Parenteral Nutrition Additive Shortages: The Short-Term, Long-Term and Potential Epigenetic Implications in Premature and Hospitalized Infants
Abstract
:1. Introduction
2. Current Shortages and TPN Management Strategies
Amino Acids | Ascorbic Acid | Calcium Chloride |
---|---|---|
Calcium Gluconate | Chromium | Copper |
Cyanocobalamin | Fat Emulsions | l-cysteine |
Magnesium Sulfate | Multivitamins (MVI) | Phytonadione (vitamin K) |
Potassium Acetate | Potassium Phosphate | Selenium |
Sodium Acetate | Sodium phosphate | Trace Elements |
Vitamin A | Zinc |
|
3. Nutritional Needs of Preterm Infants and Potential Effect of Shortages of PN Components
Birth weight <1.5 kg | Term Infants | |
---|---|---|
Calcium | 3 mEq/kg/day | 2 mEq/kg/day |
Zinc | 1000–3000 μg/kg/day | 250 μg/day <3 months |
100 µg/day >3 months | ||
Selenium | 1.3–4.5 μg/kg/day | 2.0 μg/day |
Vitamin A | 700–1500 IU/day | 2300 IU |
Vitamin D | 400 IU/day | 400 IU/day |
Vitamin E | 6–12 IU/kg/day | 7 IU/day |
Per 1.5 mL MVI (<1000 g) | Per 3.25 mL MVI (1001–2500 g) | Per 5 mL MVI (>2500 g) | |
---|---|---|---|
Vitamin C (mg) | 24 | 5.2 | 80 |
Vitamin A (IU) | 690 | 1495 | 2300 |
Vitamin D (IU) | 120 | 260 | 400 |
Thiamine (B1) (mg) | 0.36 | 0.78 | 1.2 |
Riboflavin (B2) (mg) | 0.42 | 0.91 | 1.4 |
Pyridoxine (B6) (mg) | 0.3 | 0.65 | 1 |
Niacin (mg) | 5.1 | 11.1 | 17 |
Dexpanthenol (mg) | 1.5 | 3.3 | 5 |
VitaminE (IU) | 2.1 | 4.6 | 7 |
Vitamin K (mg) | 0.06 | 0.13 | 0.2 |
Folic Acid (μg) | 42 | 91 | 140 |
Biotin (μg) | 6 | 13 | 20 |
B12 (μg) | 0.3 | 0.65 | 1 |
4. Conclusion
Conflict of Interest
References
- Poindexter, B.B.; Langer, J.C.; Dusick, A.M.; Ehrenkranz, R.A. National Institute of Child Health and Human Development Neonatal Research Network. Early provision of parenteral amino acids in extremely low birth weight infants: Relation to growth and neurodevelopmental outcome. J. Pediatr. 2006, 148, 300–305. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar]
- Mirtallo, J.M.; Holcombe, B.; Kochevar, M.; Guenter, P. Parenteral nutrition product shortages: The A.S.P.E.N. strategy. Nutr. Clin. Pract. 2012, 27, 385–391. [Google Scholar] [CrossRef]
- FDA. U.S. Food and Drug Administration. Available online: http://www.fda.gov/Drugs/DrugSafety/DrugShortages/default.htm (accessed on 5 December 2012).
- Centers for Disease Control (CDC). Deaths associated with thiamine-deficient total parenteral nutrition. MMWR Morb. Mortal. Wkly. Rep. 1989, 38, 43–46.
- Hahn, J.S.; Berquist, W.; Alcorn, D.M.; Chamberlain, L.; Bass, D. Wernicke encephalopathy and beriberi during total parenteral nutrition attributable to multivitamin infusion shortage. Pediatrics 1998, 101, E10. [Google Scholar]
- Kleinman, R. Pediatric Nutrition Handbook, 6th ed; American Academy of Pediatrics: Elk Grove, IL, USA, 2009. [Google Scholar]
- Nutrition of the Premature Infant: Scenitific Basis and Practical Guidelines; Tsang, R.C.; Uauy, R.; Koletzki, B.; Zlotkin, S.H. (Eds.) Digital Education Publishing Inc.: Cincinnati, OH, USA, 2005.
- Dusick, A.M.; Poindexter, B.B.; Ehrenkranz, R.A.; Lemons, J.A. Growth failure in the preterm infant: Can we catch up? Semin. Perinatol. 2003, 27, 302–310. [Google Scholar] [CrossRef]
- Pieltain, C.; Habibi, F.; Rigo, J. Early nutrition, postnatal growth retardation and outcome of VLBW infants. Arch. Pediatr. 2007, 14, S11–S15. [Google Scholar]
- Berry, M.A.; Abrahamowicz, M.; Usher, R.H. Factors associated with growth of extremely premature infants during initial hospitalization. Pediatrics 1997, 100, 640–646. [Google Scholar] [CrossRef]
- Hack, M.; Breslau, N.; Weissman, B.; Aram, D.; Klein, N.; Borawski, E. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N. Engl. J. Med. 1991, 325, 231–237. [Google Scholar]
- Stephens, B.E.; Walden, R.V.; Gargus, R.A.; Tucker, R.; Mckinley, L.; Mance, M.; Nye, J.; Vohr, B.R. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 2009, 123, 1337–1343. [Google Scholar] [CrossRef]
- Schanler, R. UpToDate. Available online: http//www.uptodate.com (accessed on 1 October 2012).
- Soghier, L.M.; Brion, L.P. Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst. Rev. 2006, CD004869. [Google Scholar] [CrossRef]
- Greene, H.L.; Hambidge, K.M.; Schanler, R.; Tsang, R.C. Guidelines for the use of vitamins, trace elements, calcium, magnesium, and phosphorus in infants and children receiving total parenteral nutrition: Report of the subcommittee on pediatric parenteral nutrient requirements from the committee on clinical practice issues of the american society for clinical nutrition. Am. J. Clin. Nutr. 1988, 48, 1324–1342. [Google Scholar]
- Groh-Wargo, S.; Thompson, M.; Hovasi Cox, J. Nutrition Care for High Risk Newborns, 3rd ed; Precept Press, Inc.: Chicago, IL, USA, 2000. [Google Scholar]
- Koo, W.W. Parenteral nutrition-related bone disease. J. Parenter. Enteral. Nutr. 1992, 16, 386–394. [Google Scholar]
- Prestridge, L.L.; Schanler, R.J.; Shulman, R.J.; Burns, P.A.; Laine, L.L. Effect of parenteral calcium and phosphorus therapy on mineral retention and bone mineral content in very low birth weight infants. J. Pediatr. 1993, 122, 761–768. [Google Scholar] [CrossRef]
- Burjonrappa, S.C.; Miller, M. Role of trace elements in parenteral nutrition support of the surgical neonate. J. Pediatr. Surg. 2012, 47, 760–771. [Google Scholar] [CrossRef]
- Falciglia, H.S.; Johnson, J.R.; Sullivan, J.; Hall, C.F.; Miller, J.D.; Riechmann, G.C.; Galciglia, G.A. Role of antioxidant nutrients and lipid peroxidation in premature infants with respiratory distress syndrome and bronchopulmonary dysplasia. Am. J. Perinatol. 2003, 20, 97–107. [Google Scholar]
- Daniels, L.; Gibson, R.; Simmer, K. Randomised clinical trial of parenteral selenium supplementation in preterm infants. Arch. Dis. Child. 1996, 74, F158–F164. [Google Scholar]
- Darlow, B.A.; Austin, N.C. Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst. Rev. 2003, CD003312. [Google Scholar] [CrossRef]
- Shah, M.D.; Shah, S.R. Nutrient deficiencies in the premature infant. Pediatr. Clin. North. Am. 2009, 56, 1069–1083. [Google Scholar] [CrossRef]
- Hanson, C.; Armas, L.; Lyden, E.; Anderson-Berry, A. Vitamin D status and associations in newborn formula-fed infants during initial hospitalization. J. Am. Diet. Assoc. 2011, 111, 1836–1843. [Google Scholar]
- Merewood, A.; Mehta, S.D.; Grossman, X.; Chen, T.C.; Mathieu, J.S.; Holick, M.F.; Bauchner, H. Widespread vitamin D deficiency in urban Massachusetts newborns and their mothers. Pediatrics 2010, 125, 640–647. [Google Scholar]
- Basile, L.A.; Taylor, S.N.; Wagner, C.L.; Quinones, L.; Hollis, B.W. Neonatal vitamin D status at birth at latitude 32 degrees 72′: Evidence of deficiency. J. Perinatol. 2007, 27, 568–571. [Google Scholar] [CrossRef]
- Zamora, S.A.; Rizzoli, R.; Belli, D.C.; Slosman, D.O.; Bonjour, J.P. Vitamin D supplementation during infancy is associated with higher bone mineral mass in prepubertal girls. J. Clin. Endocrinol. Metab. 1999, 84, 4541–4544. [Google Scholar] [CrossRef]
- Yorifuji, J.; Yorifuji, T.; Tachibana, K.; Nagai, S.; Kawai, M.; Momoi, T.; Nagasaka, H.; Hatayama, H.; Nakahata, T. Craniotabes in normal newborns: The earliest sign of subclinical vitamin D deficiency. J. Clin. Endocrinol. Metab. 2008, 93, 1784–1788. [Google Scholar] [CrossRef]
- The EURODIAB substudy 2 study group. Vitamin D supplement in early childhood and risk for type I (insulin-dependent) diabetes mellitus. Diabetologia 1999, 42, 51–54. [CrossRef]
- Hypponen, E.; Laara, E.; Reunanen, A.; Jarvelin, M.R.; Virtanen, S.M. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet 2001, 358, 1500–1503. [Google Scholar]
- Ginde, A.A.; Mansbach, J.M.; Camargo, C.A., Jr. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the third national health and nutrition examination survey. Arch. Intern. Med. 2009, 169, 384–390. [Google Scholar] [CrossRef]
- Erkkola, M.; Kaila, M.; Nwaru, B.I.; Kronberg-Kipplia, C.; Ahonen, S.; Nevalainen, J.; Veijola, R.; Pekkanen, J.; Ilonen, J.; Simell, O.; Knip, M.; Virtanen, S.M. Maternal vitamin D intake during pregnancy is inversely associated with asthma and allergic rhinitis in 5-year-old children. Clin. Exp. Allergy 2009, 39, 875–882. [Google Scholar]
- Camargo, C.A., Jr.; Rifas-Shiman, S.L.; Litonjua, A.A.; Rich-Edwards, J.W.; Weiss, S.T.; Gold, D.R.; Kleinmann, K.; Gillman, M.W. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am. J. Clin. Nutr. 2007, 85, 788–795. [Google Scholar]
- Singh, R.J.; Taylor, R.L.; Reddy, G.S.; Grebe, S.K. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J. Clin. Endocrinol. Metab. 2006, 91, 3055–3061. [Google Scholar] [CrossRef]
- Brion, L.P.; Bell, E.F.; Raghuveer, T.S. Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2003, CD003665. [Google Scholar] [CrossRef]
- Brion, L.P.; Bell, E.F.; Raghuveer, T.S.; Soghier, L. What is the appropriate intravenous dose of vitamin E for very-low-birth-weight infants? J. Perinatol. 2004, 24, 205–207. [Google Scholar] [CrossRef]
- Darlow, B.A.; Graham, P.J. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birthweight infants. Cochrane Database Syst. Rev. 2007, CD000501. [Google Scholar] [CrossRef]
- Mactier, H.; Mokaya, M.M.; Farrell, L.; Edwards, C.A. Vitamin A provision for preterm infants: Are we meeting current guidelines? Arch. Dis. Child. 2011, 96, F286–F289. [Google Scholar]
- Tyson, J.E.; Wright, L.L.; Oh, W.; Kennedy, K.A.; Mele, L.; Ehenkranz, R.A.; Stoll, B.J.; Lemons, J.A.; Stevenson, D.K.; Bauer, C.R.; Korones, S.B.; Fanaroff, A.A. Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N. Engl. J. Med. 1999, 340, 1962–1968. [Google Scholar] [CrossRef]
- Bocheva, G.; Boyadjieva, N. Epigenetic regulation of fetal bone development and placental transfer of nutrients: Progress for osteoporosis. Interdiscip. Toxicol. 2011, 4, 167–172. [Google Scholar] [CrossRef]
- Regan, F.M.; Cutfield, W.S.; Jefferies, C.; Robinson, E.; Hofman, P.L. The impact of early nutrition in premature infants on later childhood insulin sensitivity and growth. Pediatrics 2006, 118, 1943–1949. [Google Scholar]
- Mathai, S.; Cutfield, W.S.; Derraik, J.G.; Dalziel, S.R.; Harding, J.E.; Robinson, E.; Biggs, J.; Jefferies, C.; Hofman, P.L. Insulin sensitivity and beta-cell function in adults born preterm and their children. Diabetes 2012, 61, 2479–2483. [Google Scholar] [CrossRef]
- Stene, L.C.; Ulriksen, J.; Magnus, P.; Joner, G. Use of cod liver oil during pregnancy associated with lower risk of type I diabetes in the offspring. Diabetologia 2000, 43, 1093–1098. [Google Scholar] [CrossRef]
- Staples, J.A.; Ponsonby, A.L.; Lim, L.L.; McMichael, A.J. Ecologic analysis of some immune-related disorders, including type 1 diabetes, in australia: Latitude, regional ultraviolet radiation, and disease prevalence. Environ. Health Perspect. 2003, 111, 518–523. [Google Scholar]
- Adorini, L. Intervention in autoimmunity: The potential of vitamin D receptor agonists. Cell. Immunol. 2005, 233, 115–124. [Google Scholar] [CrossRef]
- Hypponen, E.; Hartikainen, A.L.; Sovio, U.; Jarvelin, M.R.; Pouta, A. Does vitamin D supplementation in infancy reduce the risk of pre-eclampsia? Eur. J. Clin. Nutr. 2007, 61, 1136–1139. [Google Scholar] [CrossRef]
- Russell, R.B.; Green, N.S.; Steiner, C.A.; Meikle, S.; Howse, J.L.; Pochman, K.; Dias, T.; Potetz, L.; Davidoff, M.J.; Damus, K.; Petrini, J.R. Cost of hospitalization for preterm and low birth weight infants in the united states. Pediatrics 2007, 120, e1–e9. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hanson, C.; Thoene, M.; Wagner, J.; Collier, D.; Lecci, K.; Anderson-Berry, A. Parenteral Nutrition Additive Shortages: The Short-Term, Long-Term and Potential Epigenetic Implications in Premature and Hospitalized Infants. Nutrients 2012, 4, 1977-1988. https://doi.org/10.3390/nu4121977
Hanson C, Thoene M, Wagner J, Collier D, Lecci K, Anderson-Berry A. Parenteral Nutrition Additive Shortages: The Short-Term, Long-Term and Potential Epigenetic Implications in Premature and Hospitalized Infants. Nutrients. 2012; 4(12):1977-1988. https://doi.org/10.3390/nu4121977
Chicago/Turabian StyleHanson, Corrine, Melissa Thoene, Julie Wagner, Dean Collier, Kassandra Lecci, and Ann Anderson-Berry. 2012. "Parenteral Nutrition Additive Shortages: The Short-Term, Long-Term and Potential Epigenetic Implications in Premature and Hospitalized Infants" Nutrients 4, no. 12: 1977-1988. https://doi.org/10.3390/nu4121977
APA StyleHanson, C., Thoene, M., Wagner, J., Collier, D., Lecci, K., & Anderson-Berry, A. (2012). Parenteral Nutrition Additive Shortages: The Short-Term, Long-Term and Potential Epigenetic Implications in Premature and Hospitalized Infants. Nutrients, 4(12), 1977-1988. https://doi.org/10.3390/nu4121977