Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes
Abstract
:1. Introduction
2. Dietary Heme Is Efficiently Absorbed in the Small Intestine
3. The Heme Transporters HCP1, HRG-1 and FLVCR1 Are Important for Maintaining Heme Homeostasis
4. Heme Is Degraded, and Iron Is Recycled by the Action of Heme Oxygenase (HO) in Mammals
5. High Heme Intake Is Associated with Increased Risk of Cancer
5.1. High Heme Intake in Diet Increases the Risk of Colon Cancer
5.2. Risk of Gastrointestinal and Pancreatic Cancer Is Associated with High Heme Intake
Disease | Diet Intake | HR/OR/RR (95% CI) Highest vs. Lowest | Reported Association | Number of Pzarticipants | Age (Years) | Years of Follow Up | Diet Assessment Method | Reference |
---|---|---|---|---|---|---|---|---|
Colorectal cancer | Red Meat | HR = 1.24 (1.12–1.36) | + | 567,169 | 50–71 | 8.2 | 124-item FFQ | [40] |
Colon cancer | High heme and low chlorophyll | RR = 1.58 (0.99–2.54) | + | 58,279 Men | 55–69 | 9.3 | 150-item semi quantitative FFQ | [50] |
Colorectal cancer with KRAS mutation | Heme Iron | HR = 1.71 (1.15–2.57) | + | 4026 | 55–69 | 7.3 | 150-item FFQ | [54] |
Esophageal squamous cell carcinoma | Red Meat | HR = 1.79 (1.07–3.01) | + | 494,979 | 50–71 | 10 | 124-item FFQ | [42] |
Heme Iron | HR = 1.47 (0.99–2.20) | |||||||
Esophageal cancer | Red Meat | HR = 1.51 (1.09–2.08) | + | 567,169 | 50–71 | 8.2 | 124-item FFQ | [40] |
Heme Iron | OR = 3.04 (1.20–7.72) | + | 124 esophageal, 154 stomach cancer and 449 controls | ≥21 | 100-item Short health habit and history questionnaire | [57] | ||
Gastric cancer | Heme Iron | HR = 1.13 (1.01–1.26) | + | 481,419 | 35–70 | 8.7 | Validated country specific questionnaires | [56] |
Stomach cancer | Heme Iron | OR = 1.99 (1.00–3.95) | + | 124 esophageal, 154 stomach cancer and 449 controls | ≥21 | 100-item Short health habbit and history questionnaire | [57] | |
Liver cancer | Red Meat | HR = 1.61 (1.12–2.31) | + | 567,169 | 50–71 | 8.2 | 124-item FFQ | [40] |
Pancreatic cancer | Red Meat | HRMen = 1.43 (1.11–1.83) | + | 567,169 | 50–71 | 8.2 | 124-item FFQ | [40] |
Endometrial cancer | Red Meat | HR = 0.75 (0.62–0.91) | inverse association | 567,169 | 50–71 | 8.2 | 124-item FFQ | [40] |
Heme Iron | RR = 1.24 (1.01–1.53) | moderate | 60,895 | Women born between 1914 and 1948 | 21 | 67-item FFQ in 1987 and 96-item FFQ in 1997 | [62] | |
Lung cancer | Red Meat | HRMen = 1.11 (0.79–1.56) | No Association | 99,579 | 55–74 | 8 | 124-item FFQ | [46] |
HRWomen = 1.30 (0.87–1.95) | ||||||||
Red Meat | HR = 1.2 (1.10–1.31) | + | 567,169 | 8.2 | 124-item FFQ | [40] | ||
Red Meat | HRMen = 1.22 (1.09–1.38) | + | 278,380 men and 189,596 women | 50–71 | 8 | 124-item FFQ | [63] | |
HRWomen = 1.13 (0.97–1.32) | ||||||||
Heme Iron | HRMen = 1.25 (1.07–1.45) | |||||||
HRWomen = 1.18 (0.99–1.42) | ||||||||
Type 2 Diabetes | Red Meat | RR = 1.44 (0.92–2.24) | moderate, non-significant | 91,246 U.S women | 26–46 | 8 | 133-item semiquantitative FFQ | [64] |
Red Meat | RR = 1.63 (1.26–2.10) | + | 38,394 Men | 40–75 | 12 | 131-item semiquantitative FFQ | [65] | |
Heme Iron | RR = 1.28 (1.04–1.58) | + | 35,698 postmenopausal women | 55–69 | 11 | 127-item FFQ | [66] | |
Heme Iron | RR = 1.28 (1.14–1.45) | + | 85,031 women | 34–59 | 20 | 131-item expanded FFQ | [67] | |
Gestational Diabetes Mellitus | Heme Iron | RR = 1.51 (0.99–2.36) | + | 3158 pregnant women | ≥18 | 121-item FFQ | [68] | |
Myocardial Infarction | Heme Iron | RR = 1.86 (1.14–3.09) | + | 4802 | ≥55 | 3–7 | 170-item semiquantitative FFQ | [69] |
5.3. High Heme Intake Increases the Risk of Endometrial Cancer in Women
5.4. Epidemiological and Molecular Studies Reveal the Link between High Heme Intake and Lung Cancer
6. High Heme Intake Is also Associated with an Increased Risk of Type-2 Diabetes and Coronary Heart Disease
6.1. High Heme Intake Correlates with Increased Risk of Type-2 Diabetes
6.2. High Dietary Heme Intake Can Increase the Risk of Coronary Heart Disease Significantly
6.3. Multiple Mechanisms May Underlie the Association of Heme Intake with T2D and CHD
7. Heme Deficiency Can Cause Serious Health Problems in Humans
7.1. Defects in Heme Biosynthesis Can Cause Anemia and Porphyrias in Humans
7.2. Heme Regulates Diverse Neuronal Genes
7.3. Altered Heme Metabolism Is Associated with Alzheimer’s Disease
7.4. Heme Is Important in the Regulation of Circadian Rhythm in Humans
8. Conclusions
Conflicts of Interest
References
- Briat, J.F.; Curie, C.; Gaymard, F. Iron utilization and metabolism in plants. Curr. Opin. Plant Biol. 2007, 10, 276–282. [Google Scholar] [CrossRef]
- Beutler, E.; Bothwell, T.H.; Charlton, R.W.; Motulsky, A.G. Hereditary Hemochromatosis; The McGraw-Hill Companies: New York, NY, USA, 2006. [Google Scholar]
- Han, O. Molecular mechanism of intestinal iron absorption. Metallomics 2011, 3, 103–109. [Google Scholar] [CrossRef]
- Raffin, S.B.; Woo, C.H.; Roost, K.T.; Price, D.C.; Schmid, R. Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. J. Clin. Investig. 1974, 54, 1344–1352. [Google Scholar]
- West, A.R.; Oates, P.S. Mechanisms of heme iron absorption: Current questions and controversies. World J. Gastroenterol. 2008, 14, 4101–4110. [Google Scholar] [CrossRef]
- Conrad, M.E.; Umbreit, J.N. Iron absorption and transport—An update. Am. J. Hematol. 2000, 64, 287–298. [Google Scholar] [CrossRef]
- Fuqua, B.K.; Vulpe, C.D.; Anderson, G.J. Intestinal iron absorption. J. Trace Elem. Med. Biol. 2012, 26, 115–119. [Google Scholar] [CrossRef]
- Jacobs, A. Availability and absorption of dietary iron. Proc. R. Soc. Med. 1970, 63, 1215–1216. [Google Scholar]
- Vaghefi, N.; Nedjaoum, F.; Guillochon, D.; Bureau, F.; Arhan, P.; Bougle, D. Influence of the extent of hemoglobin hydrolysis on the digestive absorption of heme iron. An in vitro study. J. Agric. Food Chem. 2002, 50, 4969–4973. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Xie, T.; Schuetz, J.D. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol. Ther. 2007, 114, 345–358. [Google Scholar]
- Oates, P.S.; West, A.R. Heme in intestinal epithelial cell turnover, differentiation, detoxification, inflammation, carcinogenesis, absorption and motility. World J. Gastroenterol. 2006, 12, 4281–4295. [Google Scholar]
- Villarroel, P.; Flores, S.; Pizarro, F.; de Romana, D.L.; Arredondo, M. Effect of dietary protein on heme iron uptake by caco-2 cells. Eur. J. Nutr. 2011, 50, 637–643. [Google Scholar]
- Khan, A.A.; Quigley, J.G. Heme and flvcr-related transporter families SLC48 and SLC49. Mol. Aspects Med. 2013, 34, 669–682. [Google Scholar] [CrossRef]
- Ebert, P.S.; Frykholm, B.C.; Hess, R.A.; Tschudy, D.P. Uptake of hematin and growth of malignant murine erythroleukemia cells depleted of endogenous heme by succinylacetone. Cancer Res. 1981, 41, 937–941. [Google Scholar]
- Noyer, C.M.; Immenschuh, S.; Liem, H.H.; Muller-Eberhard, U.; Wolkoff, A.W. Initial heme uptake from albumin by short-term cultured rat hepatocytes is mediated by a transport mechanism differing from that of other organic anions. Hepatology 1998, 28, 150–155. [Google Scholar]
- Zhu, Y.; Hon, T.; Zhang, L. Heme initiates changes in the expression of a wide array of genes during the early erythroid differentiation stage. Biochem. Biophys. Res. Commun. 1999, 258, 87–93. [Google Scholar] [CrossRef]
- Chernova, T.; Steinert, J.R.; Guerin, C.J.; Nicotera, P.; Forsythe, I.D.; Smith, A.G. Neurite degeneration induced by heme deficiency mediated via inhibition of NMDA receptor-dependent extracellular signal-regulated kinase 1/2 activation. J. Neurosci. 2007, 27, 8475–8485. [Google Scholar] [CrossRef]
- Shayeghi, M.; Latunde-Dada, G.O.; Oakhill, J.S.; Laftah, A.H.; Takeuchi, K.; Halliday, N.; Khan, Y.; Warley, A.; McCann, F.E.; Hider, R.C.; et al. Identification of an intestinal heme transporter. Cell 2005, 122, 789–801. [Google Scholar]
- Wheby, M.S.; Spyker, D.A. Hemoglobin iron absorption kinetics in the iron-deficient dog. Am. J. Clin. Nutr. 1981, 34, 1686–1693. [Google Scholar]
- Quigley, J.G.; Yang, Z.; Worthington, M.T.; Phillips, J.D.; Sabo, K.M.; Sabath, D.E.; Berg, C.L.; Sassa, S.; Wood, B.L.; Abkowitz, J.L. Identification of a human heme exporter that is essential for erythropoiesis. Cell 2004, 118, 757–766. [Google Scholar]
- Laftah, A.H.; Latunde-Dada, G.O.; Fakih, S.; Hider, R.C.; Simpson, R.J.; McKie, A.T. Haem and folate transport by proton-coupled folate transporter/haem carrier protein 1 (SLC46A1). Br. J. Nutr. 2009, 101, 1150–1156. [Google Scholar] [CrossRef]
- Yanatori, I.; Tabuchi, M.; Kawai, Y.; Yasui, Y.; Akagi, R.; Kishi, F. Heme and non-heme iron transporters in non-polarized and polarized cells. BMC Cell Biol. 2010, 11, 39. [Google Scholar] [CrossRef]
- Latunde-Dada, G.O.; Takeuchi, K.; Simpson, R.J.; McKie, A.T. Haem carrier protein 1 (HCP1): Expression and functional studies in cultured cells. FEBS Lett. 2006, 580, 6865–6870. [Google Scholar] [CrossRef]
- Le Blanc, S.; Garrick, M.D.; Arredondo, M. Heme carrier protein 1 transports heme and is involved in heme-fe metabolism. Am. J. Physiol. Cell Physiol. 2012, 302, C1780–C1785. [Google Scholar] [CrossRef]
- O’Callaghan, K.M.; Ayllon, V.; O’Keeffe, J.; Wang, Y.; Cox, O.T.; Loughran, G.; Forgac, M.; O’Connor, R. Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. J. Biol. Chem. 2010, 285, 381–391. [Google Scholar] [CrossRef]
- Rajagopal, A.; Rao, A.U.; Amigo, J.; Tian, M.; Upadhyay, S.K.; Hall, C.; Uhm, S.; Mathew, M.K.; Fleming, M.D.; Paw, B.H.; et al. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 2008, 453, 1127–1131. [Google Scholar] [CrossRef]
- Ogawa, K.; Sun, J.; Taketani, S.; Nakajima, O.; Nishitani, C.; Sassa, S.; Hayashi, N.; Yamamoto, M.; Shibahara, S.; Fujita, H.; et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 2001, 20, 2835–2843. [Google Scholar] [CrossRef]
- Warnatz, H.J.; Schmidt, D.; Manke, T.; Piccini, I.; Sultan, M.; Borodina, T.; Balzereit, D.; Wruck, W.; Soldatov, A.; Vingron, M.; et al. The BTB and CNC homology 1 (Bach1) target genes are involved in the oxidative stress response and in control of the cell cycle. J. Boil. Chem. 2011, 286, 23521–23532. [Google Scholar]
- Zhang, L. Heme: An genious Regulator of Gene Transcription. In Heme Biology; World Scientific Publishing Company: Singapore, 2011; pp. 33–54. [Google Scholar]
- White, C.; Yuan, X.; Schmidt, P.J.; Bresciani, E.; Samuel, T.K.; Campagna, D.; Hall, C.; Bishop, K.; Calicchio, M.L.; Lapierre, A.; et al. Hrg1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab. 2013, 17, 2612–2670. [Google Scholar]
- Tenhunen, R.; Marver, H.S.; Schmid, R. Microsomal heme oxygenase. Characterization of the Enzyme. J. Boil. Chem. 1969, 244, 6388–6394. [Google Scholar]
- Yoshida, T.; Noguchi, M.; Kikuchi, G. Oxygenated form of heme. Heme oxygenase complex and requirement for second electron to initiate heme degradation from the oxygenated complex. J. Biol. Chem. 1980, 255, 4418–4420. [Google Scholar]
- Schacter, B.A.; Nelson, E.B.; Marver, H.S.; Masters, B.S. Immunochemical evidence for an association of heme oxygenase with the microsomal electron transport system. J. Biol. Chem. 1972, 247, 3601–3607. [Google Scholar]
- Liao, Y.F.; Zhu, W.; Li, D.P.; Zhu, X. Heme oxygenase-1 and gut ischemia/reperfusion injury: A short review. World J. Gastroenterol. 2013, 19, 3555–3561. [Google Scholar] [CrossRef]
- Schipper, H.M. Heme oxygenase-1 in alzheimer disease: A tribute to moussa youdim. J. Neural. Transm. 2011, 118, 381–387. [Google Scholar] [CrossRef]
- Takeda, A.; Perry, G.; Abraham, N.G.; Dwyer, B.E.; Kutty, R.K.; Laitinen, J.T.; Petersen, R.B.; Smith, M.A. Overexpression of heme oxygenase in neuronal cells, the possible interaction with tau. J. Biol. Chem. 2000, 275, 5395–5399. [Google Scholar] [CrossRef]
- Mendiburo, M.J.; Le Blanc, S.; Espinoza, A.; Pizarro, F.; Arredondo, M. Transepithelial heme-iron transport: Effect of heme oxygenase overexpression. Eur. J. Nutr. 2011, 50, 363–371. [Google Scholar] [CrossRef]
- Origassa, C.S.; Camara, N.O. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J. Hepatol. 2013, 5, 541–549. [Google Scholar]
- Zhang, L.; Sessoms, R. Heme Biosynthesis and Degradation: What Happens When It Goes Haywire? In Heme Biology; World Scientific Publishing Company: Singapore, 2011; pp. 7–31. [Google Scholar]
- Nobles, C.L.; Green, S.I.; Maresso, A.W. A product of heme catabolism modulates bacterial function and survival. PLoS Pathog. 2013, 9, e1003507. [Google Scholar] [CrossRef]
- Naito, Y. Introduction to serial review: Heme oxygenase and carbon monoxide: Medicinal chemistry and biological effects. J. Clin. Biochem. Nutr. 2008, 42, 76–77. [Google Scholar] [CrossRef]
- Barone, E.; di Domenico, F.; Mancuso, C.; Butterfield, D.A. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: It’s time for reconciliation. Neurobiol. Dis. 2013, 62, 144–159. [Google Scholar]
- Cross, A.J.; Leitzmann, M.F.; Gail, M.H.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 2007, 4, e325. [Google Scholar] [CrossRef]
- Bastide, N.M.; Pierre, F.H.; Corpet, D.E. Heme iron from meat and risk of colorectal cancer: A meta-analysis and a review of the mechanisms involved. Cancer Prev. Res. 2011, 4, 177–184. [Google Scholar]
- Cross, A.J.; Freedman, N.D.; Ren, J.; Ward, M.H.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R.; Abnet, C.C. Meat consumption and risk of esophageal and gastric cancer in a large prospective study. Am. J. Gastroenterol. 2011, 106, 432–442. [Google Scholar] [CrossRef]
- Schwartz, S.; Ellefson, M. Quantitative fecal recovery of ingested hemoglobin-heme in blood: Comparisons by hemoquant assay with ingested meat and fish. Gastroenterology 1985, 89, 192–196. [Google Scholar]
- De Vogel, J.; Jonker-Termont, D.S.; Katan, M.B.; van der Meer, R. Natural chlorophyll but not chlorophyllin prevents heme-induced cytotoxic and hyperproliferative effects in rat colon. J. Nutr. 2005, 135, 1995–2000. [Google Scholar]
- N, I.J.; Rijnierse, A.; de Wit, N.; Jonker-Termont, D.; Dekker, J.; Muller, M.; van der Meer, R. Dietary haem stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon. Gut 2012, 61, 1041–1049. [Google Scholar] [CrossRef]
- Tasevska, N.; Cross, A.J.; Dodd, K.W.; Ziegler, R.G.; Caporaso, N.E.; Sinha, R. No effect of meat, meat cooking preferences, meat mutagens or heme iron on lung cancer risk in the prostate, lung, colorectal and ovarian cancer screening trial. Int. J. Cancer 2011, 128, 402–411. [Google Scholar] [CrossRef]
- Qiao, L.; Feng, Y. Intakes of heme iron and zinc and colorectal cancer incidence: A meta-analysis of prospective studies. Cancer Causes Control 2013, 24, 1175–1183. [Google Scholar] [CrossRef]
- Bingham, S.A.; Hughes, R.; Cross, A.J. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J. Nutr. 2002, 132, 3522S–3525S. [Google Scholar]
- Larsson, S.C.; Wolk, A. Meat consumption and risk of colorectal cancer: A meta-analysis of prospective studies. Int. J. Cancer 2006, 119, 2657–2664. [Google Scholar]
- Balder, H.F.; Vogel, J.; Jansen, M.C.; Weijenberg, M.P.; van den Brandt, P.A.; Westenbrink, S.; van der Meer, R.; Goldbohm, R.A. Heme and chlorophyll Intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol. Biomark. Prev. 2006, 15, 717–725. [Google Scholar] [CrossRef]
- Chan, D.S.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLoS One 2011, 6, e20456. [Google Scholar]
- Cross, A.J.; Harnly, J.M.; Ferrucci, L.M.; Risch, A.; Mayne, S.T.; Sinha, R. Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food Nutr. Sci. 2012, 3, 905–913. [Google Scholar] [CrossRef]
- Lunn, J.C.; Kuhnle, G.; Mai, V.; Frankenfeld, C.; Shuker, D.E.; Glen, R.C.; Goodman, J.M.; Pollock, J.R.; Bingham, S.A. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 2007, 28, 685–690. [Google Scholar]
- Gilsing, A.M.; Fransen, F.; de Kok, T.M.; Goldbohm, A.R.; Schouten, L.J.; de Bruine, A.P.; van Engeland, M.; van den Brandt, P.A.; de Goeij, A.F.; Weijenberg, M.P. Dietary heme iron and the risk of colorectal cancer with specific mutations in Kras and APC. Carcinogenesis 2013, 34, 2757–2766. [Google Scholar] [CrossRef]
- Kuhnle, G.G.; Bingham, S.A. Dietary meat, endogenous nitrosation and colorectal cancer. Biochem. Soc. Trans. 2007, 35, 1355–1357. [Google Scholar] [CrossRef]
- Jakszyn, P.; Agudo, A.; Lujan-Barroso, L.; Bueno-de-Mesquita, H.B.; Jenab, M.; Navarro, C.; Palli, D.; Boeing, H.; Manjer, J.; Numans, M.E.; et al. Dietary intake of heme iron and risk of gastric cancer in the european prospective investigation into cancer and nutrition study. Int. J. Cancer 2012, 130, 2654–2663. [Google Scholar] [CrossRef]
- Ward, M.H.; Cross, A.J.; Abnet, C.C.; Sinha, R.; Markin, R.S.; Weisenburger, D.D. Heme iron from meat and risk of adenocarcinoma of the esophagus and stomach. Eur. J. Cancer Prev. 2012, 21, 134–138. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Red and processed meat consumption and risk of pancreatic cancer: Meta-analysis of prospective studies. Br. J. Cancer 2012, 106, 603–607. [Google Scholar] [CrossRef]
- Matias-Guiu, X.; Prat, J. Molecular pathology of endometrial carcinoma. Histopathology 2013, 62, 111–123. [Google Scholar] [CrossRef]
- Friberg, E.; Mantzoros, C.S.; Wolk, A. Diabetes and risk of endometrial cancer: A population-based prospective cohort study. Cancer Epidemiol. Biomark. Prev. 2007, 16, 276–280. [Google Scholar] [CrossRef]
- WHO. Diabetes. In Fact Sheet No. 312; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Lam, T.K.; Rotunno, M.; Ryan, B.M.; Pesatori, A.C.; Bertazzi, P.A.; Spitz, M.; Caporaso, N.E.; Landi, M.T. Heme-related gene expression signatures of meat intakes in lung cancer tissues. Mol. Carcinog. 2013. [Google Scholar] [CrossRef]
- Jiang, R.; Ma, J.; Ascherio, A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men: A prospective cohort study. Am. J. Clin. Nutr. 2004, 79, 70–75. [Google Scholar]
- Zhao, Z.; Li, S.; Liu, G.; Yan, F.; Ma, X.; Huang, Z.; Tian, H. Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: A systematic review and meta-analysis. PLoS One 2012, 7, e41641. [Google Scholar]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Red meat consumption and risk of type 2 diabetes: 3 Cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1088–1096. [Google Scholar] [CrossRef]
- Tzonou, A.; Lagiou, P.; Trichopoulou, A.; Tsoutsos, V.; Trichopoulos, D. Dietary iron and coronary heart disease risk: A study from Greece. Am. J. Epidemiol. 1998, 147, 161–166. [Google Scholar] [CrossRef]
- Kabat, G.C.; Miller, A.B.; Jain, M.; Rohan, T.E. Dietary iron and haem iron intake and risk of endometrial cancer: A prospective cohort study. Br. J. Cancer 2008, 98, 194–198. [Google Scholar] [CrossRef]
- Kallianpur, A.R.; Lee, S.A.; Xu, W.H.; Zheng, W.; Gao, Y.T.; Cai, H.; Ruan, Z.X.; Xiang, Y.B.; Shu, X.O. Dietary iron intake and risk of endometrial cancer: A population-based case-control study in Shanghai, China. Nutr. Cancer 2010, 62, 40–50. [Google Scholar]
- Genkinger, J.M.; Friberg, E.; Goldbohm, R.A.; Wolk, A. Long-term dietary heme iron and red meat intake in relation to endometrial cancer risk. Am. J. Clin. Nutr. 2012, 96, 848–854. [Google Scholar] [CrossRef]
- Hooda, J.; Cadinu, D.; Alam, M.M.; Shah, A.; Cao, T.M.; Sullivan, L.A.; Brekken, R.; Zhang, L. Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells. PLoS One 2013, 8, e63402. [Google Scholar]
- Weinberg, E.D. The role of iron in cancer. Eur. J. Cancer Prev. 1996, 5, 19–36. [Google Scholar]
- Tasevska, N.; Sinha, R.; Kipnis, V.; Subar, A.F.; Leitzmann, M.F.; Hollenbeck, A.R.; Caporaso, N.E.; Schatzkin, A.; Cross, A.J. A prospective study of meat, cooking methods, meat mutagens, heme iron, and lung cancer risks. Am. J. Clin. Nutr. 2009, 89, 1884–1894. [Google Scholar] [CrossRef]
- Jehn, M.L.; Guallar, E.; Clark, J.M.; Couper, D.; Duncan, B.B.; Ballantyne, C.M.; Hoogeveen, R.C.; Harris, Z.L.; Pankow, J.S. A prospective study of plasma ferritin level and incident diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Epidemiol. 2007, 165, 1047–1054. [Google Scholar] [CrossRef]
- Lee, D.H.; Folsom, A.R.; Jacobs, D.R., Jr. Dietary iron intake and type 2 diabetes incidence in postmenopausal women: The Iowa Women’s Health Study. Diabetologia 2004, 47, 185–194. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, C.; Gelaye, B.; Enquobahrie, D.A.; Frederick, I.O.; Williams, M.A. Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care 2011, 34, 1564–1569. [Google Scholar] [CrossRef]
- Rajpathak, S.; Ma, J.; Manson, J.; Willett, W.C.; Hu, F.B. Iron intake and the risk of type 2 diabetes in women: A Prospective Cohort Study. Diabetes Care 2006, 29, 1370–1376. [Google Scholar] [CrossRef]
- Ascherio, A.; Hennekens, C.H.; Buring, J.E.; Master, C.; Stampfer, M.J.; Willett, W.C. Trans-fatty acids intake and risk of myocardial infarction. Circulation 1994, 89, 94–101. [Google Scholar] [CrossRef]
- Snowdon, D.A.; Phillips, R.L.; Fraser, G.E. Meat consumption and fatal ischemic heart disease. Prev. Med. 1984, 13, 490–500. [Google Scholar] [CrossRef]
- Casiglia, E.; Tikhonoff, V.; Bascelli, A.; Giordano, N.; Caffi, S.; Andreatta, E.; Mazza, A.; Boschetti, G.; Grasselli, C.; Saugo, M.; et al. Dietary iron intake and cardiovascular outcome in Italian women: 10-Year follow-up. J. Womens Health 2011, 20, 1565–1571. [Google Scholar] [CrossRef]
- Klipstein-Grobusch, K.; Grobbee, D.E.; den Breeijen, J.H.; Boeing, H.; Hofman, A.; Witteman, J.C. Dietary iron and risk of myocardial infarction in the Rotterdam study. Am. J. Epidemiol. 1999, 149, 421–428. [Google Scholar] [CrossRef]
- Qi, L.; van Dam, R.M.; Rexrode, K.; Hu, F.B. Heme iron from diet as a risk factor for coronary heart disease in women with type 2 diabetes. Diabetes Care 2007, 30, 101–106. [Google Scholar] [CrossRef]
- Zhang, W.; Iso, H.; Ohira, T.; Date, O.C.; Tanabe, N.; Kikuchi, S.; Tamakoshi, A. Associations of dietary iron intake with mortality from cardiovascular disease: The Jacc Study. J. Epidemiol. 2012, 22, 484–493. [Google Scholar] [CrossRef]
- Kromhout, D. Omega-3 fatty acids and coronary heart disease. The final verdict? Curr. Opin. Lipidol. 2012, 23, 554–559. [Google Scholar] [CrossRef]
- Sun, Q.; Shi, L.; Rimm, E.B.; Giovannucci, E.L.; Hu, F.B.; Manson, J.E.; Rexrode, K.M. Vitamin D intake and risk of cardiovascular disease in us men and women. Am. J. Clin. Nutr. 2011, 94, 534–542. [Google Scholar] [CrossRef]
- De Valk, B.; Marx, J.J. Iron, Atherosclerosis, and ischemic heart disease. Arch. Intern. Med. 1999, 159, 1542–1548. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. Role of free radicals and catalytic metal irons in human disease: An overview. Methods Enzymol. 1990, 186, 1–85. [Google Scholar] [CrossRef]
- Tiedge, M.; Lortz, S.; Drinkgern, J.; Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997, 46, 1733–1742. [Google Scholar] [CrossRef]
- Swaminathan, S.; Fonseca, V.A.; Alam, M.G.; Shah, S.V. The role of iron in diabetes and its complications. Diabetes Care 2007, 30, 1926–1933. [Google Scholar] [CrossRef]
- Wilson, J.G.; Lindquist, J.H.; Grambow, S.C.; Crook, E.D.; Maher, J.F. Potential role of increased iron stores in diabetes. Am. J. Med. Sci. 2003, 325, 332–339. [Google Scholar] [CrossRef]
- Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med. 1999, 341, 1986–1995. [Google Scholar] [CrossRef]
- Tappel, A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med. Hypotheses 2007, 68, 562–564. [Google Scholar] [CrossRef]
- Kleinbongard, P.; Dejam, A.; Lauer, T.; Jax, T.; Kerber, S.; Gharini, P.; Balzer, J.; Zotz, R.B.; Scharf, R.E.; Willers, R.; et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic. Biol. Med. 2006, 40, 295–302. [Google Scholar] [CrossRef]
- Mannisto, S.; Kontto, J.; Kataja-Tuomola, M.; Albanes, D.; Virtamo, J. High processed meat consumption is a risk factor of type 2 diabetes in the α-tocopherol, β-carotene cancer prevention study. Br. J. Nutr. 2010, 103, 1817–1822. [Google Scholar] [CrossRef]
- Girvan, H.M.; Munro, A.W. Heme sensor proteins. J. Biol. Chem. 2013, 288, 13194–13203. [Google Scholar] [CrossRef]
- Smith, A.G.; Raven, E.L.; Chernova, T. The regulatory role of heme in neurons. Metallomics 2011, 3, 955–962. [Google Scholar] [CrossRef]
- Zhang, L. Introduction. In Heme Biology; World Scientific Publishing: Singapore, 2011; pp. 1–6. [Google Scholar]
- Anderson, K.E.; Sassa, S.; Bishop, D.F.; Desnick, R.J. Disorders of Heme Biosynthesis: X-Linked Sideroblastic Anemia and the Porphyrias; The McGraw-Hill Companies: New York, NY, USA, 2009; pp. 1–53. [Google Scholar]
- Badminton, M.N.; Elder, G.H. Molecular mechanisms of dominant expression in porphyria. J. Inherit Metab. Dis. 2005, 28, 277–286. [Google Scholar] [CrossRef]
- Sengupta, A.; Hon, T.; Zhang, L. Heme deficiency suppresses the expression of key neuronal genes and causes neuronal cell death. Brain Res. Mol. Brain Res. 2005, 137, 23–30. [Google Scholar] [CrossRef]
- Zhu, Y.; Lee, H.C.; Zhang, L. An examination of heme action in gene expression: Heme and heme deficiency affect the expression of diverse genes in erythroid k562 and neuronal PC12 cells. DNA Cell Biol. 2002, 21, 333–346. [Google Scholar] [CrossRef]
- Yao, X.; Balamurugan, P.; Arvey, A.; Leslie, C.; Zhang, L. Heme controls the regulation of protein tyrosine kinases Jak2 and Src. Biochem. Biophys Res. Commun. 2010, 403, 30–35. [Google Scholar] [CrossRef]
- Atamna, H. Heme binding to amyloid-β peptide: Mechanistic role in Alzheimer’s disease. J. Alzheimer’s Dis. 2006, 10, 255–266. [Google Scholar]
- Atamna, H.; Frey, W.H., II. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 2007, 7, 297–310. [Google Scholar] [CrossRef]
- Atamna, H. Heme, Iron, and the mitochondrial decay of ageing. Ageing Res. Rev. 2004, 3, 303–318. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Liu, L.; Wang, R.; Lai, X.; Xu, M. Interaction between amyloid-β peptide and heme probed by electrochemistry and atomic force microscopy. ACS Chem. Neurosci. 2013, 4, 535–539. [Google Scholar] [CrossRef]
- Feng, D.; Lazar, M.A. Clocks, metabolism, and the epigenome. Mol. Cell 2012, 47, 158–167. [Google Scholar] [CrossRef]
- Shimizu, T. Binding of cysteine thiolate to the Fe(III) heme complex is critical for the function of heme sensor proteins. J. Inorg. Biochem. 2012, 108, 171–177. [Google Scholar] [CrossRef]
- Dioum, E.M.; Rutter, J.; Tuckerman, J.R.; Gonzalez, G.; Gilles-Gonzalez, M.A.; McKnight, S.L. Npas2: A gas-responsive transcription factor. Science 2002, 298, 2385–2387. [Google Scholar] [CrossRef]
- Burris, T.P. Nuclear hormone receptors for heme: REV-ERBα and REV-ERBβ are ligand-regulated components of the mammalian clock. Mol. Endocrinol. 2008, 22, 1509–1520. [Google Scholar] [CrossRef]
- Yin, L.; Wu, N.; Lazar, M.A. Nuclear receptor REV-ERBα: A heme receptor that coordinates circadian rhythm and metabolism. Nucl. Recept. Signal. 2010, 8, e001. [Google Scholar]
- Iwadate, R.; Satoh, Y.; Watanabe, Y.; Kawai, H.; Kudo, N.; Kawashima, Y.; Mashino, T.; Mitsumoto, A. Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R8–R18. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hooda, J.; Shah, A.; Zhang, L. Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes. Nutrients 2014, 6, 1080-1102. https://doi.org/10.3390/nu6031080
Hooda J, Shah A, Zhang L. Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes. Nutrients. 2014; 6(3):1080-1102. https://doi.org/10.3390/nu6031080
Chicago/Turabian StyleHooda, Jagmohan, Ajit Shah, and Li Zhang. 2014. "Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes" Nutrients 6, no. 3: 1080-1102. https://doi.org/10.3390/nu6031080
APA StyleHooda, J., Shah, A., & Zhang, L. (2014). Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes. Nutrients, 6(3), 1080-1102. https://doi.org/10.3390/nu6031080