The Effect of Normally Consumed Amounts of Sucrose or High Fructose Corn Syrup on Lipid Profiles, Body Composition and Related Parameters in Overweight/Obese Subjects
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design
2.2. Subjects
2.3. Intervention
2.4. Nutritional Plans
Formulation | 1% Fat Milk and Carbohydrate | ||
---|---|---|---|
Ingredient | 1% Low Fat Milk | HFCS or Sucrose Solids | HFCS or Sucrose Solids |
Consumption Level | 10% | 20% | |
Dose | 240 mL | 11 g | 22 g |
Fat (g) | 2.5 | 0 | 0 |
Carbohydrate (g) | 13 | 11 | 22 |
Protein (g) | 8 | 0 | 0 |
Calories | |||
From Milk | 110 | ||
From Added Sweetener | 44 | 88 | |
Total Per Serving | 110 | 154 | 198 |
2.5. Data Analysis
3. Results
3.1. Compliance and Participant Attrition
3.2. Dietary Intake
3.3. Body Composition
Participants | All | HFCS 10% | HFCS 20% | Sucrose 10% | Sucrose 20% |
---|---|---|---|---|---|
(n = 65, M = 34, F = 31) | (n = 17, M= 9, F= 8) | (n = 17, M = 8, F = 9) | (n = 18, M = 12, F = 6) | (n = 13, M = 5, F = 8) | |
Mean ± S.D | Mean ± S.D | Mean ± S.D | Mean ± S.D | Mean ± S.D | |
Age (years) | 39.12 ± 11.76 | 39.82 ± 11.60 | 39.33 ± 10.94 | 41.15 ± 12.24 | 36.48 ± 12.50 |
Gender (%) | |||||
Female | 52 | 53 | 47 | 67 | 38 |
Male | 48 | 47 | 53 | 33 | 62 |
Race (%) | Caucasian = 68 | Caucasian = 71 | Caucasian = 68 | Caucasian = 72 | Caucasian = 69 |
African American = 9 Hispanic = 14 Asian = 6 Other = 3 | African American = 12 Hispanic = 12 Other = 6 | African American = 12 Hispanic = 18 Asian = 12 | African American = 11 Hispanic = 6 Asian = 11 | African American = 23Other = 8 | |
Height (inches) | 66.37 ± 3.77 | 66.71 ± 4.79 | 66.30 ± 3.66 | 66.74 ± 4.05 | 65.37 ± 3.71 |
Body Weight (lbs) | 179.55 ± 36.12 | 180.66 ± 40.98 | 180.31 ± 38.36 | 178.30 | 178.87 ± 33.37 |
BMI | 28.58 ± 4.31 | 27.79 ± 4.30 | 29.43 ± 3.51 | 27.96 ± 3.97 | 29.30 ± 3.88 |
Waist Circumference (cm) | 89.51 ± 11.71 | 89.16 ± 12.63 | 91.04 ± 12.75 | 88.67 ± 11.64 | 89.18 ± 10.39 |
Body Fat % | 36.31 ± 8.19 | 36.12 ± 7.74 | 38.63 ±7.51 | 32.75 ± 8.91 | 37.79 ± 7.90 |
Systolic Blood Pressure (mmHg) | 112.46 ± 13.53 | 111.36 ± 12.81 | 112.10 ± 14.21 | 116.00 ± 16.58 | 110.76 ± 10.81 |
Diastolic Blood Pressure (mmHg) | 73.60 ± 11.55 | 70.50 ± 15.61 | 73.48 ± 10.87 | 75.15 ± 10.99 | 75.35 ± 7.50 |
Cholesterol (mg/dL) | 183.60 ± 36.61 | 196.77 ± 39.53 | 178.24 ± 30.99 | 175.00 ± 38.25 | 183.39 ± 34.42 |
Triglycerides (mg/dL) | 128.60 ± 73.61 | 122.05 ± 57.34 | 126.48 ± 69.99 | 121.05 ± 67.09 | 143.39 ± 95.55 |
High Density Lipoprotein (mg/dL) | 51.13 ± 14.36 | 53.09 ± 13.40 | 48.24 ± 15.63 | 52.70 ± 15.81 | 50.57 ± 29.64 |
Low Density Lipoprotein (mg/dL) | 106.95 ± 32.19 | 118.64 ± 37.71 | 104.67 ± 23.76 | 98.10 ± 34.68 | 105.56 ± 29.64 |
Variable | Time | HFCS 10% | HFCS 20% | Suc 10% | Suc 20% | All |
---|---|---|---|---|---|---|
Energy Intake | Baseline | 2204 ± 1076 | 2115 ± 477 | 2542 ± 1407 | 2086 ± 964 | 2260 ± 1048 |
(kcal) | Week 10 | 2588 ± 758 | 2546 ± 836 | 2970 ± 1786 | 2328 ± 686 | 2644 ± 1160 *** |
Interaction p = 0.925 | ||||||
Carbohydrate | Baseline | 273.6 ± 125.1 | 255.9 ± 62.6 | 323.4 ± 178.2 | 236.6 ± 102.3 | 277.2 ± 129.2 |
(g) | Week 10 | 341.6 ± 97.5 | 374.3 ± 132.2 | 383.0 ± 242.2 | 348.6 ± 102.0 | 363.4 ± 158.8 *** |
Interaction p = 0.389 | ||||||
Fat | Baseline | 83.5 ± 57.2 | 82.2 ± 26.5 | 94.9 ± 58.5 | 90.8 ± 53.7 | 87.7 ± 49.8 |
(g) | Week 10 | 86.2 ± 38.2 | 72.2 ± 30.7 | 99.4 ± 66.9 | 62.2 ± 23.4 | 82.3 ± 46.4 |
Interaction p = 0.074 | ||||||
Protein | Baseline | 89.6 ± 28.2 | 91.8 ± 22.7 | 99.7 ± 59.7 | 85.9 ± 39.2 | 92.5 ± 40.1 |
(g) | Week 10 | 122.0 ± 31.9 | 109.1 ± 33.8 | 144.2 ± 69.5 | 108.0 ± 29.7 | 122.7 ± 47.6 *** |
Interaction p = 0.165 | ||||||
Total Sugar | Baseline | 126.4 ± 65.9 | 110.6 ± 43.2 | 154.4 ± 121.0 | 108.9 ± 69.2 | 127.5 ± 82.6 |
(g) | Week 10 | 199.6 ± 56.1 *** | 247.9 ± 99.5 *** | 218.8 ± 144.6 ** | 215.4 ± 83.6 *** | 220.5 ± 102.7 *** |
Interaction p < 0.05 |
Variable | Time | HFCS 10% | HFCS 20% | Suc 10% | Suc 20% | All |
---|---|---|---|---|---|---|
Body Mass | Baseline | 185.4 ± 44.3 | 184.5 ± 35.3 | 179.3 ± 34.4 | 182.2 ± 39.9 | 182.8 ± 37.7 |
(lbs) | Week 10 | 186.2 ± 43.9 | 187.9 ± 36.0 | 181.4 ± 33.9 | 184.4 ± 41.1 | 185.0 ± 37.9 ** |
Interaction p = 0.507 | ||||||
Waist | Baseline | 90.4 ± 13.5 | 90.9 ± 14.0 | 88.6 ± 11.2 | 90.2 ± 11.6 | 90.0 ± 12.4 |
(cm) | Week10 | 90.2 ± 13.2 | 91.8 ± 14.2 | 89.5 ± 11.1 | 90.6 ± 12.1 | 90.5 ± 12.4 |
Interaction p = 0.678 | ||||||
Body Fat | Baseline | 35.6 ± 7.3 | 38.7 ± 7.2 | 32.6 ± 9.2 | 37.7 ± 4.8 | 36.0 ± 7.7 |
(%) | Week 10 | 35.8 ± 7.3 | 38.8 ± 7.0 | 33.8 ± 9.1 | 38.1 ± 5.0 | 36.5 ± 7.5 ** |
Interaction p = 0.075 | ||||||
Fat Mass | Baseline | 64.2 ±23.5 | 68.0 ± 15.5 | 57.3 ± 23.0 | 66.4 ± 16.2 | 63.7 ± 20.1 |
(lbs) | Week 10 | 64.8 ± 23.0 | 69.5 ± 15.9 | 59.7 ± 22.6 | 68.2 ± 17.7 | 65.3 ± 20.1 ** |
Interaction p = 0.532 | ||||||
Fat Free Mass | Baseline | 120.3 ± 27.0 | 115.3 ± 28.5 | 121.7 ± 21.7 | 114.3 ± 26.3 | 118.1 ± 26.0 |
(lbs) | Week 10 | 120.9 ± 29.3 | 116.9 = 28.1 | 120.8 ± 22.0 | 117.3 ± 27.9 | 118.6 ± 26.3 |
Interaction p = 0.080 |
3.4. Blood Pressure and Blood Lipids
Variable | Time | HFCS 10% | HFCS 20% | Suc 10% | Suc 20% | All |
---|---|---|---|---|---|---|
Total | Baseline | 198.3 ± 31.4 | 178.9 ± 27.5 | 173.5 ± 35.5 | 194.2 ± 29.7 | 185.8 ± 32.3 |
Cholesterol | Week 10 | 192.2 ± 30.4 | 195.4 ± 30.2 | 174.5 ± 44.5 | 180.9 ± 24.8 † | 186.2 ± 34.1 |
(mg/dL) | Interaction p = 0.019 | |||||
Triglycerides | Baseline | 123.2 ± 61.7 | 120.9 ± 61.9 | 110.3 ± 63.3 | 166.3 ± 118.5 | 127.3 ± 76.5 |
(mg/dL) | Week 10 | 132.6 ± 39.5 | 150.9 ± 71.8 | 118.8 ± 68.1 | 164.9 ± 85.2 | 139.8 ± 66.8 |
Interaction p = 0.585 | ||||||
HDL | Baseline | 53.7 ± 14.8 | 48.2 ± 14.7 | 53.7 ± 16.5 | 50.9 ± 15.2 | 51.7 ± 15.1 |
(mg/dL) | Week 10 | 50.5 ± 14.7 | 45.4 ± 13.9 | 52.7 ± 16.6 | 46.6 ± 11.8 | 49.0 ± 14.5 ** |
Interaction p = 0.635 | ||||||
LDL | Baseline | 119.2 ± 29.7 | 106.5 ± 22.6 | 97.8 ± 33.1 | 112.8 ± 26.2 | 108.9 ± 28.9 |
(mg/dL) | Week 10 | 115.1 ± 25.4 | 119.8 ± 24.9 | 98.1 ± 36.4 | 101.3 ± 21.6 † | 109.3 ± 28.9 |
Interaction p = 0.017 | ||||||
Apolipoprotein | Baseline | 100.5 ± 15.1 | 93.4 ± 19.9 | 84.7 ± 23.0 | 100.7 ± 15.2 | 94.4 ± 19.5 |
B (mg/dL) | Week 10 | 100.1 ± 15.5 | 104.4 ± 20.1 ** | 88.1 ± 28.1 | 93.8 ± 20.2 † | 96.9 ± 21.4 |
Interaction p = 0.010 | ||||||
TC/HDL ratio | Baseline | 3.9 ± 0.8 | 4.0 ± 1.3 | 3.5 ± 1.1 | 4.1 ±1.2 | 3.9 ± 1.1 |
Week 10 | 4.0 ± 0.8 | 4.6 ± 1.4 | 3.6 ± 1.5 | 4.2 ± 1.4 | 4.1 ± 1.3 ** | |
Interaction p = 0.082 |
4. Discussion
5. Conclusions
Availability of Supporting Data
Acknowledgments
Conflicts of Interest
References
- Flegal, K.M.; Carroll, M.D.; Ogden, C.L.; Curtin, L.R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 2010, 303, 235–247. [Google Scholar] [CrossRef]
- Hedley, A.A.; Odgen, C.L.; Johnson, C.L.; Carroll, M.D.; Curtin, L.R. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 2004, 291, 2847–2850. [Google Scholar] [CrossRef]
- Dietz, W.H.; Robinson, T.N. Overweight children and adolescents. N. Engl. J. Med. 2005, 325, 2100–2109. [Google Scholar] [CrossRef]
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity, and metabolism. Circulation 2006, 113, 898–918. [Google Scholar] [CrossRef]
- Eckel, R. Obesity and heart disease: A statement for the healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 1997, 96, 3248–3250. [Google Scholar] [CrossRef]
- Sigman-Grant, M.; Morita, J. Defining and interpreting intakes of sugars. Am. J. Clin. Nutr. 2003, 78, 815S–826S. [Google Scholar]
- Hein, G.L.; Storey, M.L.; White, J.S.; Lineback, D.R. Highs and lows of high fructose corn syrup. Nutr. Today 2005, 40, 253–256. [Google Scholar]
- White, J. Straight talk about high-fructose corn syrup: What it is and what it ain’t. Am. J. Clin. Nutr. 2008, 88, 1716–1721. [Google Scholar] [CrossRef]
- Johnson, R.; Appel, L.; Brands, M.; Howard, B.; Lefevre, M.; Lustig, R.; Sacks, F.; Steffen, L.; Wylie-Rosett, J.; American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism and the Council on Epidemiology and Prevention. Dietary sugars intake and cardiovascular health: A scientific statement from the American Heart Association. Circulation 2009, 120, 1011–1020. [Google Scholar] [CrossRef]
- Feig, D.I.; Soletsky, B.; Johnson, R.J. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: A randomized trial. JAMA 2008, 300, 924–932. [Google Scholar] [CrossRef]
- Nguyen, S.; Choi, H.K.; Lustig, R.H.; Hsu, C.Y. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 2009, 154, 807–813. [Google Scholar] [CrossRef]
- Bremer, A.A.; Auinger, P.; Byrd, R.S. Relationship between insulin resistance-associated metabolic parameters and anthropometric measurements with sugar-sweetened beverage intake and physical activity levels in US adolescents: Findings from the 1999–2004 National Health and Nutrition Examination Survey. Arch. Pediatr. Adolesc. Med. 2009, 163, 328–335. [Google Scholar] [CrossRef]
- Van der Schaaf, M.R.; Koomans, H.A.; Joles, J.A. Dietary sucrose does not increase twenty-four-hour ambulatory blood pressure in patients with either essential hypertension or polycystic kidney disease. J. Hypertens. 1999, 17, 453–454. [Google Scholar] [CrossRef]
- Hellerstein, M.K. Carbohydrate-induced hypertriglyceridemia: Modifying factors and implications for cardiovascular risk. Curr. Opin. Lipidol. 2002, 13, 33–40. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar]
- Appel, L.J.; Sacks, F.M.; Carey, V.J.; Obarzanek, E.; Swain, J.F.; Miller, E.R.; Conlin, P.R.; Erlinger, T.P.; Rosner, B.A.; Laranjo, N.M.; et al. Efects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: Results of the OmniHeart randomized trial. JAMA 2005, 294, 455–2464. [Google Scholar] [CrossRef]
- Howard, B.V.; Van Horn, L.; Hsia, J.; Manson, J.E.; Stefanick, M.L.; Wassertheil-Smoller, S.; Kuller, L.H.; LaCroix, A.Z.; Langer, R.D.; Lasser, N.L. Low-fat dietary pattern and risk of cardiovascular disease: The Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 2006, 295, 655–666. [Google Scholar] [CrossRef]
- Bantle, J.P.; Raatz, S.K.; Thomas, W.; Georgopoulos, A. Effects of dietary fructose of plasma lipids in healthy subjects. Am. J. Clin. Nutr. 2000, 72, 1128–1134. [Google Scholar]
- Black, R.N.; Spence, M.; McMahon, R.O.; Cuskelly, G.J.; Ennis, C.N.; McCance, D.R.; Young, I.S.; Bell, P.M.; Hunter, S.J. Effect of eucaloric high-and low-sucrose diets with identical macronutrient profile on insulin resistance and vascular risk: A randomized controlled trial. Diabetes 2006, 55, 3566–3572. [Google Scholar] [CrossRef]
- Marckmann, P.; Raben, A.; Astrup, A. Ad libitum intake of low-fat diets rich in either starchy foods or sucrose: Effects on blood lipids, factor VII coagulant activity, and fibrinogen. Metabolism 2000, 49, 731–735. [Google Scholar] [CrossRef]
- Liu, S.; Manson, J.E.; Buring, J.E.; Stampfer, M.J.; Willett, W.C.; Ridker, P.M. Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am. J. Clin. Nutr. 2002, 75, 492–498. [Google Scholar]
- Price, K.D.; Price, C.S.; Reynolds, R.D. Hyperglycemia-induced ascorbic acid deficiency promotes endothelial dysfunction and the development of atherosclerosis. Atherosclerosis 2001, 158, 1–12. [Google Scholar] [CrossRef]
- Ceriello, A.; Bortolotti, N.; Crescentini, A.; Motz, E.; Lizzio, S.; Russo, A.; Ezsol, Z.; Tonutti, L.; Taboga, C. Antioxidant defenses are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur. J. Clin. Investig. 1998, 28, 329–333. [Google Scholar] [CrossRef]
- Ma, S.W.; Tomlinson, B.; Benzie, I.F. A study of the effect of oral glucose loading on plasma oxidant: Antioxidant balance in normal subjects. Eur. J. Nutr. 2005, 44, 250–254. [Google Scholar] [CrossRef]
- Schulze, M.; Manson, J.; Ludwig, D.; Colditz, G.; Stampfer, M.; Willett, W.; Hu, F. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Bachman, C.M.; Baranowski, T.; Nicklas, T.A. Is there an association between sweetened beverages and adiposity? Nutr. Rev. 2006, 64, 153–174. [Google Scholar] [CrossRef]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar]
- Johnson, L.; Mander, A.P.; Jones, L.R.; Emmett, P.M.; Jebb, S.A. Is sugar-sweetened beverage consumption associated with increased fatness in children? Nutrition 2007, 23, 557–563. [Google Scholar] [CrossRef]
- Forshee, R.A.; Anderson, P.A.; Storey, M.L. Sugar-sweetened beverages and body mass index in children and adolescents: A meta-analysis. Am. J. Clin. Nutr. 2009, 89, 441–442. [Google Scholar]
- Ebbeling, C.B.; Feldman, H.A.; Chomitz, V.R.; Antonelli, T.A.; Gortmaker, S.L.; Osganian, S.K.; Ludwig, D.S. A randomized trial of sugar-sweetened beverages and adolescent body weight. N. Engl. J. Med. 2012, 367, 1407–1416. [Google Scholar] [CrossRef]
- De Ruyter, J.C.; Olthof, M.R.; Seidell, J.C.; Katan, M.A. Trial of sugar-free or sugar-sweetened beverages and body weight in children. N. Engl. J. Med. 2012, 367, 1397–1406. [Google Scholar] [CrossRef]
- Qi, Q.; Chur, A.Y.; Kang, J.H.; Jensen, M.K.; Curhan, G.C.; Pasquale, L.R.; Ridker, P.M.; Hunter, D.J.; Willett, W.C.; Rimm, E.B.; et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 2012, 367, 1387–1396. [Google Scholar] [CrossRef]
- Stanhope, K.; Schwarz, J.; Keim, N.; Griffen, S.; Bremer, A.; Graham, J.; Hatcher, B.; Cox, C.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef]
- Teff, K.; Elliott, S.; Tschop, M.; Kieffer, T.; Rader, D.; Heiman, M.; Townsend, R.; Keim, N.; D’Alessio, D.; Havel, P. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. JCEM 2004, 89, 2963–2972. [Google Scholar]
- Teff, K.L.; Grudziak, J.; Townsend, R.R.; Dunn, T.N.; Grant, R.W.; Adams, S.H. Endocrine and metabolic effects of consuming fructose-and glucose-sweetened beverages with meals in obese men and women: Influence of insulin resistance on plasma triglyceride responses. JCEM 2009, 94, 1562–1569. [Google Scholar]
- Lowndes, J.; Kawiecki, D.; Pardo, S.; Nguyen, V.; Melanson, K.; Yu, Z.; Rippe, J. The effects of four hypocaloric diets containing different levels of sucrose or high fructose corn syrup on weight loss and related parameters. Nutr. J. 2012, 11, 55–64. [Google Scholar] [CrossRef]
- Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 2004, 79, 537–543. [Google Scholar]
- Johnson, R.; Segal, M.; Sautin, Y.; Nakagawa, T.; Feig, D.; Kang, D.; Gersch, M.; Benner, S.; Sanchez-Lozada, L. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 2007, 86, 899–906. [Google Scholar]
- Bray, G.A. Fructose: Should we worry? Int. J. Obes. 2008, 32, S127–S131. [Google Scholar] [CrossRef]
- Fereday, M.; Forber, G.; Girardello, S.; Midgley, C.; Nutt, T.; Powell, N.; Todd, M. HFCS Industry Annual Review—A Year of Changing Expectations. Sweetener Analysis; LMC International Ltd.: Oxford, UK, 2007; pp. 1–8. [Google Scholar]
- Marriott, B.P.; Cole, N.; Lee, E. National Estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 2009, 139, 1228S–1235S. [Google Scholar] [CrossRef]
- Marriott, B. Worldwide Consumption of Sweeteners and Recent Trends. In Fructose, High Fructose Corn Syrup, Sucrose and Health; Rippe, J.M., Ed.; Springer: New York, NY, USA, 2014; pp. 87–111. [Google Scholar]
- Bray, G. Fructose: Pure, white, and deadly? Fructose, by any other name is a health hazard. J. Diabetes Sci. Technol. 2010, 4, 1003–1007. [Google Scholar] [CrossRef]
- Wells, H.F.; Buzby, J.C. Dietary Assessment of Major Trends in US Food Consumption, 1970–2005; USDA-Economic Research Service: Washington, DC, USA, 2008. [Google Scholar]
- Ebbeling, C.B.; Feldman, H.A.; Osganian, S.K.; Chomitz, V.R.; Ellenbogen, S.J.; Ludwig, D.S. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: A randomized, controlled pilot study. Pediatrics 2006, 117, 673–680. [Google Scholar] [CrossRef]
- Maersk, M.; Belza, A.; Stødkilde-Jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef]
- Lowndes, J.; Kawiecki, D.; Angelopoulos, T.; Rippe, J. Fructose containing sugars do not cause changes in weight, body composition or abdominal fat when consumed as part of a eucaloric (weight-stable) diet. Obesity 2010, 18, S51. [Google Scholar]
- Sievenpiper, J.L.; de Souza, R.J.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Beyene, J.; Chiavaroli, L.; Di Buono, M.; Jenkins, A.L.; Leiter, L.A.; et al. Effect of fructose on body weight in controlled feeding trials: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 156, 291–304. [Google Scholar] [CrossRef]
- Wang, D.D.; Sievenpiper, J.L.; de Souza, R.J.; Chiavaroli, L.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; di Buono, M.; et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J. Nutr. 2012, 142, 916–923. [Google Scholar] [CrossRef]
- Melanson, K.J.; Zukley, L.; Lowndes, J.; Nguyen, V.; Angelopoulos, T.J.; Rippe, J.M. Effects of high-fructose corn syrup and sucrose consumption on circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women. Nutrition 2007, 23, 103–112. [Google Scholar] [CrossRef]
- Soenen, S.; Westerterp-Plantenga, M.S. No differences in satiety or energy intake after high-fructose corn syrup, sucrose, or milk preloads. Am. J. Clin. Nutr. 2007, 86, 1586–1594. [Google Scholar]
- Dhingra, R.; Sullivan, L.; Jacques, P.F.; Wang, T.J.; Fox, C.S.; Meigs, J.B.; D’Agostino, R.B.; Gaziano, J.M.; Vasan, R.S. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 2007, 116, 480–488. [Google Scholar] [CrossRef]
- Fung, T.T.; Malik, V.; Rexrode, K.M.; Manson, J.E.; Willett, W.C.; Hu, F.B. Sweetened beverage consumption and risk of coronary heart disease in women. Am. J. Clin. Nutr. 2009, 89, 1037–1042. [Google Scholar] [CrossRef]
- Ha, V.; Sievenpiper, J.; de Souza, R.J.; Chiavaroli, L.; Wang, D.D.; Cozma, A.I.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Dibuono, M.; et al. Effect of fructose on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Hypertension 2012, 59, 787–795. [Google Scholar] [CrossRef]
- Lê, K.A.; Tappy, L. Metabolic effects of fructose. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 469–475. [Google Scholar] [CrossRef]
- Parks, E.J.; Hellerstein, M.K. Carbohydrate-induced hypertriacylglycerolemia: Historical perspective and review of biological mechanisms. Am. J. Clin. Nutr. 2000, 71, 412–433. [Google Scholar]
- Fried, S.K.; Rao, S.P. Sugars, hypertriglyceridemia, and cardiovascular disease. Am. J. Clin. Nutr. 2003, 78, 873S–880S. [Google Scholar]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.; Ginsberg, H.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.; et al. Triglycerides and cardiovascular disease. A scientific statement from the american heart association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Mirrahimi, A.; de Souza, R.J.; Cozma, A.I.; Ha, V.; Wang, D.D.; Yu, M.E.; Carleton, A.J.; Beyene, J.; Kendall, C.W.C.; et al. Does fructose consumption elicit a dose-response effect on fasting triglycerides? A systematic review and meta-regression of controlled feeding trials. Can. J. Diabetes 2012, 36, S37. [Google Scholar]
- Sievenpiper, J.L.; Wang, D.D.; de Souza, R.J.; Cozma, A.I.; Ha, V.; Chiavaroli, L.; Mirrahimi, A.; Carleton, A.J.; Beyene, J.; Kendall, C.W.C.; et al. Effect of fructose on postprandial triglycerides: A systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 2014, 232, 125–133. [Google Scholar] [CrossRef]
- Obazanek, E.; Sacks, P.M.; Vollmer, W.M.; Bray, G.A.; Miller, E.R., III; Lin, P.H.; Karanja, N.M.; Most-Windhauser, M.M.; Moore, T.J.; Swain, J.F.; et al. Effects on blood lipids of a blood pressure-lowering diet: The Dietary Approaches to Stop Hypertension (STOP) Trial. Am. J. Clin. Nutr. 2001, 74, 80–89. [Google Scholar]
- Akhavan, T.; Anderson, G.H. Effects of glucose-to-fructose ratios in solutions on subjective satiety, food intake, and satiety, food intake, and satiety hormones in young men. Am. J. Clin. Nutr. 2007, 86, 1354–1363. [Google Scholar]
- Le, M.T.; Frye, R.F.; Rivard, C.J.; Cheng, J.; McFann, K.K.; Segal, M.S.; Johnson, R.J.; Johnson, J.A. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects. Metabolism 2012, 61, 641–651. [Google Scholar] [CrossRef]
- Rippe, J.; Angelopoulos, T. Sucrose, high fructose corn syrup and fructose, and their potential health effects: What do we really know? Ad. Nutr. 2013, 4, 236–245. [Google Scholar] [CrossRef]
- Bravo, S.; Lowndes, J.; Sinnett, S.; Yu, Z.; Rippe, J. Consumption of sucrose and high-fructose corn syrup does not increase liver fat or ectopic fat deposition in muscles. Appl. Physiol.Nutr.Metab. 2013, 38, 681–688. [Google Scholar] [CrossRef]
- Yu, Z.; Lowndes, J.; Rippe, J. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels. Nutr. Res. 2013, 33, 1043–1052. [Google Scholar] [CrossRef]
- Rippe, J.M. The metabolic and endocrine response and health implications of consuming sugar-sweetened beverages: Findings from recent randomized controlled trials. Adv. Nutr. 2013, 4, 677–686. [Google Scholar] [CrossRef]
- Klurfeld, D.M.; Foreyt, J.; Angelopoulos, T.J.; Rippe, J.M. Lack of evidence for high fructose corn syrup as the cause of the obesity epidemic. Int. J. Obes. 2013, 37, 771–773. [Google Scholar] [CrossRef]
- White, J.S. Challenging the fructose hypothesis: New perspectives on fructose consumption and metabolism. Adv. Nutr. 2013, 4, 246–256. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lowndes, J.; Sinnett, S.; Pardo, S.; Nguyen, V.T.; Melanson, K.J.; Yu, Z.; Lowther, B.E.; Rippe, J.M. The Effect of Normally Consumed Amounts of Sucrose or High Fructose Corn Syrup on Lipid Profiles, Body Composition and Related Parameters in Overweight/Obese Subjects. Nutrients 2014, 6, 1128-1144. https://doi.org/10.3390/nu6031128
Lowndes J, Sinnett S, Pardo S, Nguyen VT, Melanson KJ, Yu Z, Lowther BE, Rippe JM. The Effect of Normally Consumed Amounts of Sucrose or High Fructose Corn Syrup on Lipid Profiles, Body Composition and Related Parameters in Overweight/Obese Subjects. Nutrients. 2014; 6(3):1128-1144. https://doi.org/10.3390/nu6031128
Chicago/Turabian StyleLowndes, Joshua, Stephanie Sinnett, Sabrina Pardo, Von T. Nguyen, Kathleen J. Melanson, Zhiping Yu, Britte E. Lowther, and James M. Rippe. 2014. "The Effect of Normally Consumed Amounts of Sucrose or High Fructose Corn Syrup on Lipid Profiles, Body Composition and Related Parameters in Overweight/Obese Subjects" Nutrients 6, no. 3: 1128-1144. https://doi.org/10.3390/nu6031128
APA StyleLowndes, J., Sinnett, S., Pardo, S., Nguyen, V. T., Melanson, K. J., Yu, Z., Lowther, B. E., & Rippe, J. M. (2014). The Effect of Normally Consumed Amounts of Sucrose or High Fructose Corn Syrup on Lipid Profiles, Body Composition and Related Parameters in Overweight/Obese Subjects. Nutrients, 6(3), 1128-1144. https://doi.org/10.3390/nu6031128