Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer
Abstract
:1. Introduction
2. Polyphenolic Compounds in Wine and Beer
Phenolic compounds | (mg/L) * | Phenolic compounds | (mg/L) * |
---|---|---|---|
Anthocyanins | Kaempferol | 2.3 | |
Cyanidin 3-O-(6′-acetyl-glucoside) | 0.8 | Kaempferol 3-O-glucoside | 7.9 |
Cyanidin 3-O-glucoside | 2.1 | Myricetin | 8.3 |
Delphinidin 3-O-(6′-acetyl-glucoside) | 4.2 | Quercetin | 8.3 |
Delphinidin 3-O-(6′-p-coumaroyl-glucoside) | 1.8 | Quercetin 3-O-arabinoside | 4.9 |
Delphinidin 3-O-glucoside | 10.6 | Quercetin 3-O-glucoside | 11.4 |
Malvidin 3-O-(6′-acetyl-glucoside) | 35.2 | Quercetin 3-O-rhamnoside | 11.5 |
Malvidin 3-O-(6′-caffeoyl-glucoside) | 1.8 | Quercetin 3-O-rutinoside | 8.1 |
Malvidin 3-O-(6′-p-coumaroyl-glucoside) | 19.5 | Hydroxybenzoic acids | |
Malvidin 3-O-glucoside | 99.7 | 2,3-Dihydroxybenzoic acid | 0.8 |
Peonidin 3-O-(6″-acetyl-glucoside) | 4.7 | 2-Hydroxybenzoic acid | 0.4 |
Peonidin 3-O-(6′-p-coumaroyl-glucoside) | 5.2 | 4-Hydroxybenzoic acid | 5.5 |
Peonidin 3-O-glucoside | 8.2 | Gallic acid | 35.9 |
Petunidin 3-O-(6′-acetyl-glucoside) | 5.7 | Gallic acid ethyl ester | 15.3 |
Petunidin 3-O-(6′-p-coumaroyl-glucoside) | 3.9 | Gentisic acid | 4.6 |
Petunidin 3-O-glucoside | 14.0 | Protocatechuic acid | 1.7 |
Pigment A | 0.7 | Syringic acid | 2.7 |
Pinotin A | 2.2 | Vanillic acid | 3.2 |
Vitisin A | 3.1 | Hydroxycinnamic acids | |
Dihydroflavonols | 2,5-di-S-Glutathionyl caftaric acid | 28.6 | |
Dihydromyricetin 3-O-rhamnoside | 44.7 | Caffeic acid | 18.8 |
Dihydroquercetin 3-O-rhamnoside | 9.7 | Caffeoyl tartaric acid | 33.5 |
Flavanols | Ferulic acid | 0.8 | |
(+)-Catechin | 68.1 | o-Coumaric acid | 0.3 |
(+)-Gallocatechin | 0.8 | p-Coumaric acid | 5.5 |
(−)-Epicatechin | 37.8 | p-Coumaroyl tartaric acid | 11.8 |
(−)-Epicatechin 3-O-gallate | 7.7 | Sinapic acid | 0.7 |
(−)-Epigallocatechin | 0.6 | Hydroxyphenylacetic acids | |
Procyanidin dimer B1 | 41.4 | 4-Hydroxyphenylacetic acid | 1.6 |
Procyanidin dimer B2 | 49.7 | Stilbenes | |
Procyanidin dimer B3 | 94.7 | d-Viniferin | 6.4 |
Procyanidin dimer B4 | 72.9 | e-Viniferin | 1.5 |
Procyanidin dimer B7 | 2.7 | Pallidol | 2.0 |
Procyanidin trimer C1 | 25.6 | Piceatannol | 5.8 |
Procyanidin trimer T2 | 67.1 | Piceatannol 3-O-glucoside | 9.5 |
Prodelphinidin dimer B3 | 1.1 | Resveratrol | 2.7 |
Flavanones | Resveratrol 3-O-glucoside | 6.2 | |
Hesperetin | 0.5 | Hydroxybenzaldehydes | |
Naringenin | 0.5 | Protocatechuic aldehyde | 0.5 |
Naringin | 7.5 | Syringaldehyde | 6.6 |
Flavonols | Tyrosols | ||
Isorhamnetin | 3.3 | Hydroxytyrosol | 5.3 |
Isorhamnetin 3-O-glucoside | 2.6 | Tyrosol | 31.2 |
Phenolic compounds | (mg/L) * | Phenolic compounds | (mg/L) * |
---|---|---|---|
Simple Phenols | Flavanones | ||
Vinil-4-fenol | ≤0.15 | Isoxanthohumol | 0.04–3.44 |
Vinil-4-guayacol | ≤0.55 | 8-Prenilnaringenin | 0.001–0.24 |
Etil-4-fenol | ≤0.01 | 6-Prenilnaringenin | 0.001–0.56 |
Isoeugenol | ≤0.04 | 6-Geranilnaringenin | ≤0.074 |
Tyrosol | ≤40 | Taxifolin | ≤1.0 |
Propil-4-siringol | ≤0.2 | Flavanols | |
2,3-Dihydroxy-guaiacyl propan-1-one | ≤0.034 | (+)-Catechin | ≤5.4 |
Phenolic acids | (−)-Epicatechin | ≤3.3 | |
4-Hydroxyfenilacétic | ≤0.65 | Catechin gallate | 5–20 |
Homovanillic | 0.05 | Epicatechin gallate | 5–20 |
Alquilphenols | Procyanidin B3 | ≤3.1 | |
3-Metilcatecol | ≤0.03 | Prodelphynidina B3 | ≤3.3 |
4-Etilcatecol | ≤0.01 | Prodelphynidina B9 | ≤3.9 |
4-Metilcatecol | ≤0.02 | Procyanidin C2 | 0.3 |
Vinil-4-fenol | ≤0.15 | Flavonols | |
Benzoic acid derivatives | Kanpherol | 16.4 | |
3,5-Dihydroxybenzoic | 0.3 | Kanpherol-3-rhamnoside | ≤1.0 |
2,6-Dihydroxybenzoic | 0.9 | Quercetin | ≤10 |
2-Hydroxybenzoic | ≤2.0 | 3,7-Dimetilquercetin | 0.003 |
3-Hydroxybenzoic | ≤0.3 | Miricetin | 0.007 |
4-Hydroxybenzoic | ≤9.6 | Quercetin 3-O-Arabinoside | 0.006 |
Protocatecuic | ≤0.3 | Quercetina 3-O-Rutinoside | 0.90 |
Vanillic | ≤3.6 | Quercitrin | ≤2.3 |
Gallic | ≤0.2 | Isoquercitrin | ≤1.0 |
Siríngico | ≤0.5 | Rutin | ≤1.8 |
o-Vanillin | ≤1.6 | Isoflavones | |
Siringic aldehyde | ≤0.7 | Daidzein | ≤0.005 |
Cinnamic acids | Genistein | ≤0.01 | |
p-coumaric | ≤1.2 | Formononetin | ≤0.004 |
m-Coumaric | ≤0.2 | Biochanin A | ≤0.015 |
o-Coumaric | ≤1.5 | Flavones | |
5-Caffeoilquinic | ≤0.8 | Apigenin | 0.042 |
Caffeic | ≤0.3 | α-acids (humulones) | 1.7 |
Ferulic | ≤6.5 | Iso-α-acids (iso-humulones) | 0.6–100 |
Sinapic | ≤0.7 | Other polyphenols | |
Chalcones | Catechol | 0.1 | |
Xanthohumol | 0.002–1.2 | Pirogalol | 0.3 |
3. Effects of Alcohol and Polyphenols on the Cardiovascular System
4. The Effects of Wine and Beer on the Cardiovascular System
4.1. Epidemiological Studies
4.2. Clinical Trials
Polyphenol group | Polyphenol metabolite | Source | Dose per day | No. subjects | Urine | Plasma | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
Urinary excretion | Tmax (h) | Mean Concentration | Tmax (h) | ||||||
Flavanols | Catechin | Red wine | 35 mg (120 mL) | 9 | 3.1 | 0.091 μmol/L | 1.5 | [76] | |
Red wine | 35 mg (120 mL) | 9 | 3.2 | 0.077 μmol/L | 1.44 | [77] | |||
Red wine | 35 mg (120 mL) | 9 | 3%–10% of intake | [78] | |||||
(+)-Catechin | Red wine | 120 mL | 9 | 1.6 | [76] | ||||
3′- O-Methylcatechin | Red wine | 120 mL | 9 | 1.2 | [76] | ||||
Anthocyanins | Total anthocyanins | Red wine | 218 mg (300 mL) | 6 | 1.5%–5.1% of intake/12 h | 6 | [79] | ||
Malvidin 3-glc | Red wine | 68 mg (500 mL) | 6 | 0.016% of intake/6 h | <3 | 0.0014 μmol/L | 0.83 | [80] | |
Hydroxycinnamic acids | Caffeic acid | Red wine | 0.9–1.8–2.7 mg (100, 200, 300 mL) | 5 | 0.007–0.027 μmol/L | 1 | [81] | ||
Red wine | 1.8 mg (200 mL) | 10 | 0.037–0.060 μmol/L | 0.5–1 | [82] | ||||
Red wine | 55 μg/kg bw | 12 | 0.084 μmol/L | 2 | [83] | ||||
Red wine | 5 mL/kg bw | 12 | [83] | ||||||
Beer | 500 mL | 10 | 0.05–0.07 μmol/L | 1 | [83] | ||||
Ferulic acid | Beer | 500 mL | 10 | 0.11 μmol/L | 1 | [83] | |||
4-Hydroxyphenylacetic acid | Beer | 500 mL | 10 | 8 | 1.4–1.17 μmol/L | 0.5–1 | [84] | ||
Vanillic acid | Beer | 500 mL | 10 | 0.11 μmol/L | 1 | [84] | |||
p-Coumaric acid | Beer | 500 mL | 10 | 0.05–0.07 μmol/L | 1 | [84] | |||
Hydroxybenzoic acids | Gallic acid | Red wine | 4 mg (300 mL) | 2 | 0.22 GA + 1.1 4-MeGA + 0.25 3-MeGA μmol/L | [85] | |||
Methylgallic acid | Red wine | 47 μg/kg bw | 12 | 0.18 4-MeGA μmol/L | 2 | [83] | |||
4- O-Methylgallic acid | Red wine | 5 mL/kg bw | 12 | [83] | |||||
Stilbenes | Cis-resveratrol 3-sulfate | Red wine | 250 mL | 5 | 221.2 nmol/g creatinine | 4 | [86] | ||
Trans-resveratrol 3- O-glucuronide | Red wine | 250 mL | 5 | 179.2 nmol/g creatinine | 4 | [86] | |||
Trans-resveratrol 4′- O-glucuronide | Red wine | 250 mL | 5 | 59.6 nmol/g creatinine | 4 | [86] | |||
Cis-resveratrol 4′ sulfate | Red wine | 250 mL | 5 | 9294.2 nmol/g creatinine | 4 | [86] | |||
Trans-Resveratrol 3-sulfate | Red wine | 250 mL | 5 | 74.7 nmol/g creatinine | 4 | [86] | |||
Trans-Resveratrol 4′-sulfate | Red wine | 250 mL | 5 | 2.4nmol/g creatinine | 4 | [86] | |||
Cis-resveratrol 3-O-glucuronide | Red wine | 250 mL | 5 | 893.5 nmol/g creatinine | 4 | [86] | |||
Cis-resveratrol 4′-O-glucuronide | Red wine | 250 mL | 5 | 355.8 nmol/g creatinine | 4 | [86] |
5. Role of Wine and Beer in Cancer Prevention
6. Conclusions
Acknowledgements
Conflict of Interest
References
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [Google Scholar]
- Lindberg, M.L.; Amsterdam, E.A. Alcohol, wine, and cardiovascular health. Clin. Cardiol. 2008, 31, 347–351. [Google Scholar] [CrossRef]
- Friedman, L.A.; Kimball, A.W. Coronary heart disease mortality and alcohol consumption in framingham. Am. J. Epidemiol. 1986, 124, 481–489. [Google Scholar]
- Muntwyler, J.; Hennekens, C.H.; Buring, J.E.; Gaziano, J.M. Mortality and light to moderate alcohol consumption after myocardial infarction. Lancet 1998, 352, 1882–1885. [Google Scholar]
- Gronbaek, M.; Deis, A.; Sorensen, T.I.; Becker, U.; Schnohr, P.; Jensen, G. Mortality associated with moderate intakes of wine, beer, or spirits. BMJ 1995, 310, 1165–1169. [Google Scholar] [CrossRef]
- Estruch, R.; Nicolas, J.M.; Villegas, E.; Junque, A.; Urbano-Marquez, A. Relationship between ethanol-related diseases and nutritional status in chronically alcoholic men. Alcohol Alcohol. 1993, 28, 543–550. [Google Scholar]
- Brien, S.E.; Ronksley, P.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: Systematic Review and meta-analysis of interventional studies. BMJ 2011, 342, d636. [Google Scholar]
- Ronksley, P.E.; Brien, S.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Association of alcohol consumption with selected cardiovascular disease outcomes: A systematic review and meta-analysis. BMJ 2011, 342, d671. [Google Scholar]
- Di Castelnuovo, A.; Costanzo, S.; Bagnardi, V.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Alcohol dosing and total mortality in men and women: An updated meta-analysis of 34 prospective studies. Arch. Intern. Med. 2006, 166, 2437–2445. [Google Scholar] [CrossRef]
- Rimm, E.B.; Giovannucci, E.L.; Willett, W.C.; Colditz, G.A.; Ascherio, A.; Rosner, B.; Stampfer, M.J. Prospective Study of alcohol consumption and risk of coronary disease in men. Lancet 1991, 338, 464–468. [Google Scholar]
- Mukamal, K.J.; Jensen, M.K.; Gronbaek, M.; Stampfer, M.J.; Manson, J.E.; Pischon, T.; Rimm, E.B. Drinking frequency, mediating biomarkers, and risk of myocardial infarction in women and men. Circulation 2005, 112, 1406–1413. [Google Scholar] [CrossRef]
- Djousse, L.; Gaziano, J.M. Alcohol consumption and heart failure: A systematic review. Curr. Atheroscler. Rep. 2008, 10, 117–120. [Google Scholar] [CrossRef]
- Vinson, J.A.; Mandarano, M.; Hirst, M.; Trevithick, J.R.; Bose, P. Phenol antioxidant quantity and quality in foods: beers and the effect of two types of beer on an animal model of atherosclerosis. J. Agric. Food Chem. 2003, 51, 5528–5533. [Google Scholar] [CrossRef]
- Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res. 2008, 52, 507–526. [Google Scholar] [CrossRef]
- Palmieri, D.; Pane, B.; Barisione, C.; Spinella, G.; Garibaldi, S.; Ghigliotti, G.; Brunelli, C.; Fulcheri, E.; Palombo, D. Resveratrol counteracts systemic and local inflammation involved in early abdominal aortic aneurysm development. J. Surg. Res. 2011, 171, e237–e246. [Google Scholar] [CrossRef]
- Bhatt, S.R.; Lokhandwala, M.F.; Banday, A.A. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur. J. Pharmacol. 2011, 667, 258–264. [Google Scholar] [CrossRef]
- Crescente, M.; Jessen, G.; Momi, S.; Holtje, H.D.; Gresele, P.; Cerletti, C.; de Gaetano, G. Interactions of gallic acid, resveratrol, quercetin and aspirin at the platelet cyclooxygenase-1 leve. Functional and modelling studies. Thromb. Haemost. 2009, 102, 336–346. [Google Scholar]
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the french paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Rimm, E.B. Alcohol consumption and coronary heart disease: Good habits may be more important than just good wine. Am. J. Epidemiol. 1996, 143, 1094–1098. [Google Scholar] [CrossRef]
- Ruf, J.C. Overview of epidemiological studies on wine, health and mortality. Drugs Exp. Clin. Res. 2003, 29, 173–179. [Google Scholar]
- Estruch, R.; Lamuela-Raventos, R.M. Alcohol, wine and cardiovascular disease, two sides of the same coin. Intern. Emerg. Med. 2010, 5, 277–279. [Google Scholar] [CrossRef]
- Gorinstein, S.; Caspi, A.; Libman, I.; Leontowicz, H.; Leontowicz, M.; Tashma, Z.; Katrich, E.; Jastrzebski, Z.; Trakhtenberg, S. Bioactivity of beer and its influence on human metabolism. Int. J. Food Sci. Nutr. 2007, 58, 94–107. [Google Scholar] [CrossRef]
- Gerhauser, C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 2005, 41, 1941–1954. [Google Scholar] [CrossRef]
- Chung, W.G.; Miranda, C.L.; Stevens, J.F.; Maier, C.S. Hop Proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species. Food Chem. Toxicol. 2009, 47, 827–836. [Google Scholar] [CrossRef]
- Gerhauser, C.; Alt, A.; Heiss, E.; Gamal-Eldeen, A.; Klimo, K.; Knauft, J.; Neumann, I.; Scherf, H.R.; Frank, N.; Bartsch, H.; et al. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol. Cancer. Ther. 2002, 1, 959–969. [Google Scholar]
- Milligan, S.R.; Kalita, J.C.; Pocock, V.; Van De Kauter, V.; Stevens, J.F.; Deinzer, M.L.; Rong, H.; de Keukeleire, D. The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J. Clin. Endocrinol. Metab. 2000, 85, 4912–4915. [Google Scholar]
- Tobe, H.; Muraki, Y.; Kitamura, K.; Komiyama, O.; Sato, Y.; Sugioka, T.; Maruyama, H.B.; Matsuda, E.; Nagai, M. Bone resorption inhibitors from hop extract. Biosci. Biotechnol. Biochem. 1997, 61, 158–159. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, Z.H.; Liu, J.K.; Zheng, Y.T. Xanthohumol, a novel anti-HIV-1 agent purified from hops Humulus lupulus. Antiviral Res. 2004, 64, 189–194. [Google Scholar]
- Waterhouse, A.L. Wine Phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Vinson, J.A.; Jang, J.; Dabbagh, Y.A.; Serry, M.M.; Cai, S. Plant polyphenols exhibit lipoprotein-bound antioxidant activity using an in vitro oxidation model for heart disease. J. Agric. Food Chem. 1995, 43, 2798–2799. [Google Scholar] [CrossRef]
- Brown, L.; Kroon, P.A.; Das, D.K.; Das, S.; Tosaki, A.; Chan, V.; Singer, M.V.; Feick, P. The biological responses to resveratrol and other polyphenols from alcoholic beverages. Alcohol. Clin. Exp. Res. 2009, 33, 1513–1523. [Google Scholar] [CrossRef] [Green Version]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytother. Res. 2009, 23, 1197–1204. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database (Oxf.) 2010, 2010, ap024. [Google Scholar]
- Estruch, R.; Urpi-Sarda, M.; Chiva, G.; Romero, E.S.; Covas, M.I.; Salas-Salvadó, J.; Wärnberg, J.; Lamuela-Raventós, R.M. Cerveza, Dieta Mediterránea y Enfermedad Cardiovascular; Centro de Información Cerveza y Salud: Madrid, Spain, 2011; pp. 1–81. [Google Scholar]
- Taylor, A.W.; Barofsky, E.; Kennedy, J.A.; Deinzer, M.L. Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J. Agric. Food Chem. 2003, 51, 4101–4110. [Google Scholar]
- De Keukeleire, D.; de Cooman, L.; Rong, H.; Heyerick, A.; Kalita, J.; Milligan, S.R. Functional properties of hop polyphenols. Basic Life Sci. 1999, 66, 739–760. [Google Scholar]
- Klatsky, A.L. Alcohol and cardiovascular health. Physiol. Behav. 2010, 100, 76–81. [Google Scholar] [CrossRef]
- Rimm, E.B.; Williams, P.; Fosher, K.; Criqui, M.; Stampfer, M.J. Moderate alcohol intake and lower risk of coronary heart disease: Meta-analysis of effects on lipids and haemostatic factors. BMJ 1999, 319, 1523–1528. [Google Scholar]
- Gaziano, J.M.; Buring, J.E.; Breslow, J.L.; Goldhaber, S.Z.; Rosner, B.; VanDenburgh, M.; Willett, W.; Hennekens, C.H. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N. Engl. J. Med. 1993, 329, 1829–1834. [Google Scholar]
- Magnus, P.; Bakke, E.; Hoff, D.A.; Hoiseth, G.; Graff-Iversen, S.; Knudsen, G.P.; Myhre, R.; Normann, P.T.; Naess, O.; Tambs, K.; et al. Controlling for high-density lipoprotein cholesterol does not affect the magnitude of the relationship between alcohol and coronary heart disease. Circulation 2011, 124, 2296–2302. [Google Scholar]
- Schroder, H.; Marrugat, J.; Fito, M.; Weinbrenner, T.; Covas, M.I. Alcohol consumption is directly associated with circulating oxidized low-density lipoprotein. Free Radic. Biol. Med. 2006, 40, 1474–1481. [Google Scholar] [CrossRef]
- Yoshida, R.; Shioji, I.; Kishida, A.; Ogawa, Y. Moderate alcohol consumption reduces urinary 8-hydroxydeoxyguanosine by inducing of uric acid. Ind. Health 2001, 39, 322–329. [Google Scholar] [CrossRef]
- Barden, A.; Zilkens, R.R.; Croft, K.; Mori, T.; Burke, V.; Beilin, L.J.; Puddey, I.B. A reduction in alcohol consumption is associated with reduced plasma F2-isoprostanes and urinary 20-HETE excretion in men. Free Radic. Biol. Med. 2007, 42, 1730–1735. [Google Scholar] [CrossRef]
- Bertelli, A.A. Wine, Research and cardiovascular disease: Instructions for use. Atherosclerosis 2007, 195, 242–247. [Google Scholar] [CrossRef]
- Covas, M.I. The Mediterranean Diet and the Contribution and Role of Alcohol. In Comprehensive Handbook of Alcohol Related Pathology; Preedy, V.R., Watson, R.R., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2004; Volume 1, pp. 135–146, Chapter 12. [Google Scholar]
- Estruch, R.; Sacanella, E.; Mota, F.; Chiva-Blanch, G.; Antunez, E.; Casals, E.; Deulofeu, R.; Rotilio, D.; Andres-Lacueva, C.; Lamuela-Raventos, R.M.; et al. Moderate consumption of red wine, but not gin, decreases erythrocyte superoxide dismutase activity: A randomised cross-over trial. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 46–53. [Google Scholar] [CrossRef]
- Foerster, M.; Marques-Vidal, P.; Gmel, G.; Daeppen, J.B.; Cornuz, J.; Hayoz, D.; Pecoud, A.; Mooser, V.; Waeber, G.; Vollenweider, P.; et al. Alcohol drinking and cardiovascular risk in a population with high mean alcohol consumption. Am. J. Cardiol. 2009, 103, 361–368. [Google Scholar] [CrossRef]
- Hendriks, H.F.; Veenstra, J.; Velthuis-te Wierik, E.J.; Schaafsma, G.; Kluft, C. Effect of moderate dose of alcohol with evening meal on fibrinolytic factors. BMJ 1994, 308, 1003–1006. [Google Scholar]
- Koppes, L.L.; Dekker, J.M.; Hendriks, H.F.; Bouter, L.M.; Heine, R.J. Moderate alcohol consumption lowers the risk of type 2 diabetes: A meta-analysis of prospective observational studies. Diabetes Care 2005, 28, 719–725. [Google Scholar] [CrossRef]
- Davies, M.J.; Baer, D.J.; Judd, J.T.; Brown, E.D.; Campbell, W.S.; Taylor, P.R. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: A randomized controlled trial. JAMA 2002, 287, 2559–2562. [Google Scholar]
- Fu, W.; Conklin, B.S.; Lin, P.H.; Lumsden, A.B.; Yao, Q.; Chen, C. Red wine prevents homocysteine-induced endothelial dysfunction in porcine coronary arteries. J. Surg. Res. 2003, 115, 82–91. [Google Scholar] [CrossRef]
- Booyse, F.M.; Pan, W.; Grenett, H.E.; Parks, D.A.; Darley-Usmar, V.M.; Bradley, K.M.; Tabengwa, E.M. Mechanism by which alcohol and wine polyphenols affect coronary heart disease risk. Ann. Epidemiol. 2007, 17, S24–S31. [Google Scholar] [CrossRef]
- Di Castelnuovo, A.; Rotondo, S.; Iacoviello, L.; Donati, M.B.; de Gaetano, G. Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation 2002, 105, 2836–2844. [Google Scholar] [CrossRef]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: A meta-analysis. Eur. J. Epidemiol. 2011, 26, 833–850. [Google Scholar] [CrossRef]
- Di Castelnuovo, A.; Costanzo, S.; di Giuseppe, R.; de Gaetano, G.; Iacoviello, L. Alcohol consumption and cardiovascular risk: Mechanisms of action and epidemiologic perspectives. Future Cardiol. 2009, 5, 467–477. [Google Scholar] [CrossRef]
- Gresele, P.; Cerletti, C.; Guglielmini, G.; Pignatelli, P.; de Gaetano, G.; Violi, F. Effects of resveratrol and other wine polyphenols on vascular function: An update. J. Nutr. Biochem. 2011, 22, 201–211. [Google Scholar] [CrossRef]
- Piazzon, A.; Forte, M.; Nardini, M. Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 2010, 58, 10677–10683. [Google Scholar] [CrossRef]
- Martinez, N.; Urpi-Sarda, M.; Martinez-Gonzalez, M.A.; Andres-Lacueva, C.; Mitjavila, M.T. Dealcoholised beers reduce atherosclerosis and expression of adhesion molecules in apoE-deficient mice. Br. J. Nutr. 2011, 105, 721–730. [Google Scholar] [CrossRef]
- Di Castelnuovo, A.; Costanzo, S.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Prevention of cardiovascular risk by moderate alcohol consumption: epidemiologic evidence and plausible mechanisms. Intern. Emerg. Med. 2010, 5, 291–297. [Google Scholar] [CrossRef]
- Estruch, R.; Sacanella, E.; Badia, E.; Antunez, E.; Nicolas, J.M.; Fernandez-Sola, J.; Rotilio, D.; de Gaetano, G.; Rubin, E.; Urbano-Marquez, A. Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: A prospective randomized crossover trial. Effects of wine on inflammatory markers. Atherosclerosis 2004, 175, 117–123. [Google Scholar] [CrossRef]
- Renaud, S.C.; Gueguen, R.; Siest, G.; Salamon, R. Wine, beer, and mortality in middle-aged men from eastern france. Arch. Intern. Med. 1999, 159, 1865–1870. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Stampfer, M.J.; Colditz, G.A.; Giovannucci, E.L.; Manson, J.E.; Kawachi, I.; Hunter, D.J.; Hankinson, S.E.; Hennekens, C.H.; Rosner, B. Alcohol consumption and mortality among women. N. Engl. J. Med. 1995, 332, 1245–1250. [Google Scholar]
- van der Gaag, M.S.; van Tol, A.; Scheek, L.M.; James, R.W.; Urgert, R.; Schaafsma, G.; Hendriks, H.F. Daily moderate alcohol consumption increases serum paraoxonase activity; a diet-controlled, randomised intervention study in middle-aged men. Atherosclerosis 1999, 147, 405–410. [Google Scholar] [CrossRef]
- Hvidtfeldt, U.A.; Tolstrup, J.S.; Jakobsen, M.U.; Heitmann, B.L.; Gronbaek, M.; O’Reilly, E.; Balter, K.; Goldbourt, U.; Hallmans, G.; Knekt, P.; et al. Alcohol intake and risk of coronary heart disease in younger, middle-aged, and older adults. Circulation 2010, 121, 1589–1597. [Google Scholar]
- Johansen, D.; Friis, K.; Skovenborg, E.; Gronbaek, M. Food buying habits of people who buy wine or beer: Cross sectional study. BMJ 2006, 332, 519–522. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Atherosclerosis-an Inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Maseri, A.; Fuster, V. Is there a vulnerable plaque? Circulation 2003, 107, 2068–2071. [Google Scholar] [CrossRef]
- De Rijke, Y.B.; Demacker, P.N.; Assen, N.A.; Sloots, L.M.; Katan, M.B.; Stalenhoef, A.F. Red wine consumption does not affect oxidizability of low-density lipoproteins in volunteers. Am. J. Clin. Nutr. 1996, 63, 329–334. [Google Scholar]
- Fuhrman, B.; Lavy, A.; Aviram, M. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am. J. Clin. Nutr. 1995, 61, 549–554. [Google Scholar]
- Badia, E.; Sacanella, E.; Fernandez-Sola, J.; Nicolas, J.M.; Antunez, E.; Rotilio, D.; de Gaetano, G.; Urbano-Marquez, A.; Estruch, R. Decreased tumor necrosis factor-induced adhesion of human monocytes to endothelial cells after moderate alcohol consumption. Am. J. Clin. Nutr. 2004, 80, 225–230. [Google Scholar]
- Imhof, A.; Blagieva, R.; Marx, N.; Koenig, W. Drinking modulates monocyte migration in healthy subjects: A randomised intervention study of water, ethanol, red wine and beer with or without alcohol. Diab. Vasc. Dis. Res. 2008, 5, 48–53. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Llorach, R.; Rotches-Ribalta, M.; Guillen, M.; Casas, R.; Arranz, S.; Valderas-Martinez, P.; Portoles, O.; Corella, D.; et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: A randomized clinical trial. Am. J. Clin. Nutr. 2012, 95, 326–334. [Google Scholar] [CrossRef]
- Sacanella, E.; Vazquez-Agell, M.; Mena, M.P.; Antunez, E.; Fernandez-Sola, J.; Nicolas, J.M.; Lamuela-Raventos, R.M.; Ros, E.; Estruch, R. Down-regulation of adhesion molecules and other inflammatory biomarkers after moderate wine consumption in healthy women: A randomized trial. Am. J. Clin. Nutr. 2007, 86, 1463–1469. [Google Scholar]
- Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S. [Google Scholar]
- Donovan, J.L.; Bell, J.R.; Kasim-Karakas, S.; German, J.B.; Walzem, R.L.; Hansen, R.J.; Waterhouse, A.L. Catechin is present as metabolites in human plasma after consumption of red wine. J. Nutr. 1999, 129, 1662–1668. [Google Scholar]
- Bell, J.R.; Donovan, J.L.; Wong, R.; Waterhouse, A.L.; German, J.B.; Walzem, R.L.; Kasim-Karakas, S.E. (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am. J. Clin. Nutr. 2000, 71, 103–108. [Google Scholar]
- Donovan, J.L.; Kasim-Karakas, S.; German, J.B.; Waterhouse, A.L. Urinary excretion of catechin metabolites by human subjects after red wine consumption. Br. J. Nutr. 2002, 87, 31–37. [Google Scholar] [CrossRef]
- Lapidot, T.; Harel, S.; Granit, R.; Kanner, J. Bioavailability of red wine anthocyanins as detected in human urine. J. Agric. Food Chem. 1998, 46, 4297–4302. [Google Scholar] [CrossRef]
- Bub, A.; Watzl, B.; Heeb, D.; Rechkemmer, G.; Briviba, K. Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur. J. Nutr. 2001, 40, 113–120. [Google Scholar] [CrossRef]
- Simonetti, P.; Gardana, C.; Pietta, P. Plasma levels of caffeic acid and antioxidant status after red wine intake. J. Agric. Food Chem. 2001, 49, 5964–5968. [Google Scholar] [CrossRef]
- Simonetti, P.; Gardana, C.; Pietta, P. Caffeic acid as biomarker of red wine intake. Methods Enzymol. 2001, 335, 122–130. [Google Scholar]
- Caccetta, R.A.; Croft, K.D.; Beilin, L.J.; Puddey, I.B. Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am. J. Clin. Nutr. 2000, 71, 67–74. [Google Scholar]
- Nardini, M.; Natella, F.; Scaccini, C.; Ghiselli, A. Phenolic acids from beer are absorbed and extensively metabolized in humans. J. Nutr. Biochem. 2006, 17, 14–22. [Google Scholar] [CrossRef]
- Cartron, E.; Fouret, G.; Carbonneau, M.A.; Lauret, C.; Michel, F.; Monnier, L.; Descomps, B.; Léger, C.L. Red-wine beneficial longterm effect on lipids but not on antioxidant characteristics in plasma in a study comparing three types of wine: Description of two O-methylated derivatives of gallic acid in humans. Free Radic. Res. 2003, 37, 1021–1035. [Google Scholar] [CrossRef]
- Urpi-Sarda, M.; Zamora-Ros, R.; Lamuela-Raventos, R.; Cherubini, A.; Jauregui, O.; de la Torre, R.; Covas, M.I.; Estruch, R.; Jaeger, W.; Andres-Lacueva, C. HPLC-tandem mass spectrometric method to characterize resveratrol metabolism in humans. Clin. Chem. 2007, 53, 292–299. [Google Scholar]
- Allen, N.E.; Beral, V.; Casabonne, D.; Kan, S.W.; Reeves, G.K.; Brown, A.; Green, J. Million Women Study Collaborators. Moderate alcohol intake and cancer incidence in women. J. Natl. Cancer Inst. 2009, 101, 296–305. [Google Scholar] [CrossRef]
- Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef]
- Miranda, C.L.; Stevens, J.F.; Ivanov, V.; McCall, M.; Frei, B.; Deinzer, M.L.; Buhler, D.R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem. 2000, 48, 3876–3884. [Google Scholar]
- Rodriguez, R.J.; Miranda, C.L.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. Influence of prenylated and non-prenylated flavonoids on liver microsomal lipid peroxidation and oxidative injury in rat hepatocytes. Food Chem. Toxicol. 2001, 39, 437–445. [Google Scholar] [CrossRef]
- World Health Organization, International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Alcohol Consumption and Ethyl Carbamate; IARC: Lyon, France, 2010; Volume 96, pp. 3–1383.
- Bianchini, F.; Vainio, H. Wine and resveratrol: Mechanisms of cancer prevention? Eur. J. Cancer Prev. 2003, 12, 417–425. [Google Scholar] [CrossRef]
- Schoonen, W.M.; Salinas, C.A.; Kiemeney, L.A.; Stanford, J.L. Alcohol consumption and risk of prostate cancer in middle-aged men. Int. J. Cancer 2005, 113, 133–140. [Google Scholar] [CrossRef]
- Anderson, L.A.; Cantwell, M.M.; Watson, R.G.; Johnston, B.T.; Murphy, S.J.; Ferguson, H.R.; McGuigan, J.; Comber, H.; Reynolds, J.V.; Murray, L.J. The association between alcohol and reflux esophagitis, barrett's esophagus, and esophageal adenocarcinoma. Gastroenterology 2009, 136, 799–805. [Google Scholar]
- Chao, C. Associations between beer, wine, and liquor consumption and lung cancer risk: A meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 2436–2447. [Google Scholar] [CrossRef]
- Han, X.; Zheng, T.; Foss, F.M.; Ma, S.; Holford, T.R.; Boyle, P.; Leaderer, B.; Zhao, P.; Dai, M.; Zhang, Y. Alcohol consumption and non-hodgkin lymphoma survival. J. Cancer Surviv. 2010, 4, 101–109. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004, 24, 2783–2840. [Google Scholar]
- Guerrero, R.F.; Garcia-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Wine, resveratrol and health: A review. Nat. Prod. Commun. 2009, 4, 635–658. [Google Scholar]
- Seitz, H.K.; Pelucchi, C.; Bagnardi, V.; La Vecchia, C. Epidemiology and pathophysiology of alcohol and breast cancer: Update 2012. Alcohol Alcohol. 2012, 47, 204–212. [Google Scholar]
- Coronado, G.D.; Beasley, J.; Livaudais, J. Alcohol consumption and the risk of breast cancer. Salud Publica Mex. 2011, 53, 440–447. [Google Scholar]
- McCarty, C.A.; Reding, D.J.; Commins, J.; Williams, C.; Yeager, M.; Burmester, J.K.; Schairer, C.; Ziegler, R.G. Alcohol, genetics and risk of breast cancer in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial. Breast Cancer Res. Treat. 2012, 133, 785–792. [Google Scholar] [CrossRef]
- Callaci, J.J.; Juknelis, D.; Patwardhan, A.; Sartori, M.; Frost, N.; Wezeman, F.H. The effects of binge alcohol exposure on bone resorption and biomechanical and structural properties are offset by concurrent bisphosphonate treatment. Alcohol Clin. Exp. Res. 2004, 28, 182–191. [Google Scholar] [CrossRef]
- Flatt, S.W.; Thomson, C.A.; Gold, E.B.; Natarajan, L.; Rock, C.L.; Al-Delaimy, W.K.; Patterson, R.E.; Saquib, N.; Caan, B.J.; Pierce, J.P. Low to moderate alcohol intake is not associated with increased mortality after breast cancer. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 681–688. [Google Scholar] [CrossRef]
- Bessaoud, F.; Daures, J.P. Patterns of alcohol (especially wine) consumption and breast cancer risk: A case-control study among a population in Southern France. Ann. Epidemiol. 2008, 18, 467–475. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Urpi-Sarda, M.; Lamuela-Raventos, R.M.; Estruch, R.; Vazquez-Agell, M.; Serrano-Martinez, M.; Jaeger, W.; Andres-Lacueva, C. Diagnostic performance of urinary resveratrol metabolites as a biomarker of moderate wine consumption. Clin. Chem. 2006, 52, 1373–1380. [Google Scholar] [CrossRef]
- Athar, M.; Back, J.H.; Tang, X.; Kim, K.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol. 2007, 224, 274–283. [Google Scholar] [CrossRef]
- Renaud, S.; Lanzmann-Petithory, D.; Gueguen, R.; Conard, P. Alcohol and mortality from all causes. Biol. Res. 2004, 37, 183–187. [Google Scholar]
- Grønbaek, M.N.; Sørensen, T.I.; Johansen, D.; Becker, U.; Gottschau, A.; Schnohr, P.; Hein, H.O.; Jensen, G. Beer, wine, spirits and mortality. Lakartidningen 2001, 98, 2585–2588. [Google Scholar]
- Gerloff, A.; Singer, M.V.; Feick, P. Beer and its non-alcoholic compounds: Role in pancreatic exocrine secretion, alcoholic pancreatitis and pancreatic carcinoma. Int. J. Environ. Res. Public Health 2010, 7, 1093–1104. [Google Scholar] [CrossRef]
- Lijinsky, W. N-nitroso compounds in the diet. Mutat. Res. 1999, 443, 129–138. [Google Scholar]
- Tricker, A.R.; Preussmann, R. Volatile and nonvolatile nitrosamines in beer. J. Cancer Res. Clin. Oncol. 1991, 117, 130–132. [Google Scholar] [CrossRef]
- Sharpe, C.R.; Siemiatycki, J. Case-control study of alcohol consumption and prostate cancer risk in Montreal, Canada. Cancer Causes Control 2001, 12, 589–598. [Google Scholar] [CrossRef]
- Jain, M.G.; Hislop, G.T.; Howe, G.R.; Burch, J.D.; Ghadirian, P. Alcohol and other beverage use and prostate cancer risk among Canadian men. Int. J. Cancer 1998, 78, 707–711. [Google Scholar] [CrossRef]
- Morales, F.J.; Somoza, V.; Fogliano, V. Physiological relevance of dietary melanoidins. Amino Acids 2012, 42, 1097–1109. [Google Scholar] [CrossRef]
- Liegeois, C.; Lermusieau, G.; Collin, S. Measuring antioxidant efficiency of wort, malt, and hops against the 2,2′-azobis(2-amidinopropane) dihydrochloride-induced oxidation of an aqueous dispersion of linoleic acid. J. Agric. Food Chem. 2000, 48, 1129–1134. [Google Scholar] [CrossRef]
- Faist, V.; Lindenmeier, M.; Geisler, C.; Erbersdobler, H.F.; Hofmann, T. Influence of molecular weight fractions isolated from roasted malt on the enzyme activities of NADPH-cytochrome c-Reductase and Glutathione-S-Transferase in Caco-2 cells. J. Agric. Food Chem. 2002, 50, 602–606. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer. Nutrients 2012, 4, 759-781. https://doi.org/10.3390/nu4070759
Arranz S, Chiva-Blanch G, Valderas-Martínez P, Medina-Remón A, Lamuela-Raventós RM, Estruch R. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer. Nutrients. 2012; 4(7):759-781. https://doi.org/10.3390/nu4070759
Chicago/Turabian StyleArranz, Sara, Gemma Chiva-Blanch, Palmira Valderas-Martínez, Alex Medina-Remón, Rosa M. Lamuela-Raventós, and Ramón Estruch. 2012. "Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer" Nutrients 4, no. 7: 759-781. https://doi.org/10.3390/nu4070759
APA StyleArranz, S., Chiva-Blanch, G., Valderas-Martínez, P., Medina-Remón, A., Lamuela-Raventós, R. M., & Estruch, R. (2012). Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer. Nutrients, 4(7), 759-781. https://doi.org/10.3390/nu4070759