Hormonal and Dietary Characteristics in Obese Human Subjects with and without Food Addiction
Abstract
:1. Introduction
2. Experimental Section
2.1. Ethics Statement
2.2. Study Sample
2.3. Anthropometric Measurements
2.4. Body Composition Assessment
2.5. Food Addiction Assessment
2.5.1. Dietary Intakes Assessment
2.5.2. Serum Metabolism Regulating Hormones and Neuropeptides Measurement
2.5.3. Serum Lipids, Glucose and Insulin Measurement
2.5.4. Physical Activity Assessment and Other Covariates
2.6. Statistical Analysis
3. Results
3.1. Physical Characteristics and Fasting Serum Lipids, Glucose and Insulin Level
3.2. The Comparison of Metabolism Regulating Hormones and Neuropeptides in FAO and NFO
Variables | NFO (Mean ± SD) | FAO (Mean ± SD) | |
---|---|---|---|
Number | 29 | 29 | |
Age (year) | 42 ± 8.9 | 42.5 ± 9.4 | |
Sex | F | 24 | 24 |
M | 5 | 5 | |
BMI (kg/m2) | 32 ± 4.42 | 32.5 ± 6 | |
BF% | 42.32 ± 6.4 | 42.7 ± 7.8 | |
TF% | 45.1 ± 5.3 | 46.2 ± 7.1 | |
Physical activity | 7.1 ± 1.3 | 7.3 ± 1.1 | |
Glucose (mmol/L) | 5.2 ± 1 | 5.3 ± 0.8 | |
Cholesterol (mmol/L) | 5.3 ± 1 | 4.9 ± 1.3 | |
TG (mmol/L) | 1.4 ± 0.9 | 1.3 ± 0.7 | |
HDL (mmol/L) | 1.3 ± 0.3 | 1.4 ± 0.3 | |
LDL (mmol/L) | 2.9 ± 1.1 | 3.3 ± 1.0 | |
Albumin (g/L) | 39.5 ± 3.3 | 39.1 ± 2.9 | |
Insulin (pmol/L) | 90.4 ± 101.9 | 95.9 ± 139.9 |
Hormones | FAO | NFO | p ** | |
---|---|---|---|---|
Mean ± SD (14–29) | Mean ± SD (14–29) | |||
Neuropeptides | NPY (pg/mL) | 8.81 ± 3.74 | 5.71 ± 3.82 | 0.65 |
α-MSH (pg/mL) | 148.06 ± 84.16 | 147.2 ± 89.12 | 0.88 | |
β-Endorphin (pg/mL) | 377.86 ± 90.82 | 396.54 ± 108.3 | 0.48 | |
Cortisol (pg/mL) | 230,056 ± 100,323 | 232807.9 ± 138,900 | 0.09 | |
Melatonin (pg/mL) | 3320.9 ± 1377.7 | 3652.75 ± 1652.43 | 0.65 | |
MCP1 (pg/mL) | 294.43 ± 88.2 | 282.56 ± 90.11 | 0.83 | |
Neurotensin (pg/mL) | 379.6 ± 103.05 | 379.32 ± 100.7 | 0.84 | |
Oxytocin (pg/mL) | 119.5 ± 49.13 | 120.22 ± 57.86 | 0.78 | |
Orexin A (pg/mL) | 969.6 ± 438.2 | 974.5 ± 347.5 | 0.28 | |
AGRP (pg/mL) | 16.11 ± 6.94 | 16.18 ± 8.26 | 0.88 | |
Substance P (pg/mL) | 39.16 ± 12.51 | 39.7 ± 15.06 | 0.53 | |
Gut hormones | Amylin (pg/mL) | 24.9 ± 11.3 | 32.05 ± 18.75 | 0.04 |
GLP-1 (pg/mL) | 19.91 ± 22.54 | 21.4 ± 22.1 | 0.10 | |
Ghrelin (pg/mL) | 25.4 ± 15.8 | 25.91 ± 17 | 0.9 | |
Leptin (pg/mL) | 20795.4 ± 12173.3 | 18206.72 ± 10765.9 | 0.50 | |
GIP (pg/mL) | 17 ± 16.31 | 17.05 ± 12 | 0.90 | |
Glucagon (pg/mL) | 22.61 ± 10.5 | 45.1 ± 52.02 | 0.77 | |
PP (pg/mL) | 49.3 ± 79.4 | 46.85 ± 53.4 | 0.50 | |
PYY (pg/mL) | 68.33 ± 122.3 | 93 ± 109.3 | 0.45 | |
C-peptide (pg/mL) | 1373.7 ± 740.15 | 1269 ± 506.74 | 0.50 | |
Pituitary polypeptide hormones | Prolactin (pg/mL) | 2335.1 ± 1197.8 | 1938.3 ± 745.5 | 0.02 |
ACTH (pg/mL) | 3.05 ± 2.56 | 5.55 ± 6.93 | 0.12 | |
BDNF (pg/mL) | 2219.3 ± 658.73 | 2138.38 ± 931.52 | 0.17 | |
LH (mlU/mL) | 6.2 ± 7.3 | 6.21 ± 8.6 | 0.93 | |
FSH (mlU/mL) | 13.27 ± 18.75 | 9.58 ± 14.12 | 0.35 | |
GH (pg/mL) | 505.76 ± 635.84 | 810.83 ± 1019.56 | 0.07 | |
TSH (μlU/mL) | 0.23 ± 0.32 | 1.1 ± 2.14 | 0.01 | |
CNTF (pg/mL) | 148.1 ± 324.22 | 1647.4 ± 6280.6 | 0.06 | |
Adipokines | TNF-α (pg/mL) | 4.21 ± 1.23 | 4.5 ± 2.2 | 0.02 |
Adiponectin (pg/mL) | 65700.8 ± 68327.1 | 71437.3 ± 56215.3 | 0.71 | |
Lipocalin (pg/mL) | 357 ± 151.7 | 462.2 ± 153 | 0.71 | |
Adipsin (pg/mL) | 7167.66 ± 2888.25 | 8009.9 ± 2733 | 0.86 | |
PAL1 (pg/mL) | 261.3 ± 88.8 | 261.31 ± 88.84 | 0.80 | |
Resistin (pg/mL) | 82 ± 43.4 | 109 ± 55.8 | 0.33 |
3.3. Comparison of Macronutrients and Micronutrients Intake between FAO and NFO Groups
Macronutrients | FAO (n = 29) | NFO (n = 29) | p | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Calorie intake | Per person | 2077.4 ± 687.6 | 1714.0 ± 612 | 0.7 |
per kg body weight | 24.4 ± 10.9 | 19.5 ± 6.6 | 0.02 | |
per BMI | 66.2 ± 26.5 | 54.1 ± 19.5 | 0.3 | |
per BF% | 50 ± 16.4 | 42.0 ± 19.4 | 0.7 | |
per TF% | 45.6 ± 14.8 | 38.6 ± 15.5 | 0.8 | |
Fat (g) | Per person | 63.6 ± 26.3 | 45 ± 15.6 | 0.054 |
per kg body weight | 0.7 ± 0.4 | 0.5 ± 0.2 | 0.004 | |
per BMI | 2 ± 0.9 | 1.4 ± 0.5 | 0.01 | |
per BF% | 1.5 ± 0.7 | 1.1 ± 0.5 | 0.1 | |
per TF% | 1.4 ± 0.6 | 1 ± 0.4 | 0.04 | |
percent calorie | 27.1 ± 7.5 | 23.4 ± 4 | 0.005 | |
Carbohydrate (g) | Per person | 273 ± 103 | 246.3 ± 93 | 0.6 |
per kg body weight | 3.2 ± 1.6 | 2.8 ± 1 | 0.03 | |
per BMI | 8.7 ± 3.9 | 7.8 ± 3 | 0.2 | |
per BF% | 6.5 ± 2.4 | 6.01 ± 2.8 | 0.6 | |
per TF% | 6 ± 2.2 | 5.5 ± 2.3 | 1 | |
percent calorie | 51.2 ± 7.1 | 56.3 ± 5.2 | 0.3 | |
Protein (g) | Per person | 99 ± 29 | 79.2 ± 30.8 | 0.8 |
per kg body weight | 1.1 ± 0.4 | 0.9 ± 0.3 | 0.2 | |
per BMI | 3.1 ± 1.1 | 2.5 ± 1 | 0.3 | |
per BF% | 2.4 ± 0.7 | 1.9 ± 0.9 | 0.8 | |
per TF% | 2.2 ± 0.6 | 1.8 ± 0.7 | 0.9 | |
percent calorie | 19.3 ± 3.9 | 18.2 ± 2.6 | 0.2 |
Micronutrient Intake | FAO (n = 29) | NFO (n = 29) | p |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Sugar (g/kg) | 1.4 ± 0.8 | 0.2 ± 0.5 | 0.03 |
Saturated fat (g/kg) | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.01 |
Trans fat (mg/kg) | 1.0 ± 0.0 | 0.1 ± 0.0 | 0.01 |
Monounsaturated fat (g/kg) | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.01 |
Poly-saturated fat (g/kg) | 0.1 ± 0.1 | 0.1 ± 0.0 | 0.0 |
Omega 3 (mg/kg) | 7.0 ± 0.0 | 5.0 ± 0.0 | 0.01 |
Omega 6 (g/kg) | 0.1 ± 0.0 | 0.03 ± 0.0 | 0.0 |
Vitamin B1 (mg/kg) | 0.02 ± 0.01 | 0.02 ± 0.0 | 0.04 |
Vitamin D (IU/kg) | 2.5 ± 2.1 | 1.9 ± 1.0 | 0.04 |
Dihydrophylloquinone (mcg/kg) | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.03 |
Gamma tocopherol (mg/kg) | 0.3 ± 0.0 | 0.0 ± 0.0 | 0.04 |
Sodium (mg/kg) | 26.1 ± 12.0 | 19.4 ± 6.3 | 0.01 |
Calcium (mg/kg) | 13.0 ± 7.1 | 10.0 ± 4.0 | 0.02 |
Potassium (mg/kg) | 50.8 ± 21.3 | 41.2 ± 16.8 | 0.04 |
Selenium (mg/kg) | 1.4 ± 0.6 | 1.1 ± 0.3 | 0.02 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Obesity and Overweight. Available online: http://www.who.int/topics/obesity/en/ (accessed on 31 July 2014).
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Obesity in Canada. Available online: http://www.phac-aspc.gc.ca/hp-ps/hl-mvs/oic-oac/adult-eng.php (accessed on 31 July 2014).
- Twells, L. Obesity in Newfoundland and Labrador; Newfoundland and Labrador Centre for Applied Health Research (NLCAHR): St. John’s, Canada, 2005. [Google Scholar]
- Von Deneen, K.M.; Liu, Y. Obesity as an addiction: Why do the obese eat more? Maturitas 2011, 68, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.H.; Curtis, C.M.; Davis, C. The obesity epidemic: The role of addiction. Can. Med. Assoc. J. 2010, 182, 327–328. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Preliminary validation of the yale food addiction scale. Appetite 2009, 52, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Pursey, K.M.; Stanwell, P.; Gearhardt, A.N.; Collins, C.E.; Burrows, T.L. The prevalence of food addiction as assessed by the Yale food addiction scale: A systematic review. Nutrients 2014, 6, 4552–4590. [Google Scholar] [CrossRef] [PubMed]
- Pedram, P.; Wadden, D.; Amini, P.; Gulliver, W.; Randell, E.; Cahill, F.; Vasdev, S.; Goodridge, A.; Carter, J.C.; Zhai, G. Food addiction: Its prevalence and significant association with obesity in the general population. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Ziauddeen, H.; Farooqi, I.S.; Fletcher, P.C. Obesity and the brain: How convincing is the addiction model? Nat. Rev. Neurosci. 2012, 13, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Meule, A.; Gearhardt, A.N. Food addiction in the light of DSM-5. Nutrients 2014, 6, 3653–3671. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Food addiction: An examination of the diagnostic criteria for dependence. J. Addict. Med. 2009, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N.; White, M.A.; Masheb, R.M.; Grilo, C.M. An examination of food addiction in a racially diverse sample of obese patients with binge eating disorder in primary care settings. Compr. Psychiatry 2013, 54, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Dhillo, W.S. Appetite regulation: An overview. Thyroid 2007, 17, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Lutter, M.; Nestler, E.J. Homeostatic and hedonic signals interact in the regulation of food intake. J. Nutr. 2009, 139, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Saper, C.B.; Chou, T.C.; Elmquist, J.K. The need to feed: Homeostatic and hedonic control of eating. Neuron 2002, 36, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Ahima, R.S.; Antwi, D.A. Brain regulation of appetite and satiety. Endocrinol. Metab. Clin. N. Am. 2008, 37, 811–823. [Google Scholar] [CrossRef]
- Volkow, N.; Wang, G.J.; Tomasi, D.; Baler, R. Obesity and addiction: Neurobiological overlaps. Obes. Rev. 2013, 14, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Avena, N.M.; Gearhardt, A.N.; Gold, M.S.; Wang, G.-J.; Potenza, M.N. Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data. Nat. Rev. Neurosci. 2012, 13, 514. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.A.; Bloom, S.R. Appetite and hedonism: Gut hormones and the brain. Endocrinol. Metab. Clin. N. Am. 2010, 39, 729–743. [Google Scholar] [CrossRef]
- Murray, S.; Tulloch, A.; Gold, M.S.; Avena, N.M. Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat. Rev. Neurosci. 2014, 10, 540–552. [Google Scholar] [CrossRef]
- Kanda, H.; Tateya, S.; Tamori, Y.; Kotani, K.; Hiasa, K.-I.; Kitazawa, R.; Kitazawa, S.; Miyachi, H.; Maeda, S.; Egashira, K. Mcp-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Investig. 2006, 116, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Kos, K.; Harte, A.L.; James, S.; Snead, D.R.; O’Hare, J.P.; McTernan, P.G.; Kumar, S. Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass. Am. J. Physiol. Endocrinol. Metab. 2007, 293, 1335–1340. [Google Scholar] [CrossRef]
- Arora, S. Role of neuropeptides in appetite regulation and obesity—A review. Neuropeptides 2006, 40, 375–401. [Google Scholar] [CrossRef] [PubMed]
- Hegadoren, K.; O’Donnell, T.; Lanius, R.; Coupland, N.; Lacaze-Masmonteil, N. The role of β-endorphin in the pathophysiology of major depression. Neuropeptides 2009, 43, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Dinas, P.; Koutedakis, Y.; Flouris, A. Effects of exercise and physical activity on depression. Ir. J. Med. Sci. 2011, 180, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 2005, 9, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, M.; Suzuki, T.; Takahashi, K.; Totsune, K.; Muramatsu, Y.; Kaneko, C.; Date, F.; Takeyama, J.; Darnel, A.D.; Moriya, T. Orexin-A expression in human peripheral tissues. Mol. Cell. Endocrinol. 2003, 205, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hoggard, N.; Johnstone, A.M.; Faber, P.; Gibney, E.R.; Elia, M.; Lobley, G.; Rayner, V.; Horgan, G.; Hunter, L.; Bashir, S. Plasma concentrations of α-msh, agrp and leptin in lean and obese men and their relationship to differing states of energy balance perturbation. Clin. Endocrinol. 2004, 61, 31–39. [Google Scholar] [CrossRef]
- Li, J.; O’Connor, K.L.; Hellmich, M.R.; Greeley, G.H.; Townsend, C.M.; Evers, B.M. The role of protein kinase D in neurotensin secretion mediated by protein kinase C-α/-δ and rho/rho kinase. J. Biol. Chem. 2004, 279, 28466–28474. [Google Scholar] [CrossRef] [PubMed]
- Reda, T.K.; Geliebter, A.; Pi-Sunyer, F.X. Amylin, food intake, and obesity. Obes. Res. 2002, 10, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Romanatto, T.; Cesquini, M.; Amaral, M.E.; Roman, É.A.; Moraes, J.C.; Torsoni, M.A.; Cruz-Neto, A.P.; Velloso, L.A. Tnf-α acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient—Effects on leptin and insulin signaling pathways. Peptides 2007, 28, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Zilberter, T. Food addiction and obesity: Do macronutrients matter? Front. Neuroenerg. 2012, 4. [Google Scholar] [CrossRef]
- Kant, A.; Graubard, B. Energy density of diets reported by american adults: Association with food group intake, nutrient intake, and body weight. Int. J. Obes. 2005, 29, 950–956. [Google Scholar] [CrossRef]
- Via, M. The malnutrition of obesity: Micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012, 2012. [Google Scholar] [CrossRef]
- Word Health Organization. BMI Classification. Available online: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 29 December 2014).
- Shea, J.; King, M.; Yi, Y.; Gulliver, W.; Sun, G. Body fat percentage is associated with cardiometabolic dysregulation in bmi-defined normal weight subjects. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.P.; Shea, J.L.; Sun, G. Comparison of the classification of obesity by BMI vs. dual-energy X-ray absorptiometry in the newfoundland population. Obesity 2009, 17, 2094–2099. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [PubMed]
- Green, K.K.; Shea, J.L.; Vasdev, S.; Randell, E.; Gulliver, W.; Sun, G. Higher dietary protein intake is associated with lower body fat in the newfoundland population. Clin. Med. Insights Endocrinol. Diabetes 2010, 3, 25–35. [Google Scholar] [PubMed]
- Cahill, F.; Shahidi, M.; Shea, J.; Wadden, D.; Gulliver, W.; Randell, E.; Vasdev, S.; Sun, G. High dietary magnesium intake is associated with low insulin resistance in the newfoundland population. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, J.L.; Randell, E.W.; Sun, G. The prevalence of metabolically healthy obese subjects defined by BMI and dual-energy X-ray absorptiometry. Obesity 2011, 19, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.L.; Loredo-Osti, J.C.; Sun, G. Association of RBP4 gene variants and serum HDL cholesterol levels in the newfoundland population. Obesity 2010, 18, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Baecke, J.; Burema, J.; Frijters, J. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 1982, 36, 936–942. [Google Scholar] [PubMed]
- Van Poppel, M.N.; Chinapaw, M.J.; Mokkink, L.B.; van Mechelen, W.; Terwee, C.B. Physical activity questionnaires for adults: A systematic review of measurement properties. Sports Med. 2010, 40, 565–600. [Google Scholar] [CrossRef] [PubMed]
- Manji, N.; Boelaert, K.; Sheppard, M.; Holder, R.; Gough, S.; Franklyn, J. Lack of association between serum TSH or free T4 and body mass index in euthyroid subjects. Clin. Endocrinol. 2006, 64, 125–128. [Google Scholar] [CrossRef]
- Nyrnes, A.; Jorde, R.; Sundsfjord, J. Serum TSH is positively associated with BMI. Int. J. Obes. 2005, 30, 100–105. [Google Scholar] [CrossRef]
- Bastemir, M.; Akin, F.; Alkis, E.; Kaptanoglu, B. Obesity is associated with increased serum TSH level, independent of thyroid function. Swiss Med. Wkly. 2007, 137, 431–434. [Google Scholar] [PubMed]
- Baptista, T.; Lacruz, A.; Meza, T.; Contreras, Q.; Delgado, C.; Mejias, M.A.; Hernàndez, L. Antipsychotic drugs and obesity: Is prolactin involved? Can. J. Psychiatry Rev. Can. Psychiatr. 2001, 46, 829–834. [Google Scholar]
- Friedrich, N.; Rosskopf, D.; Brabant, G.; Völzke, H.; Nauck, M.; Wallaschofski, H. Associations of anthropometric parameters with serum TSH, prolactin, IGF-I, and testosterone levels: Results of the study of health in pomerania (ship). Exp. Clin. Endocrinol. Diabetes 2010, 118, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Kenna, G.A.; Swift, R.M.; Hillemacher, T.; Leggio, L. The relationship of appetitive, reproductive and posterior pituitary hormones to alcoholism and craving in humans. Neuropsychol. Rev. 2012, 22, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Gozashti, M.H.; Mohammadzadeh, E.; Divsalar, K.; Shokoohi, M. The effect of opium addiction on thyroid function tests. J. Diabetes Metab. Disord. 2014, 13. [Google Scholar] [CrossRef]
- Vescovi, P.; Pezzarossa, A. Thyrotropin-releasing hormone-induced GH release after cocaine withdrawal in cocaine addicts. Neuropeptides 1999, 33, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Moshtaghi-Kashanian, G.R.; Esmaeeli, F.; Dabiri, S. Enhanced prolactin levels in opium smokers. Addict. Biol. 2005, 10, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Hermann, D.; Heinz, A.; Mann, K. Dysregulation of the hypothalamic-pituitary-thyroid axis in alcoholism. Addiction 2002, 97, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Ellingboe, J.; Mendelson, J.H.; Kuehnle, J.C. Effects of heroin and naltrexone on plasma prolactin levels in man. Pharmacol. Biochem. Behav. 1980, 12, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Patkar, A.A.; Hill, K.P.; Sterling, R.C.; Gottheil, E.; Berrettini, W.H.; Weinstein, S.P. Serum prolactin and response to treatment among cocaine-dependent individuals. Addict. Biol. 2002, 7, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, J.; Heberlein, A.; Karagülle, D.; Gröschl, M.; Kornhuber, J.; Riera, R.; Frieling, H.; Bleich, S.; Hillemacher, T. Prolactin serum levels during alcohol withdrawal are associated with the severity of alcohol dependence and withdrawal symptoms. Alcohol.: Clin. Expe. Res. 2011, 35, 235–239. [Google Scholar] [CrossRef]
- Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of crp, TNF-α and IL-6. Diabetes Res. Clin. Pract. 2005, 69, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Achur, R.N.; Freeman, W.M.; Vrana, K.E. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J. Neuroimmune Pharmacol. 2010, 5, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Nitta, A.; Koseki, T.; Yamada, K.; Nabeshima, T. Dissociable role of tumor necrosis factor alpha gene deletion in methamphetamine self-administration and cue-induced relapsing behavior in mice. Psychopharmacology 2012, 221, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, G.C.; Tashkin, D.P.; Buckley, D.M.; Park, A.N.; Dubinett, S.M.; Roth, M.D. Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am. J. Respir. Crit. Care Med. 1997, 156, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R.; Olmstead, R.; Valladares, E.M.; Breen, E.C.; Ehlers, C.L. Tumor necrosis factor antagonism normalizes rapid eye movement sleep in alcohol dependence. Biol. Psychiatry 2009, 66, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Sacerdote, P.; Franchi, S.; Gerra, G.; Leccese, V.; Panerai, A.E.; Somaini, L. Buprenorphine and methadone maintenance treatment of heroin addicts preserves immune function. Brain Behav. Immun. 2008, 22, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Nabeshima, T. Pro-and anti-addictive neurotrophic factors and cytokines in psychostimulant addiction: Mini review. Ann. N. Y. Acad. Sci. 2004, 1025, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Sáez, C.G.; Olivares, P.; Pallavicini, J.; Panes, O.; Moreno, N.; Massardo, T.; Mezzano, D.; Pereira, J. Increased number of circulating endothelial cells and plasma markers of endothelial damage in chronic cocaine users. Thromb. Res. 2011, 128, 18–23. [Google Scholar] [CrossRef] [PubMed]
- McClung, C.A. Circadian rhythms, the mesolimbic dopaminergic circuit, and drug addiction. Sci. World J. 2007, 7, 194–202. [Google Scholar] [CrossRef]
- Peniston, E.G.; Kulkosky, P.J. A-θ brainwave training and β-endorphin levels in alcoholics. Alcohol. Clin. Exp. Res. 1989, 13, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Lovallo, W.R. Cortisol secretion patterns in addiction and addiction risk. Int. J. Psychophysiol. 2006, 59, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001, 24, 97–129. [Google Scholar] [CrossRef] [PubMed]
- Eller, L.K.; Ainslie, P.N.; Poulin, M.J.; Reimer, R.A. Differential responses of circulating amylin to high-fat vs. high-carbohydrate meal in healthy men. Clin. Endocrinol. 2008, 68, 890–897. [Google Scholar] [CrossRef]
- Troy, L.M.; Jacques, P.F.; Hannan, M.T.; Kiel, D.P.; Lichtenstein, A.H.; Kennedy, E.T.; Booth, S.L. Dihydrophylloquinone intake is associated with low bone mineral density in men and women. Am. J. Clin. Nutr. 2007, 86, 504–508. [Google Scholar] [PubMed]
- Rockett, H.R.; Breitenbach, M.; Frazier, A.L.; Witschi, J.; Wolf, A.M.; Field, A.E.; Colditz, G.A. Validation of a youth/adolescent food frequency questionnaire. Prev. Med. 1997, 26, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Feskanich, D.; Rimm, E.B.; Giovannucci, E.L.; Colditz, G.A.; Stampfer, M.J.; Litin, L.B.; Willett, W.C. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J. Am. Diet. Assoc. 1993, 93, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Meule, A.; Vögele, C.; Kübler, A. German translation and validation of the yale food addiction scale. Diagnostica 2012, 58, 115–126. [Google Scholar] [CrossRef]
- Clark, S.M.; Saules, K.K. Validation of the yale food addiction scale among a weight-loss surgery population. Eat. Behav. 2013, 14, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.J.; Smit, H.J. Food craving and food “addiction”: A critical review of the evidence from a biopsychosocial perspective. Pharmacol. Biochem. Behav. 2000, 66, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Corwin, R.L.; Grigson, P.S. Symposium overview—Food addiction: Fact or fiction? J. Nutr. 2009, 139, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Panicker, V.; Evans, J.; Bjøro, T.; Åsvold, B.O.; Dayan, C.M.; Bjerkeset, O. A paradoxical difference in relationship between anxiety, depression and thyroid function in subjects on and not on T4: Findings from the hunt study. Clin. Endocrinol. 2009, 71, 574–580. [Google Scholar] [CrossRef]
- Sabeen, S.; Chou, C.; Holroyd, S. Abnormal thyroid stimulating hormone (TSH) in psychiatric long-term care patients. Arch. Gerontol. Geriatr. 2010, 51, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Plotsky, P.M.; Owens, M.J.; Nemeroff, C.B. Psychoneuroendocrinology of depression: Hypothalamic-pituitary-adrenal axis. Psychiatr. Clin. N. Am. 1998, 21, 293–307. [Google Scholar] [CrossRef]
- Chandrashekara, S.; Jayashree, K.; Veeranna, H.; Vadiraj, H.; Ramesh, M.; Shobha, A.; Sarvanan, Y.; Vikram, Y.K. Effects of anxiety on TNF-α levels during psychological stress. J. Psychosom. Res. 2007, 63, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends Immunol. 2006, 27, 24–31. [Google Scholar] [CrossRef]
- Himmerich, H.; Fulda, S.; Linseisen, J.; Seiler, H.; Wolfram, G.; Himmerich, S.; Gedrich, K.; Kloiber, S.; Lucae, S.; Ising, M. Depression, comorbidities and the TNF-α system. Eur. Psychiatry 2008, 23, 421–429. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedram, P.; Sun, G. Hormonal and Dietary Characteristics in Obese Human Subjects with and without Food Addiction. Nutrients 2015, 7, 223-238. https://doi.org/10.3390/nu7010223
Pedram P, Sun G. Hormonal and Dietary Characteristics in Obese Human Subjects with and without Food Addiction. Nutrients. 2015; 7(1):223-238. https://doi.org/10.3390/nu7010223
Chicago/Turabian StylePedram, Pardis, and Guang Sun. 2015. "Hormonal and Dietary Characteristics in Obese Human Subjects with and without Food Addiction" Nutrients 7, no. 1: 223-238. https://doi.org/10.3390/nu7010223
APA StylePedram, P., & Sun, G. (2015). Hormonal and Dietary Characteristics in Obese Human Subjects with and without Food Addiction. Nutrients, 7(1), 223-238. https://doi.org/10.3390/nu7010223