H.; Pihlanto, A. Food-derived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 2003, 9, 1297–1308. [Google Scholar]
- Miguel, M.; Aleixandre, M.A.; Ramos, M.; Lopez-Fandino, R. Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. J. Agric. Food Chem. 2006, 54, 726–731. [Google Scholar]
- Chabance, B.; Qian, Z.Y.; Migliore-Samour, D.; Jolles, P.; Fiat, A.M. Binding of the bovine caseinoglycopeptide to the platelet membrane glycoprotein GPIb GPIb alpha. Biochem. Mol. Biol. Int. 1997, 42, 77–84. [Google Scholar]
- Quiros, A.; del Mar Contreras, M.; Ramos, M.; Amigo, L.; Recio, I. Stability to gastrointestinal enzymes and structure-activity relationship of beta-casein-peptides with antihypertensive properties. Peptides 2009, 30, 1848–1853. [Google Scholar]
- van Platerink, C.J.; Janssen, H.G.; Horsten, R.; Haverkamp, J. Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 830, 151–157. [Google Scholar]
- Maeno, M.; Yamamoto, N.; Takano, T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 1996, 79, 1316–1321. [Google Scholar]
- Daniel, H.; Vohwinkel, M.; Rehner, G. Effect of casein and beta-casomorphins on gastrointestinal motility in rats. J. Nutr. 1990, 120, 252–257. [Google Scholar]
- Rao, R.K.; Koldovsky, O.; Davis, T.P. Inhibition of intestinal degradation of somatostatin by rat milk. Am. J. Physiol. 1990, 258, G426–G431. [Google Scholar]
- Britton, J.R.; Koldovsky, O. Luminal digestion of lactoferrin in suckling and weanling rats. Am. J. Physiol. 1987, 253, G397–G403. [Google Scholar]
- Britton, J.R.; George-Nascimento, C.; Koldovsky, O. Luminal hydrolysis of recombinant human epidermal growth factor in the rat gastrointestinal tract: Segmental and developmental differences. Life Sci. 1988, 43, 1339–1347. [Google Scholar]
- McGuinness, E.E.; Morgan, R.G.; Levison, D.A.; Frape, D.L.; Hopwood, D.; Wormsley, K.G. The effects of long-term feeding of soya flour on the rat pancreas. Scand. J. Gastroenterol. 1980, 15, 497–502. [Google Scholar]
- Roebuck, B.D. Trypsin inhibitors: Potential concern for humans? J. Nutr. 1987, 117, 398–400. [Google Scholar] [PubMed]
- Roy, D.M.; Schneeman, B.O. Effect of soy protein, casein and trypsin inhibitor on cholesterol, bile acids and pancreatic enzymes in mic. J. Nutr. 1981, 111, 878–885. [Google Scholar]
- Nitsan, Z.; Gertler, A. The effect of methionine supplementation on the levels of pancreatopeptidase E, trypsin, chymotrypsin and amylase in the pancreas of chicks receiving raw and heated soya-bean diet. Br. J. Nutr. 1972, 27, 337–342. [Google Scholar]
- Pupovac, J.; Anderson, G.H. Dietary peptides induce satiety via cholecystokinin-A and peripheral opioid receptors in rats. J. Nutr. 2002, 132, 2775–2780. [Google Scholar]
- Yvon, M.; Beucher, S.; Guilloteau, P.; Le Huerou-Luron, I.; Corring, T. Effects of caseinomacropeptide (CMP) on digestion regulation. Reprod. Nutr. Dev. 1994, 34, 527–537. [Google Scholar]
- Brody, E.P. Biological activities of bovine glycomacropeptide. Br. J. Nutr. 2000, 84, S39–S46. [Google Scholar]
- Yvon, M.; Beucher, S.; Scanff, P.; Thirouin, S.; Pelissier, J.P. In vitro simulation of gastric digestion of milk proteins: Comparison between in vitro and in vivo data. J. Agric. Food Chem. 1992, 40, 239–244. [Google Scholar]
- Stan, E.Y.; Aleinik, S.I.; Chernikov, M.P. Physiologically active peptides from kappa-casein. Fiziol. Zh. SSSR Im. I.M. Sechenova 1983, 69, 855–858. (in Russian). [Google Scholar] [PubMed]
- Beucher, S.; Levenez, F.; Yvon, M.; Corring, T. Effect of gastric digestive products from casein on CCK release by intestinal cells in rat. J. Nutr. Biochem. 1994, 5, 578–584. [Google Scholar]
- Guilloteau, P.; Le Huerou-Luron, I.; Le Drean, G.; Gestin, M.; Philouze-Rome, V.; Artiaga, A.; Bernard, C.; Chayvialle, J.A. Gut regulatory peptide levels in bovine fetuses and their dams between the 3rd and 9th months of gestation. Biol. Neonate 1998, 74, 430–438. [Google Scholar]
- Nishi, T.; Hara, H.; Tomita, F. Soybean beta-conglycinin peptone suppresses food intake and gastric emptying by increasing plasma cholecystokinin levels in rats. J. Nutr. 2003, 133, 352–357. [Google Scholar]
- Sharara, A.I.; Bouras, E.P.; Misukonis, M.A.; Liddle, R.A. Evidence for indirect dietary regulation of cholecystokinin release in rats. Am. J. Physiol. 1993, 265, G107–G112. [Google Scholar]
- Rao, R.K. Biologically active peptides in the gastrointestinal lumen. Life Sci. 1991, 48, 1685–1704. [Google Scholar]
- van der Pijl, P.C.; Kies, A.K.; Ten Have, G.A.; Duchateau, G.S.; Deutz, N.E. Pharmacokinetics of proline-rich tripeptides in the pig. Peptides 2008, 29, 2196–2202. [Google Scholar]
- Foltz, M.; Meynen, E.E.; Bianco, V.; van Platerink, C.; Koning, T.M.; Kloek, J. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 2007, 137, 953–958. [Google Scholar]
- Nakamura, T.; Mizutani, J.; Sasaki, K.; Yamamoto, N.; Takazawa, K. Beneficial potential of casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro on central blood pressure and hemodynamic index: A preliminary study. J. Med. Food 2009, 12, 1221–1226. [Google Scholar]
- Heyman, M.; Desjeux, J.F. Significance of intestinal food protein transport. J. Pediatr. Gastroenterol. Nutr. 1992, 15, 48–57. [Google Scholar]
- Meredith, D.; Boyd, C.A. Oligopeptide transport by epithelial cells. J. Membr. Biol. 1995, 145, 1–12. [Google Scholar]
- Pappenheimer, J.R.; Dahl, C.E.; Karnovsky, M.L.; Maggio, J.E. Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc. Natl. Acad. Sci. USA 1994, 91, 1942–1945. [Google Scholar]
- Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285–293. [Google Scholar]
- Shimizu, M. Interaction between food substances and the intestinal epithelium. Biosci. Biotechnol. Biochem. 2010, 74, 232–241. [Google Scholar]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar]
- Satake, M.; Enjoh, M.; Nakamura, Y.; Takano, T.; Kawamura, Y.; Arai, S.; Shimizu, M. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayer. Biosci. Biotechnol. Biochem. 2002, 66, 378–384. [Google Scholar]
- Saito, T. Antihypertensive peptides derived from bovine casein and whey proteins. Adv. Exp. Med. Biol. 2008, 606, 295–317. [Google Scholar]
- Rao, R.K.; Koldovsky, O.; Davis, T.P. Fate of intraduodenally administered somatostatin in rats in vivo. Peptides 1993, 14, 1199–1203. [Google Scholar]
- Mizuno, S.; Nishimura, S.; Matsuura, K.; Gotou, T.; Yamamoto, N. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease. J. Dairy Sci. 2004, 87, 3183–3188. [Google Scholar]
- Masuda, O.; Nakamura, Y.; Takano, T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J. Nutr. 1996, 126, 3063–3068. [Google Scholar]
- Nakamura, Y.; Masuda, O.; Takano, T. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 1996, 60, 488–489. [Google Scholar]
- Nakamura, Y.; Yamamoto, N.; Sakai, K.; Takano, T. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 1995, 78, 1253–1257. [Google Scholar]
- Wittert, G.A.; Fraser, R.; Morley, J.E. The Endocrine System of Gastro-. In testinal Tract. In Endocrinology: Basic and Clinical Principles,21st ed.; Conn, P., Ed.; Humana Press: New Jersey, NJ, USA, 1997; pp. 325–348. [Google Scholar]
- Sandoval, D.; Cota, D.; Seeley, R.J. The integrative role of CNS fuel-sensing mechanisms in energy balance and glucose regulation. Annu. Rev. Physiol. 2008, 70, 513–535. [Google Scholar]
- Konturek, S.J.; Pepera, J.; Zabielski, K.; Konturek, P.C.; Pawlik, T.; Szlachcic, A.; Hahn, E.G. Brain-gut axis in pancreatic secretion and appetite control. J. Physiol. Pharmacol. 2003, 54, 293–317. [Google Scholar]
- Hirschberg, A.L. Hormonal regulation of appetite and food intake. Ann. Med. 1998, 30, 7–20. [Google Scholar]
- Gershon, M.D. The enteric nervous system: A second brain. Hosp. Pract. (Minneap.) 1999, 34, 31–32, 35–38, 41–42, passim. [Google Scholar] [CrossRef]
- Bray, G.A. Afferent signals regulating food intake. Proc. Nutr. Soc. 2000, 59, 373–384. [Google Scholar]
- Valassi, E.; Scacchi, M.; Cavagnini, F. Neuroendocrine control of food intake. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 158–168. [Google Scholar]
- Horn, C.C. Electrophysiology of vagal afferents: Amino acid detection in the gut. Ann. N. Y. Acad. Sci. 2009, 1170, 69–76. [Google Scholar]
- Uneyama, H.; Niijima, A.; San Gabriel, A.; Torii, K. Luminal amino acid sensing in the rat gastric mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G1163–G1170. [Google Scholar]
- Neklyudov, A.D.; Ivankin, A.N.; Berdutina, A.V. Properties and uses of protein hydrolysates (Review). Appl. Biochem. Microbiol. 2000, 36, 452–459. [Google Scholar]
- Niijima, A.; Meguid, M.M. An electrophysiological study on amino acid sensors in the hepatoportal system in the rat. Obes. Res. 1995, 3, 741S–745S. [Google Scholar]
- Niijima, A. Reflex effects of oral, gastrointestinal and hepatoportal glutamate sensors on vagal nerve activity. J. Nutr. 2000, 130, 971S–973S. [Google Scholar]
- Raybould, H.E. Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Auton. Neurosci. 2010, 153, 41–46. [Google Scholar]
- Jang, H.J.; Kokrashvili, Z.; Theodorakis, M.J.; Carlson, O.D.; Kim, B.J.; Zhou, J.; Kim, H.H.; Xu, X.; Chan, S.L.; Juhaszova, M.; et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci. USA 2007, 104, 15069–15074. [Google Scholar]
- Margolskee, R.F.; Dyer, J.; Kokrashvili, Z.; Salmon, K.S.; Ilegems, E.; Daly, K.; Maillet, E.L.; Ninomiya, Y.; Mosinger, B.; Shirazi-Beechey, S.P. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl. Acad. Sci. USA 2007, 104, 15075–15080. [Google Scholar]
- Vahl, T.P.; Tauchi, M.; Durler, T.S.; Elfers, E.E.; Fernandes, T.M.; Bitner, R.D.; Ellis, K.S.; Woods, S.C.; Seeley, R.J.; Herman, J.P.; et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 2007, 148, 4965–4973. [Google Scholar]
- Williams, D.L.; Baskin, D.G.; Schwartz, M.W. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 2009, 150, 1680–1687. [Google Scholar]
- Glendinning, J.I.; Yiin, Y.M.; Ackroff, K.; Sclafani, A. Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiol. Behav. 2008, 93, 757–765. [Google Scholar]
- Chen, M.C.; Wu, S.V.; Reeve, J.R., Jr.; Rozengurt, E. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: Role of L-type voltage-sensitive Ca2+ channels. Am. J. Physiol. Cell Physiol. 2006, 291, C726–C739. [Google Scholar]
- Hao, S.; Dulake, M.; Espero, E.; Sternini, C.; Raybould, H.E.; Rinaman, L. Central Fos expression and conditioned flavor avoidance in rats following intragastric administration of bitter taste receptor ligands. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R528–R536. [Google Scholar]
- Hao, S.; Sternini, C.; Raybould, H.E. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R33–R38. [Google Scholar]
- Calbet, J.A.; Holst, J.J. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur. J. Nutr. 2004, 43, 127–139. [Google Scholar]
- Khoshoo, V.; Brown, S. Gastric emptying of two whey-based formulas of different energy density and its clinical implication in children with volume intolerance. Eur. J. Clin. Nutr. 2002, 56, 656–658. [Google Scholar]
- Zebrowska, T.; Low, A.G.; Zebrowska, H. Studies on gastric digestion of protein and carbohydrate, gastric secretion and exocrine pancreatic secretion in the growing pig. Br. J. Nutr. 1983, 49, 401–410. [Google Scholar]
- Hall, W.L.; Millward, D.J.; Long, S.J.; Morgan, L.M. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br. J. Nutr. 2003, 89, 239–248. [Google Scholar]
- Flint, A.; Raben, A.; Ersboll, A.K.; Holst, J.J.; Astrup, A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesit. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 781–792. [Google Scholar]
- Adrian, T.E.; Savage, A.P.; Fuessl, H.S.; Wolfe, K.; Besterman, H.S.; Bloom, S.R. Release of peptide YY (PYY) after resection of small bowel, colon, or pancreas in man. Surgery 1987, 101, 715–719. [Google Scholar] [PubMed]
- Chen, C.H.; Stephens, R.L., Jr.; Rogers, R.C. PYY and NPY: Control of gastric motility via action on Y1 and Y2 receptors in the DVC. Neurogastroenterol. Motil. 1997, 9, 109–116. [Google Scholar]
- Savage, A.P.; Adrian, T.E.; Carolan, G.; Chatterjee, V.K.; Bloom, S.R. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut 1987, 28, 166–170. [Google Scholar]
- Zander, M.; Madsbad, S.; Madsen, J.L.; Holst, J.J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study. Lancet 2002, 359, 824–830. [Google Scholar] [PubMed]
- Ogiso, K.; Asakawa, A.; Amitani, H.; Inui, A. Ghrelin: A gut hormonal basis of motility regulation and functional dyspepsia. J. Gastroenterol. Hepatol. 2011, 26, 67–72. [Google Scholar]
- El Khoury, T.D.; Obeid, O.; Azar, S.T.; Hwalla, N. Variations in postprandial ghrelin status following ingestion of high-carbohydrate, high-fat, and high-protein meals in male. Ann. Nutr. Metab. 2006, 50, 260–269. [Google Scholar]
- Okano-Matsumoto, S.; McRoberts, J.A.; Tache, Y.; Adelson, D.W. Electrophysiological evidence for distinct vagal pathways mediating CCK-evoked motor effects in the proximalversus distal stomach. J. Physiol. 2011, 589, 371–393. [Google Scholar]
- Taylor, I.L.; Impicciatore, M.; Carter, D.C.; Walsh, J.H. Effect of atropine and vagotomy on pancreatic polypeptide response to a meal in dogs. Am. J. Physiol. 1978, 235, E443–E447. [Google Scholar]
- Fickel, J.; Bagnol, D.; Watson, S.J.; Akil, H. Opioid receptor expression in the rat gastrointestinal tract: A quantitative study with comparison to the brain. Brain Res. Mol. Brain Res. 1997, 46, 1–8. [Google Scholar]
- Stemini, C.; Patiemo, S.; Selmer, I.; Kircggessener, A. The opioid system in the gastro-intestinal tract. Neurogastroenterol. Motil. 2004, 16, 3–16. [Google Scholar]
- Teschemacher, H. Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 2003, 9, 1331–1344. [Google Scholar]
- Paroli, E. Opioid peptides from food (the exorphins). World Rev. Nutr. Diet. 1988, 55, 58–97. [Google Scholar]
- FitzGerald, R.J.; Murray, B.A.; Walsh, D.J. Hypotensive peptides from milk proteins. J. Nutr. 2004, 134, 980S–988S. [Google Scholar]
- Meisel, H.; FitzGerald, R.J. Opioid peptides encrypted in intact milk protein sequences. Br. J. Nutr. 2000, 84, S27–S31. [Google Scholar]
- Froetschel, M.A.; Azain, M.J.; Edwards, G.L.; Barb, C.R.; Amos, H.E. Opioid and cholecystokinin antagonists alleviate gastric inhibition of food intake by premeal loads of casein in meal-fed rats. J. Nutr. 2001, 131, 3270–3276. [Google Scholar]
- Hao, W.L.; Lee, Y.K. Microflora of the Gastrointestinal Trac. In Public Health Microbiology: Methods and Protocols (Methods in Molecular Biology); Spencer, J.F.T., Ragout de Spencer, A.L., Eds.; Humana Press: Totowa, NJ, USA, 2004. [Google Scholar]
- Rolfe, R.D. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 2000, 130, 396S–402S. [Google Scholar]
- Burkholder, P.R.; McVeigh, I. Synthesis of vitamins by Intestinal bacteria. Proc. Natl. Acad. Sci. USA 1942, 28, 285–289. [Google Scholar]
- Wisker, E.; Feldheim, W. Metabolizable energy and dietary fiber. J. Nutr. 1988, 118, 654–655. [Google Scholar]
- Davis, C.D.; Milner, J.A. Gastrointestinal microflora, food components and colon cancer prevention. J. Nutr. Biochem. 2009, 20, 743–752. [Google Scholar]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar]
- Metges, C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr. 2000, 130, 1857S–1864S. [Google Scholar]
- Law, B.A.; Reiter, B. The isolation and bacteriostatic properties of lactoferrin from bovine milk whey. J. Dairy Res. 1977, 44, 595–599. [Google Scholar]
- Orsi, N. The antimicrobial activity of lactoferrin: Current status and perspectives. Biometals 2004, 17, 189–196. [Google Scholar]
- Tomita, M.; Wakabayashi, H.; Yamauchi, K.; Teraguchi, S.; Hayasawa, H. Bovine lactoferrin and lactoferricin derived from milk: Production and applications. Biochem. Cell Biol. 2002, 80, 109–112. [Google Scholar]
- Meisel, H. Multifunctional peptides encrypted in milk proteins. Biofactors 2004, 21, 55–61. [Google Scholar]
- Lahov, E.; Regelson, W. Antibacterial and immunostimulating casein-derived substances from milk: Casecidin, isracidin peptides. Food Chem. Toxicol. 1996, 34, 131–145. [Google Scholar]
- Metges, C.C.; El-Khoury, A.E.; Henneman, L.; Petzke, K.J.; Grant, I.; Bedri, S.; Pereira, P.P.; Ajami, A.M.; Fuller, M.F.; Young, V.R. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am. J. Physiol. 1999, 277, E597–E607. [Google Scholar]
- Torrallardona, D.; Harris, C.I.; Fuller, M.F. Lysine synthesized by the gastrointestinal microflora of pigs is absorbed, mostly in the small intestine. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E1177–E1180. [Google Scholar]
- Belenguer, A.; Balcells, J.; Guada, J.A.; Decoux, M.; Milne, E. Protein recycling in growing rabbits: Contribution of microbial lysine to amino acid metabolism. Br. J. Nutr. 2005, 94, 763–770. [Google Scholar]
- Millward, D.J.; Layman, D.K.; Tome, D.; Schaafsma, G. Protein quality assessment: Impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 2008, 87, 1576S–1581S. [Google Scholar]
- Bergen, W.G.; Wu, G. Intestinal nitrogen recycling and utilization in health and disease. J. Nutr. 2009, 139, 821–825. [Google Scholar]
- Zhou, J.; Martin, R.J.; Tulley, R.T.; Raggio, A.M.; McCutcheon, K.L.; Shen, L.; Danna, S.C.; Tripathy, S.; Hegsted, M.; Keenan, M.J. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1160–E1166. [Google Scholar]
- Cani, P.D.; Dewever, C.; Delzenne, N.M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 2004, 92, 521–526. [Google Scholar]
- Cani, P.D.; Neyrinck, A.M.; Maton, N.; Delzenne, N.M. Oligofructose promotes satiety in rats fed a high-fat diet: Involvement of glucagon-like Peptide-1. Obes. Res. 2005, 13, 1000–1007. [Google Scholar]
- Maurer, A.D.; Chen, Q.; McPherson, C.; Reimer, R.A. Changes in satiety hormones and expression of genes involved in glucose and lipid metabolism in rats weaned onto diets high in fibre or protein reflect susceptibility to increased fat mass in adulthood. J. Physiol. 2009, 587, 679–691. [Google Scholar]
- Cani, P.D.; Lecourt, E.; Dewulf, E.M.; Sohet, F.M.; Pachikian, B.D.; Naslain, D.; De Backer, F.; Neyrinck, A.M.; Delzenne, N.M. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 2009, 90, 1236–1243. [Google Scholar]
- Parnell, J.A.; Reimer, R.A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 2009, 89, 1751–1759. [Google Scholar]
- Aziz, A.; Anderson, G.H. Exendin-4, a GLP-1 receptor agonist, interacts with proteins and their products of digestion to suppress food intake in rat. J. Nutr. 2003, 133, 2326–2330. [Google Scholar]
- Rousseaux, C.; Thuru, X.; Gelot, A.; Barnich, N.; Neut, C.; Dubuquoy, L.; Dubuquoy, C.; Merour, E.; Geboes, K.; Chamaillard, M.; et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 2007, 13, 35–37. [Google Scholar]
- Mahe, S.; Roos, N.; Benamouzig, R.; Davin, L.; Luengo, C.; Gagnon, L.; Gausserges, N.; Rautureau, J.; Tome, D. Gastrojejunal kinetics and the digestion of [15N]beta-lactoglobulin and casein in humans: The influence of the nature and quantity of the protein. Am. J. Clin. Nutr. 1996, 63, 546–552. [Google Scholar]
- Westerterp-Plantenga, M.S.; Nieuwenhuizen, A.; Tome, D.; Soenen, S.; Westerterp, K.R. Dietary protein, weight loss, and weight maintenanc. Annu. Rev. Nutr. 2009, 29, 21–41. [Google Scholar]
- Lacroix, M.; Bos, C.; Leonil, J.; Airinei, G.; Luengo, C.; Dare, S.; Benamouzig, R.; Fouillet, H.; Fauquant, J.; Tome, D.; et al. Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. Am. J. Clin. Nutr. 2006, 84, 1070–1079. [Google Scholar]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.P.; Maubois, J.L.; Beaufrere, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar]
- Dangin, M.; Boirie, Y.; Guillet, C.; Beaufrere, B. Influence of the protein digestion rate on protein turnover in young and elderly subjects. J. Nutr. 2002, 132, 3228S–3233S. [Google Scholar]
- Bos, C.; Metges, C.C.; Gaudichon, C.; Petzke, K.J.; Pueyo, M.E.; Morens, C.; Everwand, J.; Benamouzig, R.; Tome, D. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J. Nutr. 2003, 133, 1308–1315. [Google Scholar]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young me. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar]
- Benevenga, N.J.; Gahl, M.J.; Blemings, K.P. Role of protein synthesis in amino acid catabolism. J. Nutr. 1993, 123, 332–336. [Google Scholar]
- Anthony, T.G.; McDaniel, B.J.; Knoll, P.; Bunpo, P.; Paul, G.L.; McNurlan, M.A. Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male rats. J. Nutr. 2007, 137, 357–362. [Google Scholar]
- Promintzer, M.; Krebs, M. Effects of dietary protein on glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 463–468. [Google Scholar]
- Akhavan, T.; Luhovyy, B.L.; Brown, P.H.; Cho, C.E.; Anderson, G.H. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am. J. Clin. Nutr. 2010, 91, 966–975. [Google Scholar]
- Krebs, M. Amino acid-dependent modulation of glucose metabolism in humans. Eur. J. Clin. Invest. 2005, 35, 351–354. [Google Scholar]
- Bratusch-Marrain, P.; Bjorkman, O.; Hagenfeldt, L.; Waldhausl, W.; Wahren, J. Influence of arginine on splanchnic glucose metabolism in man. Diabetes 1979, 28, 126–131. [Google Scholar]
- Floyd, J.C., Jr.; Fajans, S.S.; Conn, J.W.; Knopf, R.F.; Rull, J. Stimulation of insulin secretion by amino acids. J. Clin. Invest. 1966, 45, 1487–1502. [Google Scholar]
- Roden, M.; Perseghin, G.; Petersen, K.F.; Hwang, J.H.; Cline, G.W.; Gerow, K.; Rothman, D.L.; Shulman, G.I. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J. Clin. Invest. 1996, 97, 642–648. [Google Scholar]
- Lynch, C.J.; Hutson, S.M.; Patson, B.J.; Vaval, A.; Vary, T.C. Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E824–E835. [Google Scholar]
- Nilsson, M.; Holst, J.J.; Bjorck, I.M. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: Studies using glucose-equivalent drinks. Am. J. Clin. Nutr. 2007, 85, 996–1004. [Google Scholar]
- Schwartz, J.G.; Guan, D.; Green, G.M.; Phillips, W.T. Treatment with an oral proteinase inhibitor slows gastric emptying and acutely reduces glucose and insulin levels after a liquid meal in type II diabetic patients. Diabetes Care 1994, 17, 255–262. [Google Scholar]
- Beavers, K.M.; Serra, M.C.; Beavers, D.P.; Hudson, G.M.; Willoughby, D.S. The lipid-lowering effects of 4 weeks of daily soymilk or dairy milk ingestion in a postmenopausal female population. J. Med. Food 2010, 13, 650–656. [Google Scholar]
- Fluegel, S.M.; Shultz, T.D.; Powers, J.R.; Clark, S.; Barbosa-leiker, C.; Wright, B.R.; Freson, T.S. Whey beverages decrease blood pressure in prehypertensive and hypertensive young men and women. Int. Dairy J. 2010, 20, 753–760. [Google Scholar]
- Jacques, H.; Deshaies, Y.; Savoie, L. Relationship between dietary proteins, their in vitro digestion products, and serum cholesterol in rat. Atherosclerosis 1986, 61, 89–98. [Google Scholar]
- Lovati, M.R.; West, C.E.; Sirtori, C.R.; Beynen, A.C. Dietary animal proteins and cholesterol metabolism in rabbits. Br. J. Nutr. 1990, 64, 473–485. [Google Scholar]
- Nagaoka, S. Studies on regulation of cholesterol metabolism induced by dietary food constituents or xenobiotics. J. Jpn. Soc. Nutr. Food Sci. 1996, 49, 303–313. [Google Scholar]
- Morimatsu, F.; Ito, M.; Budijanto, S.; Watanabe, I.; Furukawa, Y.; Kimura, S. Plasma cholesterol-suppressing effect of papain-hydrolyzed pork meat in rats fed hypercholesterolemic diet. J. Nutr. Sci. Vitaminol. 1996, 42, 145–153. [Google Scholar]
- Zhang, X.; Beynen, A.C. Lowering effect of dietary milk-whey protein v. casein on plasma and liver cholesterol concentrations in rats. Br. J. Nutr. 1993, 70, 139–146. [Google Scholar]
- Anderson, J.W.; Johnstone, B.M.; Cook-Newell, M.E. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 1995, 333, 276–282. [Google Scholar]
- Erdman, J.W., Jr. AHA Science Advisory: Soy protein and cardiovascular disease: A statement for healthcare professionals from the Nutrition Committee of the AHA. Circulation 2000, 102, 2555–2559. [Google Scholar]
- Carroll, K.K.; Hamilton, R.M.G. Effects of dietary protein and carbohydrate on plasma cholesterol levels in relation to atherosclerosis. J. Food. Sci. 1975, 40, 18–23. [Google Scholar]
- Roberts, S.L.; McMurry, M.P.; Connor, W.E. Does egg feeding (i.e., dietary cholesterol) affect plasma cholesterol levels in humans? The results of a double-blind study. Am. J. Clin. Nutr. 1981, 34, 2092–2099. [Google Scholar] [PubMed]
- Asato, L.; Wang, M.F.; Chan, Y.C.; Yeh, S.H.; Chung, H.M.; Chung, S.Y.; Chida, S.; Uezato, T.; Suzuki, I.; Yamagata, N.; Kokubu, T.; Yamamoto, S. Effect of egg white on serum cholesterol concentration in young women. J. Nutr. Sci. Vitaminol. (Tokyo) 1996, 42, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, S.; Masaoka, M.; Zhang, Q.; Hasegawa, M.; Watanabe, K. Egg ovomucin attenuates hypercholesterolemia in rats and inhibits cholesterol absorption in Caco-2 cells. Lipids 2002, 37, 267–272. [Google Scholar]
- Lapre, J.A.; West, C.E.; Lovati, M.R.; Sirtori, C.R.; Beynen, A.C. Dietary animal proteins and cholesterol metabolism in rats. Int. J. Vitam. Nutr. Res. 1989, 59, 93–100. [Google Scholar]
- Sugano, M.; Goto, S. Steroid-binding peptides from dietary proteins. J. Nutr. Sci. Vitaminol. (Tokyo) 1990, 36, S147–S150. [Google Scholar] [CrossRef] [PubMed]
- Alladi, S.; Shanmugasundaram, K.R. Induction of hypercholesterolemia by supplementing soy protein with acetate generating amino acids. Nutr. Rep. Int. 1989, 40, 893–900. [Google Scholar]
- Sugiyama, K.; Ohkawa, S.; Muramatsu, K. Relationship between amino acid composition of diet and plasma cholesterol level in growing rats fed a high cholesterol diet. J. Nutr. Sci. Vitaminol. (Tokyo) 1986, 32, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Aziz, A. Multifunctional roles of dietary proteins in the regulation of metabolism and food intake: Application to feeding infants. J. Pediatr. 2006, 149, S74–S79. [Google Scholar]
- Douglas, B.R.; Woutersen, R.A.; Jansen, J.B.; de Jong, A.J.; Lamers, C.B. The influence of different nutrients on plasma cholecystokinin levels in the rat. Experientia 1988, 44, 21–23. [Google Scholar]
- Diepvens, K.; Haberer, D.; Westerterp-Plantenga, M. Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. Int. J. Obes. 2008, 32, 510–518. [Google Scholar]
- Aziz, A.; Anderson, G.H. Exendin-4, a GLP-1 receptor agonist, modulates the effect of macronutrients on food intake by rat. J. Nutr. 2002, 132, 990–995. [Google Scholar]
- Jeanningros, R. Vagal unitary responses to intestinal amino acid infusions in the anesthetized cat: A putative signal for protein induced satiety. Physiol. Behav. 1982, 28, 9–21. [Google Scholar]
- Trigazis, L.; Orttmann, A.; Anderson, G.H. Effect of a cholecystokinin-A receptor blocker on protein-induced food intake suppression in rats. Am. J. Physiol. 1997, 272, R1826–R1833. [Google Scholar]
- Anderson, G.H.; Tecimer, S.N.; Shah, D.; Zafar, T.A. Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young me. J. Nutr. 2004, 134, 3011–3015. [Google Scholar]
- Hunt, J.N. A possible relation between the regulation of gastric emptying and food intake. Am. J. Physiol. 1980, 239, G1–G4. [Google Scholar]
- Peracchi, M.; Carola, F.; Cavagnini, F.; Benti, R.; Bareggi, B.; Baccalaro, G.; Basilisco, G. Plasma somatostatin-like immunoreactivity and somatostatin-28 levels in obese men. J. Endocrinol. Invest. 1998, 21, 20–23. [Google Scholar]
- Bagley, P.J.; Stipanuk, M.H. Rats fed a low protein diet supplemented with sulfur amino acids have increased cysteine dioxygenase activity and increased taurine production in hepatocytes. J. Nutr. 1995, 125, 933–940. [Google Scholar]
- Rérat, A.A. Nutritional supply of proteins and absorption of their hydrolysis products: Consequences on metabolism. Proc. Nutr. Soc. 1993, 52, 335–344. [Google Scholar]
- Collin-Vidal, C.; Cayol, M.; Obled, C.; Ziegler, F.; Bommelaer, G.; Beaufrere, B. Leucine kinetics are different during feeding with whole protein or oligopeptides. Am. J. Physiol. 1994, 267, E907–E914. [Google Scholar]
- Anderson, G.H.; Li, E.T.; Anthony, S.P.; Ng, L.T.; Bialik, R. Dissociation between plasma and brain amino acid profiles and short-term food intake in the rat. Am. J. Physiol. 1994, 266, R1675–R1686. [Google Scholar]
- Uhe, A.M.; Collier, G.R.; O’Dea, K. A comparison of the effects of beef, chicken and fish protein on satiety and amino acid profiles in lean male subjects. J. Nutr. 1992, 122, 467–472. [Google Scholar]
- Nuttall, F.Q.; Gannon, M.C. Metabolic response to egg white and cottage cheese protein in normal subjects. Metabolism 1990, 39, 749–755. [Google Scholar]
- Lang, V.; Bellisle, F.; Oppert, J.M.; Craplet, C.; Bornet, F.R.; Slama, G.; Guy-Grand, B. Satiating effect of proteins in healthy subjects: A comparison of egg albumin, casein, gelatin, soy protein, pea protein, and wheat gluten. Am. J. Clin. Nutr. 1998, 67, 1197–1204. [Google Scholar] [PubMed]
- Wurtman, R.J. Neurotransmitters, control of appetite, and obesit. Curr. Concepts Nutr. 1988, 16, 27–34. [Google Scholar]
- Wellman, P.J. Modulation of eating by central catecholamine systems. Curr. Drug Targets 2005, 6, 191–199. [Google Scholar]
- Morimoto, T.; Yamamoto, Y.; Yamatodani, A. Brain histamine and feeding behavior. Behav. Brain Res. 2001, 124, 145–150. [Google Scholar]
- Cota, D.; Proulx, K.; Smith, K.A.; Kozma, S.C.; Thomas, G.; Woods, S.C.; Seeley, R.J. Hypothalamic mTOR signaling regulates food intake. Science 2006, 312, 927–930. [Google Scholar]
- Zhang, Y.; Guo, K.; LeBlanc, R.E.; Loh, D.; Schwartz, G.J.; Yu, Y.H. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 2007, 56, 1647–1654. [Google Scholar]
- Peng, X. Milk proteins, glycomacropeptide, and regulation of short-term food intake in rats. University of Toronto, Toronto, Canada, 2005. [Google Scholar]
- Veldhorst, M.A.; Nieuwenhuizen, A.G.; Hochstenbach-Waelen, A.; Westerterp, K.R.; Engelen, M.P.; Brummer, R.J.; Deutz, N.E.; Westerterp-Plantenga, M.S. Effects of complete whey-protein breakfastsversus whey without GMP-breakfasts on energy intake and satiety. Appetite 2009, 52, 388–395. [Google Scholar]
- Nekliudov, A.D.; Ivankin, A.N.; Bertudina, A.V. Characteristics and use of protein hydrolysates (review). Prikl. Biokhim. Mikrobiol. 2000, 36, 525–534. (in Russian). [Google Scholar] [PubMed]
- Zello, G.A.; Wykes, L.J.; Ball, R.O.; Pencharz, P.B. Recent advances in methods of assessing dietary amino acid requirements for adult humans. J. Nutr. 1995, 125, 2907–2915. [Google Scholar]
- Elango, R.; Ball, R.O.; Pencharz, P.B. Amino acid requirements in humans: With a special emphasis on the metabolic availability of amino acids. Amino Acids 2009, 37, 19–27. [Google Scholar]
- Schaafsma, G. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS)-a concept for describing protein quality in foods and food ingredients: A critical review. J. AOAC Int. 2005, 88, 988–994. [Google Scholar]
- Millward, D.J.; Layman, D.K.; Tome, D.; Schaafsma, G. Protein quality assessment: Impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 2008, 87, 1576S–1581S. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jahan-Mihan, A.; Luhovyy, B.L.; El Khoury, D.; Anderson, G.H. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract. Nutrients 2011, 3, 574-603. https://doi.org/10.3390/nu3050574
Jahan-Mihan A, Luhovyy BL, El Khoury D, Anderson GH. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract. Nutrients. 2011; 3(5):574-603. https://doi.org/10.3390/nu3050574
Chicago/Turabian StyleJahan-Mihan, Alireza, Bohdan L. Luhovyy, Dalia El Khoury, and G. Harvey Anderson. 2011. "Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract" Nutrients 3, no. 5: 574-603. https://doi.org/10.3390/nu3050574
APA StyleJahan-Mihan, A., Luhovyy, B. L., El Khoury, D., & Anderson, G. H. (2011). Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract. Nutrients, 3(5), 574-603. https://doi.org/10.3390/nu3050574