Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and l-Carnitine
Abstract
:1. Energy Metabolism and Impairments
2. Metabolic Agents
2.1. Glucose and Oxygen
2.1.1. Glucose and Cognitive Function
2.1.2. Oxygen and Cognitive Function
2.2. Pyruvate
2.2.1. Pyruvate and Neuroprotection
2.2.2. Pyruvate and Cognitive Function
2.3. Creatine
2.3.1. Creatine and Neuroprotection
2.3.2. Creatine and Cognitive Function
2.4. L-Carnitine/Acetyl-L-Carnitine
2.4.1. L-Carnitine/Acetyl-L-Carnitine and Neuroprotection
2.4.2. L-Carnitine/Acetyl-L-Carnitine and Cognition
3. Underlying Mechanisms
4. Summary and Implications
References
- Klein, A.; Ferrante, R. The neuroprotective role of creatine. In Creatine and Creatine Kinase in Health and Disease; Salomons, G.S., Wyss, M., Eds.; Springer: Berlin, Germany, 2007; Volume 46, pp. 205–243. [Google Scholar]
- Hagen, T.; Ingersoll, R.; Wehr, C.; Lykkesfeldt, J.; Vinarsky, V.; Bartholomew, J.; Song, M.; Ames, B. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc. Natl. Acad. Sci. USA 1998, 95, 9562–9566. [Google Scholar]
- Ames, B.; Shigenaga, M.; Hagen, T. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar]
- Ames, B.; Shigenaga, M.; Hagen, T. Mitochondrial decay in aging. Biochim. Biophys. Acta Mol. Basis Dis. 1995, 1271, 165–170. [Google Scholar]
- Ames, B.; Liu, J.; Atamna, H.; Hagen, T. Delaying the mitochondrial decay of aging in the brain. Clin. Neurosci. Res. 2003, 2, 331–338. [Google Scholar]
- Raz, N.; Lindenberger, U.; Rodrigue, K.; Kennedy, K.; Head, D.; Williamson, A.; Dahle, C.; Gerstorf, D.; Acker, J. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 2005, 15, 1676–1689. [Google Scholar]
- Lin, M.; Beal, M. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787–795. [Google Scholar]
- Drevets, W. Prefrontal cortical—amygdalar metabolism in major depression. Ann. N. Y. Acad. Sci. 1999, 877, 614–637. [Google Scholar]
- Prabakaran, S.; Swatton, J.; Ryan, M.; Huffaker, S.; Huang, J.; Griffin, J.; Wayland, M.; Freeman, T.; Dudbridge, F.; Lilley, K.; et al. Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry 2004, 9, 684–697. [Google Scholar] [PubMed]
- Kato, T.; Kato, N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2000, 2, 180–190. [Google Scholar]
- Sieber, F.E.; Derrer, S.A.; Saudek, C.D.; Traystman, R.J. Effect of hypoglycemia on cerebral metabolism and carbon dioxide responsivity. Am. J. Physiol. 1989, 256, H697–H706. [Google Scholar]
- Sieber, F.E.; Traystman, R.J. Special issues: Glucose and the brain. Crit. Care Med. 1992, 20, 104–114. [Google Scholar]
- Purves, W.K.; Sadava, D.; Orians, G.H. Life: The Science of Biology: Plants and Animals; W. H. Freeman: New York, NY, USA, 2004; Volume 3. [Google Scholar]
- Lehninger, A.; Nelson, D.; Cox, M. Lehninger Principles of Biochemistry; W. H. Freeman: New York, NY, USA, 2005. [Google Scholar]
- Wiesinger, H.; Hamprecht, B.; Dringen, R. Metabolic pathways for glucose in astrocytes. Glia 1997, 21, 22–34. [Google Scholar]
- Kauppinen, R.A.; McMahon, H.T.; Nicholls, D.G. Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: Possible relevance to hyoglycaemia and anoxia. Neuroscience 1988, 27, 175–182. [Google Scholar]
- Dringen, R.; Hamprecht, B. Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of astroglia-rich primary cultures. J. Neurochem. 1992, 58, 511–517. [Google Scholar]
- Hertz, L.; Yager, J.; Juurlink, B. Astrocyte survival in the absence of exogenous substrate: Comparison of immature and mature cells. Int. J. Dev. Neurosci. 1995, 13, 523–527. [Google Scholar]
- Gibbs, M.E.; Anderson, D.G.; Hertz, L. Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 2006, 54, 214–222. [Google Scholar]
- Guyton, A.C.; Hall, J.E. Textbook of Medical Physiology; W. B. Saunders: London, UK, 1981. [Google Scholar]
- Love, R.J.; Webb, W.G.; Kirshner, H.S.; Halliburton, D.B.; Gross, P. Neurology for the Speech-Language Pathologist; Butterworth-Heinemann: Oxford, UK, 1996. [Google Scholar]
- McIlwain, H. Thiols and the control of carbohydrate metabolism in cerebral tissues. Biochem. J. 1959, 71, 281–285. [Google Scholar]
- Gold, P.E. Glucose modulation of memory storage processing. Behav. Neural Biol. 1986, 45, 342–349. [Google Scholar]
- Lee, M.K.; Graham, S.N.; Gold, P.E. Memory enhancement with posttraining intraventricular glucose injections in rats. Behav. Neurosci. 1988, 102, 591–595. [Google Scholar]
- Kopf, S.R.; Baratti, C.M. Effects of posttraining administration of glucose on retention of a habituation response in mice: Participation of a central cholinergic mechanism. Neurobiol. Learn. Mem. 1996, 65, 253–260. [Google Scholar]
- Hall, J.L.; Gonder-Frederick, L.; Chewning, W.; Silveira, J.; Gold, P. Glucose enhancement of performance of memory tests in young and aged humans. Neuropsychologia 1989, 27, 1129–1138. [Google Scholar]
- Gonder-Frederick, L.; Hall, J.; Vogt, J.; Cox, D.; Green, J.; Gold, P. Memory enhancement in elderly humans: Effects of glucose ingestion. Physiol. Behav. 1987, 41, 503–504. [Google Scholar]
- Craft, S.; Murphy, C.; Wemstrom, J. Glucose effects on complex memory and nonmemory tasks: The influence of age, sex, and glucoregulatory response. Psychobiology 1994, 22, 95–105. [Google Scholar]
- Messier, C.; Gagnon, M.; Knott, V. Effect of glucose and peripheral glucose regulation on memory in the elderly. Neurobiol. Aging 1997, 18, 297–304. [Google Scholar]
- Craft, S.; Zallen, G.; Baker, L.D. Glucose and memory in mild senile dementia of the Alzheimer type. J. Clin. Exp. Neuropsychol. 1992, 14, 253–267. [Google Scholar]
- Manning, C.A.; Ragozzino, M.E.; Gold, P.E. Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer’s type. Neurobiol. Aging 1993, 14, 523–528. [Google Scholar]
- Manning, C.A.; Honn, V.J.; Stone, W.S.; Jane, J.S.; Gold, P.E. Glucose effects on cognition in adults with Down’s syndrome. Neuropsychologia 1998, 12, 479–484. [Google Scholar]
- Newcomer, J.W.; Craft, S.; Fucetola, R.; Moldin, S.O.; Selke, G.; Paras, L.; Miller, R. Glucose-induced increase in memory performance in patients with schizophrenia. Schizophr. Bull. 1999, 25, 321–335. [Google Scholar]
- Fucetola, R.; Newcomer, J.W.; Craft, S.; Melson, A.K. Age-and dose-dependent glucose-induced increases in memory and attention in schizophrenia. Psychiatry Res. 1999, 88, 1–13. [Google Scholar]
- Gradman, T.J.; Laws, A.; Thompson, L.W.; Reaven, G.M. Verbal learning and/or memory improves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus. J. Am. Geriatr. Soc. 1993, 41, 1305–1312. [Google Scholar]
- Meneilly, G.S.; Cheung, E.; Tessier, D.; Yakura, C.; Tuokko, H. The effect of improved glycemic control on cognitive functions in the elderly patient with diabetes. J. Gerontol. 1993, 48, M117–M121. [Google Scholar]
- Gold, P.E.; Vogt, J.A.; Hall, J.L. Glucose effects on memory: Behavioral and pharmacological characteristics. Behav. Neural Biol. 1986, 46, 145–155. [Google Scholar]
- Sunram-Lea, S.; Owen, L.; Finnegan, Y.; Hu, H. Dose-response investigation into glucose facilitation of memory performance and mood in healthy young adults. J. Psychopharmacol. 2010.
- Hoyland, A.; Lawton, C.; Dye, L. Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neurosci. Biobehav. Rev. 2008, 32, 72–85. [Google Scholar]
- Sünram-Lea, S.; Foster, J.; Durlach, P.; Perez, C. Glucose facilitation of cognitive performance in healthy young adults: Examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels. Psychopharmacology 2001, 157, 46–54. [Google Scholar]
- Kennedy, D.; Scholey, A. Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology 2000, 149, 63–71. [Google Scholar]
- Scholey, A.; Harper, S.; Kennedy, D. Cognitive demand and blood glucose. Physiol. Behav. 2001, 73, 585–592. [Google Scholar]
- Sünram-Lea, S.; Foster, J.; Durlach, P.; Perez, C. Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect. Psychopharmacology 2002, 160, 387–397. [Google Scholar]
- McNay, E.C.; Fries, T.M.; Gold, P.E. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl. Acad. Sci. USA 2000, 97, 2881–2885. [Google Scholar]
- Scholey, A.B.; Harper, S.; Kennedy, D.O. Cognitive demand and blood glucose. Physiol. Behav. 2001, 73, 585–592. [Google Scholar]
- Volpe, B.; Hirst, W. Amnesia following the rupture and repair of an anterior communicating artery aneurysm. J. Neurol. Neurosurg. Psychiatry 1983, 46, 704–709. [Google Scholar]
- Kuwert, T.; Hömberg, V.; Steinmetz, H.; Unverhau, S.; Langen, K.J.; Herzog, H.; Feinendegen, L. Posthypoxic amnesia: Regional cerebral glucose consumption measured by positron emission tomography. J. Neurol. Sci. 1993, 118, 10–16. [Google Scholar]
- De la Torre, J.; Fortin, T.; Park, G.; Pappas, B.; Richard, M. Brain blood flow restoration “rescues” chronically damaged rat CA1 neurons. Brain Res. 1993, 623, 6–15. [Google Scholar]
- Crowley, J.; Wesensten, N.; Kamimori, G.; Devine, J.; Iwanyk, E.; Balkin, T. Effect of high terrestrial altitude and supplemental oxygen on human performance and mood. Aviat. Space Environ. Med. 1992, 63, 696–701. [Google Scholar]
- Weaver, L.; Hopkins, R.; Chan, K.; Churchill, S.; Elliott, C.; Clemmer, T.; Orme, J., Jr.; Thomas, F.; Morris, A. Hyperbaric oxygen for acute carbon monoxide poisoning. N. Engl. J. Med. 2002, 347, 1057–1067. [Google Scholar]
- Weiskopf, R.; Feiner, J.; Hopf, H.; Viele, M.; Watson, J.; Kramer, J.; Ho, R.; Toy, P. Oxygen reverses deficits of cognitive function and memory and increased heart rate induced by acute severe isovolemic anemia. Anesthesiology 2002, 96, 871–877. [Google Scholar]
- Eustache, F.; Rioux, P.; Desgranges, B.; Marchal, G.; Petit-Taboué, M.C.; Dary, M.; Lechevalier, B.; Baron, J.C. Healthy aging, memory subsystems and regional cerebral oxygen consumption. Neuropsychologia 1995, 33, 867–887. [Google Scholar]
- Strehler, B. Fundamental mechanisms of neuronal aging. In Brain Aging: Neuropathology and Neuropharmacology, Aging; Sarkander, H.-I., Cervós-Navarro, J., Eds.; Raven Press: New York, NY, USA, 1983; Volume 21, pp. 75–91. [Google Scholar]
- Naritomi, H.; Meyer, J.S.; Sakai, F.; Yamaguchi, F.; Shaw, T. Effects of advancing age on regional cerebral blood flow: Studies in normal subjects and subjects with risk factors for atherothrombotic stroke. Arch. Neurol. 1979, 36, 410–416. [Google Scholar]
- Davis, S.M.; Ackerman, R.H.; Correia, J.A.; Alpert, N.M.; Chang, J.; Buonanno, F.; Kelley, R.E.; Rosner, B.; Taveras, J.M. Cerebral blood flow and cerebrovascular CO2 reactivity in stroke age normal controls. Neurology 1983, 33, 391–399. [Google Scholar]
- Lassen, N.A.; Ingvar, D.H. Blood flow studies in the aging normal brain and in senile dementia. In Aging of the Brain and Dementia; Amaducci, L., Davison, A.N., Antuono, P., Eds.; Raven Press: New York, NY, USA, 1980; pp. 91–98. [Google Scholar]
- Rowan, J.; McAlpine, C.; Matheson, M.; Patterson, J. CBF, vasomotor tone, and intelligence rating in nonagenarians. J. Cereb. Blood Flow Metab. 1981, 1, S481–S482. [Google Scholar]
- Edwards, A.; Hart, G. Hyperbaric oxygenation and the cognitive functioning of the aged. J. Am. Geriatr. Soc. 1974, 22, 376–379. [Google Scholar]
- Raskin, A.; Gershon, S.; Crook, T.; Sathananthan, G.; Ferris, S. The effects of hyperbaric and normobaric oxygen on cognitive impairment in the elderly. Arch. Gen. Psychiatry 1978, 35, 50–56. [Google Scholar]
- Walker, B.B.; Sandman, C.A. Human visual evoked responses are related to heart rate. J. Comp. Physiol. Psychol. 1979, 93, 717–729. [Google Scholar]
- Moss, M.; Scholey, A.; Wesnes, K. Oxygen administration selectively enhances cognitive performance in healthy young adults: A placebo-controlled double-blind crossover study. Psychopharmacology 1998, 138, 27–33. [Google Scholar]
- Scholey, A.; Moss, M.; Wesnes, K. Oxygen and cognitive performance: The temporal relationship between hyperoxia and enhanced memory. Psychopharmacology 1998, 140, 123–126. [Google Scholar]
- Moss, M.; Scholey, A. Oxygen administration enhances memory formation in healthy young adults. Psychopharmacology 1996, 124, 255–260. [Google Scholar]
- Scholey, A.; Moss, M.; Neave, N.; Wesnes, K. Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults. Physiol. Behav. 1999, 67, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Lee, H.; Choi, M.; Tack, G.; Lee, B.; Yi, J.; Kim, H.; Lee, B. A study on the effects of 40% oxygen on addition task performance in three levels of difficulty and physiological signals. Int. J. Neurosci. 2008, 118, 905–916. [Google Scholar]
- Winder, R.; Borrill, J. Fuels for memory: The role of oxygen and glucose in memory enhancement. Psychopharmacology 1998, 136, 349–356. [Google Scholar]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar]
- Gladden, L. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar]
- Lee, J.; Kim, Y.; Koh, J. Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci. 2001, 21, RC171:1–RC171:6. [Google Scholar]
- Wieloch, T. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 1985, 230, 681–683. [Google Scholar]
- Ying, W.; Chen, Y.; Alano, C.; Swanson, R. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J. Cereb. Blood Flow Metab. 2002, 22, 774–779. [Google Scholar]
- Suh, S.; Aoyama, K.; Matsumori, Y.; Liu, J.; Swanson, R. Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 2005, 54, 1452–1458. [Google Scholar]
- Kirino, T. Delayed neuronal death. Neuropathology 2000, 20, S95–S97. [Google Scholar]
- Yu, Y.M.; Kim, J.B.; Lee, K.W.; Kim, S.Y.; Han, P.L.; Lee, J.K. Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window. Stroke 2005, 36, 2238–2243. [Google Scholar]
- Ragozzino, M.E.; Hellems, K.; Lennartz, R.C.; Gold, P.E. Pyruvate infusions into the septal area attenuate spontaneous alternation impairments induced by intraseptal morphine injections. Behav. Neurosci. 1995, 109, 1074–1080. [Google Scholar]
- Krebs, D.L.; Parent, M.B. Hippocampal infusions of pyruvate reverse the memory-impairing effects of septal muscimol infusions. Eur. J. Pharmacol. 2005, 520, 91–99. [Google Scholar]
- Izumi, Y.; Zorumski, C.F. Involvement of nitric oxide in low glucose-mediated inhibition of hippocampal long-term potentiation. Synapse 1997, 25, 258–262. [Google Scholar]
- Izumi, Y.; Katsuki, H.; Zorumski, C.F. Monocarboxylates (pyruvate and lactate) as alternative energy substrates for the induction of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 1997, 232, 17–20. [Google Scholar]
- Hoyer, S. Abnormalities in brain glucose utilization and its impact on cellular and molecular mechanisms in sporadic dementia of Alzheimer type. Ann. N. Y. Acad. Sci. 1993, 695, 77–80. [Google Scholar]
- Parnetti, L.; Gaiti, A.; Polidori, M.; Brunetti, M.; Palumbo, B.; Chionne, F.; Cadini, D.; Cecchetti, R.; Senin, U. Increased cerebrospinal fluid pyruvate levels in Alzheimer’s disease. Neurosci. Lett. 1995, 199, 231–233. [Google Scholar]
- Pugliese, M.; Carrasco, J.; Andrade, C.; Mas, E.; Mascort, J.; Mahy, N. Severe cognitive impairment correlates with higher cerebrospinal fluid levels of lactate and pyruvate in a canine model of senile dementia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 603–610. [Google Scholar] [CrossRef]
- Balsom, P.; Soderlund, K.; Sjodin, B.; Ekblom, B. Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol. Scand. 1995, 154, 303–310. [Google Scholar]
- Walker, J. Creatine: Biosynthesis, regulation, and function (Chick embryo experiments, dietary aspects). Adv. Enzymol. Relat. Areas Mol. Biol. 1979, 50, 177–242. [Google Scholar] [PubMed]
- Snow, R.J.; Murphy, R.M. Factors influencing creatine loading into human skeletal muscle. Exerc. Sport Sci. Rev. 2003, 31, 154–158. [Google Scholar]
- Kamber, M.; Koster, M.; Kreis, R.; Walker, G.; Boesch, C.; Hoppler, H. Creatine supplementation—part I: Performance, clinical chemistry, and muscle volume. Med. Sci. Sports Exerc. 1999, 31, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Persky, A.M.; Brazeau, G.A.; Hochhaus, G. Pharmacokinetics of the dietary supplement creatine. Clin. Pharmacokinet. 2003, 42, 557–574. [Google Scholar]
- Conway, M.; Clark, J. Creatine and Creatine Phosphate: Scientific and Clinical Perspectives; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Rango, M.; Castelli, A.; Scarlato, G. Energetics of 3.5 s neural activation in humans: A 31P MR spectroscopy study. Magn. Reson. Med. 1997, 38, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Sappey-Marinier, D.; Calabrese, G.; Fein, G.; Hugg, J.; Biggins, C.; Weiner, M. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 1992, 12, 584–592. [Google Scholar]
- Dechent, P.; Pouwels, P.; Wilken, B.; Hanefeld, F.; Frahm, J. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. 1999, 277, 698–704. [Google Scholar]
- Lyoo, I.; Kong, S.; Sung, S.; Hirashima, F.; Parow, A.; Hennen, J.; Cohen, B.; Renshaw, P. Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res. Neuroimaging 2003, 123, 87–100. [Google Scholar]
- Jost, C.; Van der Zee, C.; Oerlemans, F.; Verheij, M.; Streijger, F.; Fransen, J.; Heerschap, A.; Cools, A.; Wieringa, B. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. Eur. J. Neurosci. 2002, 15, 1692–1706. [Google Scholar]
- Wilken, B.; Ramirez, J.; Probst, I.; Richter, D.; Hanefeld, F. Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr. Res. 1998, 43, 8–14. [Google Scholar]
- Balestrino, M.; Rebaudo, R.; Lunardi, G. Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: Dose-effect relationship. Brain Res. 1999, 816, 124–130. [Google Scholar]
- Holtzman, D.; Togliatti, A.; Khati, I.; Jensen, F. Creatine increases survival and suppresses seizures in the hypoxic immature rat. Pediatr. Res. 1998, 44, 410–414. [Google Scholar]
- Sullivan, P.; Geiger, J.; Mattson, M.; Scheff, S. Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 2000, 48, 723–729. [Google Scholar]
- Shear, D.; Haik, K.; Dunbar, G. Creatine reduces 3-nitropropionic-acid-induced cognitive and motor abnormalities in rats. NeuroReport 2000, 11, 1833–1837. [Google Scholar]
- Wyss, M.; Braissant, O.; Pischel, I.; Salomons, G.S.; Schulze, A.; Stockler, S.; Wallimann, T. Creatine and creatine kinase in health and disease—A bright future ahead? In Creatine and Creatine Kinase in Health and Disease; Salomons, G.S., Wyss, M., Eds.; Springer: Berlin, Germany, 2007; pp. 309–334. [Google Scholar]
- McMorris, T.; Harris, R.; Swain, J.; Corbett, J.; Collard, K.; Dyson, R.; Dye, L.; Hodgson, C.; Draper, N. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology 2006, 185, 93–103. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Harris, R.; Howard, A.; Langridge, G.; Hall, B.; Corbett, J.; Dicks, M.; Hodgson, C. Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior. Physiol. Behav. 2007, 90, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Kato, N.; Kato, T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci. Res. 2002, 42, 279–285. [Google Scholar]
- Ling, J.; Kritikos, M.; Tiplady, B. Cognitive effects of creatine ethyl ester supplementation. Behav. Pharmacol. 2009, 20, 673–679. [Google Scholar]
- Rawson, E.; Lieberman, H.; Walsh, T.; Zuber, S.; Harhart, J.; Matthews, T. Creatine supplementation does not improve cognitive function in young adults. Physiol. Behav. 2008, 95, 130–134. [Google Scholar]
- Rae, C.; Digney, A.; McEwan, S.; Bates, T. Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proc. R. Soc. B Biol. Sci. 2003, 270, 2147–2150. [Google Scholar] [CrossRef]
- McMorris, T.; Mielcarz, G.; Harris, R.; Swain, J.; Howard, A. Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2007, 14, 517–528. [Google Scholar]
- Laakso, M.; Hiltunen, Y.; Könönen, M.; Kivipelto, M.; Koivisto, A.; Hallikainen, M.; Soininen, H. Decreased brain creatine levels in elderly apolipoprotein E 4 carriers. J. Neural Transm. 2003, 110, 267–275. [Google Scholar]
- Steiber, A.; Kerner, J.; Hoppel, C. Carnitine: A nutritional, biosynthetic, and functional perspective. Mol. Aspects Med. 2004, 25, 455–473. [Google Scholar] [CrossRef] [PubMed]
- Liedtke, A.; Nellis, S.; Whitesell, L.; Mahar, C. Metabolic and mechanical effects using L- and D-carnitine in working swine hearts. Am. J. Physiol. 1982, 243, H691–H697. [Google Scholar]
- Simon, E. Fatty acid oxidation defects as a cause of neuromyopathic disease in infants and adults. Clin. Lab. 2005, 51, 289–306. [Google Scholar]
- Wasserman, K.; Whipp, B. Excercise physiology in health and disease. Am. Rev. Respir. Dis. 1975, 112, 219–249. [Google Scholar]
- Mingrone, G.; Greco, A.; Capristo, E.; Benedetti, G.; Giancaterini, A.; Gaetano, A.; Gasbarrini, G. L-Carnitine improves glucose disposal in type 2 diabetic patients. J. Am. Coll. Nutr. 1999, 18, 77–82. [Google Scholar]
- Nalecz, K.A.; Nalecz, M.J. Carnitine—a known compound, a novel function in neural cells. Acta Neurobiol. Exp. (Wars.) 1996, 56, 597–609. [Google Scholar] [PubMed]
- Imperato, A.; Ramacci, M.; Angelucci, L. Acetyl-L-carnitine enhances acetylcholine release in the striatum and hippocampus of awake freely moving rats. Neurosci. Lett. 1989, 107, 251–255. [Google Scholar]
- Furlong, J. Acetyl-L-carnitine: Metabolism and applications in clinical practice. Altern. Med. Rev. 1996, 1, 85–93. [Google Scholar]
- Forloni, G.; Angeretti, N.; Smiroldo, S. Neuroprotective activity of acetyl-L-carnitine: Studies in vitro. J. Neurosci. Res. 1994, 37, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Shimpo, Y.; Matsuoka, Y.; Kinoshita, K. Anti-apoptotic effect of acetyl-L-carnitine and L-carnitine in primary cultured neurons. Jpn. J. Pharmacol. 2000, 83, 119–124. [Google Scholar]
- Binienda, Z.K. Neuroprotective effects of L-carnitine in induced mitochondrial dysfunction. Ann. N. Y. Acad. Sci. 2003, 993, 289–295. [Google Scholar]
- Ghirardi, O.; Vertechi, M.; Vesci, L.; Canta, A.; Nicolini, G.; Galbiati, S.; Ciogli, C.; Quattrini, G.; Pisanto, C.; Cundari, S.; Rigamonti, L.M. Chemotherapy-induced allodinia: Neuroprotective effect of acetyl-L-carnitine. In Vivo 2005, 19, 631–637. [Google Scholar]
- Lolic, M.M.; Fiskum, G.; Rosenthal, R.E. Neuroprotective effects of acetyl-L-carnitine after stroke in rats. Ann. Emerg. Med. 1997, 29, 758–765. [Google Scholar]
- Rosenthal, R.E.; Williams, R.; Bogaert, Y.E.; Getson, P.R.; Fiskum, G. Prevention of postischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-L-carnitine. Stroke 1992, 23, 1312–1317. [Google Scholar]
- Parnetti, L.; Gaiti, A.; Mecocci, P.; Cadini, D.; Senin, U. Pharmacokinetics of IV and oral acetyl-L-carnitine in a multiple dose regimen in patients with senile dementia of Alzheimer type. Eur. J. Clin. Pharmacol. 1992, 42, 89–93. [Google Scholar]
- Montgomery, S.; Thal, L.; Amrein, R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int. Clin. Psychopharmacol. 2003, 18, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, M.; Cammalleri, L.; Gargante, M.; Vacante, M.; Colonna, V.; Motta, M. L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. Am. J. Clin. Nutr. 2007, 86, 1738–1744. [Google Scholar]
- Junien, C.; Nathanielsz, P. Report on the IASO Stock Conference 2006: Early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes. Obes. Rev. 2007, 8, 487–502. [Google Scholar]
- Fraga, M.F.; Ballestar, E.; Paz, M.F.; Ropero, S.; Setien, F.; Ballestar, M.L.; Heine-Suñer, D.; Cigudosa, J.C.; Urioste, M.; Benitez, J. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 2005, 102, 10604–10609. [Google Scholar]
- Fraga, M.F.; Esteller, M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007, 23, 413–418. [Google Scholar]
- Christensen, B.C.; Houseman, E.A.; Marsit, C.J.; Zheng, S.; Wrensch, M.R.; Wiemels, J.L.; Nelson, H.H.; Karagas, M.R.; Padbury, J.F.; Bueno, R.; et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009, 5, e1000602. [Google Scholar] [PubMed]
- Lomba, A.; Milagro, F.I.; García-Díaz, D.F.; Marti, A.; Campión, J.; Martínez, J.A. Obesity induced by a pair-fed high fat sucrose diet: Methylation and expression pattern of genes related to energy homeostasis. Lipids Health Dis. 2010, 9, 60. [Google Scholar]
- Whittle, J.R.; Powell, M.J.; Popov, V.M.; Shirley, L.A.; Wang, C.; Pestell, R.G. Sirtuins, nuclear hormone receptor acetylation and transcriptional regulation. Trends Endocrinol. Metab. 2007, 18, 356–364. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Owen, L.; Sunram-Lea, S.I. Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and l-Carnitine. Nutrients 2011, 3, 735-755. https://doi.org/10.3390/nu3080735
Owen L, Sunram-Lea SI. Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and l-Carnitine. Nutrients. 2011; 3(8):735-755. https://doi.org/10.3390/nu3080735
Chicago/Turabian StyleOwen, Lauren, and Sandra I. Sunram-Lea. 2011. "Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and l-Carnitine" Nutrients 3, no. 8: 735-755. https://doi.org/10.3390/nu3080735
APA StyleOwen, L., & Sunram-Lea, S. I. (2011). Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and l-Carnitine. Nutrients, 3(8), 735-755. https://doi.org/10.3390/nu3080735