Food Intake and Dietary Glycaemic Index in Free-Living Adults with and without Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Methods
2.1. Subject Characteristics
2.2. Food Intake Recording
2.3. Analysis of Food Intake Data
- Dietary GI was calculated as: The sum of the GI value of each foodstuff multiplied by available carbohydrate content (total carbohydrate minus dietary fibre) expressed as a proportion of the total available carbohydrate for the day;
- Dietary glycaemic load (GL) was calculated as: The sum of the product of the GI for each foodstuff and its available carbohydrate content, divided by 100.
2.4. Estimation of Basal Metabolic Rate (BMR)
2.5. Comparison with a Three Day Diet Based on Dietary Recommendations for Type 2 Diabetes
- Breakfast: 44 g wholegrain breakfast cereal, 200 g semi skimmed milk, 150 g unsweetened fruit juice;
- Lunch: 30 g Lettuce, 85 g tomato, 15 g reduced calorie mayonnaise, 175 g cooked chicken breast, 125 g low fat fruit yoghurt, 140 g wholemeal bread;
- Dinner: 175 g cooked extra lean minced beef, 150 g boiled white rice, 200 g cauliflower, 170 g fresh pears, 60 g vanilla ice-cream;
- Snacks: 200 g semi skimmed milk, 34 g cereal bar, 100 g red apples, 25 g raisins.
2.6. Statistical Analysis
3. Results
3.1. Comparison of Groups with and without Type 2 Diabetes
Volunteers without diabetes n = 19 | Volunteers with type 2 diabetes n = 19 | p | |
---|---|---|---|
Age (years) | 57.8 (6.5) | 60.1 (7.2) | 0.41 |
Male:Female | 15:4 | 15:4 | - |
BMI (kg/m2) | 32.1 (6.4) | 32.5 (5.4) | 0.86 |
BMR (kJ/day) | 7713 (1289) | 7625 (1186) | 0.67 |
Energy intake/BMR ratio (kJ) | 1.21 (0.24) | 1.26 (0.43) | 0.67 |
HbA1c (%) | - | 6.9 (Range: 5.8–8.9) | - |
Volunteerswithout diabetes ( n = 19) | Volunteers with type 2 diabetes ( n = 19) | Devised DUK diet for type 2 diabetes | P (comparison between volunteers with and without diabetes) | |
---|---|---|---|---|
Energy (kJ) | 9289.9 (2331.4) 6087–15147 | 9527.9 (3350.4) 3936–15478 | 9427.4 | 0.79 |
Energy (kcal) | 2222.5 (557.8) 1456–3624 | 2270.5 (812.2) 942–3703 | 2255.4 | 0.82 |
Fat % of energy | 32.1 (8.1) 15–43 | 33.5 (8.3) 22–54 | 26.8 * | 0.59 |
Protein % of energy | 17.2 (3.9) 11–26 | 20.3 (3.5) 14–29 | 27.9 $ | 0.034 |
CHO % of energy | 46.0 (9.2) 32–64 | 47.2 (10.4) 28–68 | 45.4 | 0.72 |
Saturated fat % of energy | 11.7 (4.2) 3.7–18.9 | 10.8 (4.3) 0.7–21 | 8.6 * | 0.51 |
Salt (g) | 8.2 (2.9) 2.6–14.5 | 8.8 (3.6) 3.2–15.9 | 5 $ | 0.57 |
Alcohol (kJ) | 571.3 (767.2) 0–2551 | 0.14 (0.6) 0–2.65 | 0 | <0.001 |
Saturated fat (g) | 30.0 (19.9) 7.5–77.5 | 31.4 (19.9) 1.1–87.5 | 21.9 | 0.81 |
Total sugars (g) | 96.2 (50.3) 24.7–235 | 99.2 (36.2) 47–179 | 130.2 * | 0.84 |
Dietary fibre (g) | 20.9 (4.4) 10.7–20.9 | 32.1 (15.6) 11.0–76.9 | 29.2 | <0.001 |
Portions of fruit and vegetables | 3.81 (2.5) 0–8.7 | 3.94 (1.7) 2.0–8.3 | 6.3 $ | 0.93 |
Portions of wholegrain foodstuffs | 1.1 (0.84) 0–3.0 | 2.3 (1.5) 0–6.0 | 2 | 0.003 |
Available CHO (g) | 241.3 (62.5) 152–361 | 242.8 (83.9) 108–403 | 237.6 | 0.95 |
Dietary GI | 57.7 (4.8) 47–65 | 53.5 (3.9) 47–61 | 54.4 | 0.009 |
Dietary GL | 139.9 (40.2) 81–223 | 130.6 (48.0) 59–220 | 129.3 | 0.49 |
3.2. Comparison of Group Data with Reference Values
4. Discussion
4.1. Dietary Glycaemic Index (GI)
Study | High GI diet mean GI | Low GI diet mean GI | Difference in GI |
---|---|---|---|
Wolever et al. [24] | 87 | 60 | 27 |
Jenkins et al. [23] | 90.5 | 67.3 | 23.2 |
Frost et al. [10] | 82 | 77 | 5 |
Fontvieille et al. [9] | 64 | 38 | 26 |
Jarvi et al. [25] | 82.7 | 56 | 26.7 |
Jenkins et al. [26] | 86 | 62 | 24 |
Rizkalla et al. [27] | 71 | 39 | 32 |
Jimenez-Cruz et al. [28] | 56 | 44 | 12 |
Brand et al. [8] | 91 | 77 | 14 |
Mean | 78.9 | 57.8 | 21.1 |
4.2. Total Energy Intake
4.3. Diet Composition
4.4. Comparison with the DUK Menu Plan
4.5. Implications for Clinical Practice
4.6. Study Limitations
5. Conclusions
Acknowledgements
Conflict of Interest
References
- National Collaborating Centre for Chronic Conditions, Type 2 Diabetes: National Clinical Guideline for Management in Primary and Secondary Care (Update).; Royal College of Physicians: London, UK, 2008.
- American Diabetes Association. Nutritional Recommendations and Interventions for Diabetes. Diabetes Care 2007, 30, 548–565. [CrossRef]
- Food Standards Agency. Available online: http://www.eatwell.gov.uk/healthydiet/eatwellplate (accessed on 1 November 2010).
- Diabetes UK. Available online: http://www.diabetes.org.uk/Guide-to-diabetes/Healthy_lifestyle/Eating_Well/ (accessed on 1 November 2010).
- Thomas, D.; Elliott, E.J. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst. Rev. 2009, 1, CD006296. [Google Scholar] [PubMed]
- Barclay, A.W.; Brand-Miller, J.C.; Mitchell, P. Macronutrient intake, glycaemic index and glycaemic load of older Australian subjects with and without diabetes: Baseline data from the Blue Mountains Eye Study. Br. J. Nutr. 2006, 96, 117–123. [Google Scholar]
- Bingham, S.A. The dietary assessment of individuals; methods accuracy, new techniques and recommendations. Nutr. Abstr. Rev. 1987, 57, 705–742. [Google Scholar]
- Brand, J.C.; Colagiuri, S.; Crossman, S.; Allen, A.; Roberts, D.C.; Truswell, A.S. Low glycaemic index foods improve long term glycaemic control in NIDDM. Diabetes Care 1991, 14, 95–101. [Google Scholar]
- Fontvieille, A.M.; Rizhalla, S.W.; Penfornis, A.; Acosta, M.; Bornet, F.R.; Slama, G. The use of low glycaemic index foods improves metabolic control of diabetic patients over five weeks. Diabet. Med. 1992, 9, 444–450. [Google Scholar]
- Frost, G.; Wilding, J.; Beecham, J. Dietary advice based on the glycaemic index improves dietary profile and metabolic control in type 2 diabetic patients. Diabet. Med. 1994, 11, 397–401. [Google Scholar]
- Giacco, R.; Parillo, M.; Rivellese, A.; Lasorella, G.; Giacco, A.; D’Episcopo, L.; Riccardi, G. Long-term dietary treatment with increased amountsof fiber-rich low-glycemic index natural foods improves bloodglucose control and reduces the number of hypoglycemic events intype 1 diabetic patients. Diabetes Care 2000, 23, 1461–1466. [Google Scholar]
- World Health Organization, Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; WHO Press, World Health Organization: Geneva, Switzerland, 2006.
- Food Standards Agency, McCance and Widdowson’s the Composition of Food, 6th ed; Royal Society of Chemistry: Cambridge, UK, 2002.
- Ministry of Agriculture Fisheries and Food, Food Portion Sizes. Food Standards Agency, 3rd; Crawley, H. (Ed.) The Stationary Office: London, UK, 1988.
- Foster-Powell, K.; Holt, S.H.A.; Brand-Miler, J.C. International table of glycemic index and glycemic load values. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [PubMed]
- British Nutrition Foundation, Healthy Eating, Fruit and Vegetables. Available online: http://www.nutrition.org.uk (accessed on 1 November 2010).
- US Department of Health and Human Services and US Department of Agriculture, Dietary Guidelines for Americans, 6th edUS Government Printing Office: Washington, DC, USA, 2005.
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar]
- Diabetes UK. Menu planner. Available online: http://www.storetour.co.uk/MenuPlanner.aspx (accessed on 1 November 2010).
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Department of Health, Dietary Reference Values for Food Energy and Nutrients in the United Kingdom; HMSO: London, UK, 1991.
- Amano, Y.; Kawakubo, K.; Lee, J.S.; Tang, A.C.; Sugiyama, M.; Mori, K. Correlation between dietary glycaemic index and cardiovascular disease risk factors among Japanese women. Eur. J. Clin. Nutr. 2004, 58, 1472–1478. [Google Scholar]
- Jenkins, D.J.; Wolever, T.M.; Buckley, G.; Lam, K.Y.; Giudici, S.; Kalmusky, J.; Jenkins, A.L.; Patten, R.L.; Bird, J.; Wong, G.S.; Josse, R.G. Low-glycaemic index starchy foods in the diabetic diet. Am. J. Clin. Nutr. 1988, 48, 248–254. [Google Scholar]
- Wolever, T.M.S.; Jenkins, D.J.; Vuksan, V.; Jenkins, A.L.; Buckley, G.C.; Wong, G.S.; Josse, R.G. Beneficial effect of a low glycaemic index diet in type 2 diabetes. Diabet. Med. 1992, 9, 451–458. [Google Scholar]
- Jarvi, A.E.; Karlsrom, B.E.; Granfeldt, Y.E.; Bjorck, I.E.; Asp, N.L.; Vessby, B.O.H. Improved glycaemic control and lipid profile and normalised fibrinolytic activity on a low glycaemic index diet in type 2 diabetic patients. Diabetes Care 1999, 22, 10–18. [Google Scholar]
- Jenkins, D.J.A.; Kendall, C.W.C.; McKeown-Eyssen, G.; Josse, R.G.; Silverberg, J.; Booth, G.L.; Vidgen, E.; Josse, A.R.; Nguyen, T.H.; Corrigan, S.; et al. Effect of a low glycaemic index or a high cereal fibre diet on type 2 diabetes. JAMA 2008, 300, 2742–2753. [Google Scholar]
- Rizkalla, S.W.; Taghrid, L.; Laromiguiere, M.; Huet, D.; Boillot, J.; Rigoir, A.; Elgrably, F.; Slama, G. Improved plasma glucose control, whole body glucose utilization and lipid profile on a low glycaemic index diet in type 2 diabetic men. Diabetes Care 2004, 27, 1866–1872. [Google Scholar]
- Jimenez-Cruz, A.; Bacardi-Gascon, M.; Turnbull, W.H.; Rosales-Garay, P.; Serverino-Lugo, I. A flexible, low-glycaemic index Mexican style diet in overweight and obese subjects with type 2 diabetes improves metabolic parameters during a 6 week treatment period. Diabetes Care 2003, 26, 1967–1970. [Google Scholar]
- Pi-Sunyer, F.X. Glycaemic index and disease. Am. J. Clin. Nutr. 2002, 76, 290S–298S. [Google Scholar]
- Brouns, F.; Bjork, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M.S. Glycaemic index methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar]
- Bahado-Singh, P.S.; Wheatley, A.O.; Ahmad, M.H.; Morrison, E.Y.; Asemota, H.N. Food processing methods influence the glycaemic indices of some commonly eaten West Indian carbohydrate-rich foods. Br. J. Nutr. 2006, 96, 476–481. [Google Scholar]
- Wolever, T.M.S.; Nguyen, P.M.; Chiasson, J.L.; Hunt, J.A.; Josse, R.G.; Palmason, C.; Rodger, N.W.; Ross, S.; Ryan, E.A.; Tan, M.H. Determinants of diet glycaemic index calculated retrospectively from diet records of 342 individuals with non-insulin dependant diabetes mellitus. Am. J. Clin. Nutr. 1994, 59, 1265–1269. [Google Scholar]
- Visockiene, Z.; Broom, I.; Speakman, J.R.; Johnstone, A.M. Dietary intake and self-reporting in relation to eating behaviour in obese and Type 2 diabetes patients. Baltic Endocrinol. 2006, 2, 24–30. [Google Scholar]
- Black, A.E.; Goldberg, G.R.; Jebb, S.A.; Livingstone, M.B.; Cole, T.J.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: Evaluating the results of published surveys. Eur. J. Clin. Nutr. 1991, 45, 583–599. [Google Scholar]
- Eeley, E.A.; Stratton, I.M.; Hadden, D.R.; Turner, R.C.; Holman, R.R. UKPDS 18: Estimated Dietary Intake in Type 2 Diabetic Patients randomly allocated to diet, sulphonylurea or insulin therapy. Diabet. Med. 1996, 13, 656–662. [Google Scholar]
- Close, E.J.; Wiles, P.G.; Lockton, J.A.; Walmsley, D.; Oldham, J.; Wales, J.K. Diabetic diets and nutritional recommendations: What happens in real life? Diabet. Med. 1992, 9, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Expenditure and Food Survey (EFS) 2003/2004. Available online: http://www.food.gov.uk/multimedia/pdfs/scotdietrytarg.pdf (accessed on 1 November 2010).
- Haffner, S.M.; Lehto, S.; Rönnemaa, T.; Pyörälä, K.; Laakso, M. Mortality from Coronary Heart Disease in Subjects with Type 2 Diabetes and in Non-diabetic Subjects with and without Prior Myocardial Infarction. N. Engl. J. Med. 1998, 339, 229–234. [Google Scholar]
- Dahl, L.K. Salt and hypertension. Am. J. Clin. Nutr. 1972, 25, 231–244. [Google Scholar]
- The Scottish Health Survey 2003. Available online: http://www.scotland.gov.uk/Resource/Doc/76169/0019729.pdf (accessed on 1 November 2010).
- Nutrition Subcommittee of the Diabetes Care Advisory Committee of Diabetes UK. The implementation of nutritional advice for people with diabetes. Diabet. Med. 2003, 20, 786–807. [CrossRef] [PubMed]
- Daly, M.E.; Paisey, R.; Millward, B.A.; Eccles, C.; Williams, K.; Hammersley, S.; MacLeod, K.M.; Gale, T.J. Short-term effects of severe dietary carbohydrate restriction advice in Type 2 diabetes―a randomised controlled trial. Diabet. Med. 2006, 23, 15–20. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
McGeoch, S.C.; Holtrop, G.; Fyfe, C.; Lobley, G.E.; Pearson, D.W.M.; Abraham, P.; Megson, I.L.; MacRury, S.M.; Johnstone, A.M. Food Intake and Dietary Glycaemic Index in Free-Living Adults with and without Type 2 Diabetes Mellitus. Nutrients 2011, 3, 683-693. https://doi.org/10.3390/nu3060683
McGeoch SC, Holtrop G, Fyfe C, Lobley GE, Pearson DWM, Abraham P, Megson IL, MacRury SM, Johnstone AM. Food Intake and Dietary Glycaemic Index in Free-Living Adults with and without Type 2 Diabetes Mellitus. Nutrients. 2011; 3(6):683-693. https://doi.org/10.3390/nu3060683
Chicago/Turabian StyleMcGeoch, Susan C., Grietje Holtrop, Claire Fyfe, Gerald E. Lobley, Donald W. M. Pearson, Prakash Abraham, Ian L. Megson, Sandra M. MacRury, and Alexandra M. Johnstone. 2011. "Food Intake and Dietary Glycaemic Index in Free-Living Adults with and without Type 2 Diabetes Mellitus" Nutrients 3, no. 6: 683-693. https://doi.org/10.3390/nu3060683
APA StyleMcGeoch, S. C., Holtrop, G., Fyfe, C., Lobley, G. E., Pearson, D. W. M., Abraham, P., Megson, I. L., MacRury, S. M., & Johnstone, A. M. (2011). Food Intake and Dietary Glycaemic Index in Free-Living Adults with and without Type 2 Diabetes Mellitus. Nutrients, 3(6), 683-693. https://doi.org/10.3390/nu3060683