A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action
Abstract
:1. Introduction
Flavonoid Subclass | Food Source | Additional Naturally Occurring Forms |
---|---|---|
Anthocyanidins; e.g., cyanidin, delphinidin | Berries | Anthocyanidins may occur in methylated form, e.g., malvidin. All anthocyanidins conjugate with saccharide (sugar) groups to form anthocyanins *, e.g., chrysanthemin |
Flavanols; e.g., catechin | Tea, cocoa | All flavanols are isomers, polymers or gallated conjugates of catechin, e.g., epicatechin *, epigallocatechin gallate (EGCG) * |
Flavonols; e.g., kaempferol *, quercetin * | Fruits, vegetables | Flavonols may occur in methylated form, e.g., isorhamnetin * and/or conjugate with saccharides |
Flavones; e.g., apigenin, luteolin | Cereals, herbs | Flavones conjugate with saccharides |
Flavanones; e.g., naringenin | Citrus fruits | Flavanones may occur in methylated form e.g., hesperetin *, and/or conjugate with saccharides, e.g., hesperidin *, narirutin * |
Isoflavones; e.g., daidzein, genistein | Soya beans, peanuts | Isoflavones may occur in methylated form and/or conjugate with saccharides |
2. Method
Food Type | Flavonoid Composition (mg/100 g) | ||||
---|---|---|---|---|---|
Anthocyanidins | Flavanols | Flavanones | Flavones | Flavonols | |
Apples (whole) | 1.59 | 9.29 | 0.00 | 0.12 | 4.15 |
Blackcurrants (whole) | 157.78 | 1.17 | - | 0.00 | 11.46 |
Blueberries (whole, cultivated) | 163.30 | 6.69 | 0.00 | 0.20 | 10.63 |
Cherries (whole, red) | 33.44 | 4.13 | - | 0.00 | 2.43 |
Cocoa (powdered) | - | 52.73 | - | - | 2.03 |
Ginkgo biloba (EGb 761) * | - | - | - | - | - |
Grapes (whole, Concord) | 120.1 | 2.14 | - | - | 3.11 |
Green tea (brewed) | - | 132.81 | - | 0.30 | 4.82 |
Oranges (whole) | - | 0.00 | 42.57 | 0.19 | 0.73 |
3. Cognitive Effects Following Acute Flavonoid-Rich Food Supplementation
3.1. Fruit Supplementation
3.1.1. Berry Anthocyanins (Blackcurrant, Blueberry, Cherry, Cranberry, Grape)
3.1.2. Citrus Hesperidin (Orange)
3.1.3. Quercetin and Epicatechin (Apple)
3.2. Cocoa Supplementation (Epicatechin)
3.3. Green Tea Supplementation (Epigallocatechin Gallate)
3.4. Ginkgo Biloba Supplementation (Quercetin, Kaempferol and Isorhamnetin)
Study | Age (Years)n | Flavonoid Dose (mg) | Cognitive Measure | Postprandial Timepoint | Effect Size (d) |
---|---|---|---|---|---|
* Field et al. [37] | 18–2530 | cocoa773 | CRT | 2 h | 0.16 |
Lamport et al. [21] | 18–3024 | citrus71 | DSST | 2 h | 0.30 |
Scholey et al. [35] | 18–3530 | cocoa520 | Mental fatigue | 1.5–2.5 h | (Average)0.33 |
Scholey et al. [35] | 18–3530 | cocoa994 | RVIP | 1.5–2.5 h | (Average)0.35 |
* Field et al. [37] | 18–2530 | cocoa773 | VSWM | 2 h | 0.35 |
Watson et al. [30] | 18–3436 | berry483 | RVIP | 1–2.5 h | (Average)0.45 |
Kennedy et al. [45] | 19–2420 | ginkgo240 | Speed of attention | 2.5–6 h | (Average)0.47 |
Kennedy et al. [46] | 21.2 (3.9)20 | ginkgo360 | Serial 7s | 4–6 h | (Average)0.47 |
Scholey et al. [35] | 18–3530 | cocoa994 | Serial 3s | 1.5–2.5 h | (Average)0.51 |
Kennedy et al. [45] | 19–2420 | ginkgo120 | Quality of memory | 1–4 h | (Average)0.55 |
Scholey et al. [39] | 27.7 (9.3)31 | tea300 | Mood | 2 h | 0.55 |
* Elsabagh et al. [47] | 18–2652 | ginkgo120 | Pattern recognition | 4 h | 0.55 |
Scholey et al. [35] | 18–3530 | cocoa520 | Serial 3s | 1.5–2.5 h | (Average)0.56 |
Dodd [25] | 18–2519 | berry631 | Letter memory | 5 h | 0.57 |
Dodd [25] | 62–7318 | berry631 | Word recognition | 2–5 h | (Average)0.57 |
Alharbi et al. [33] | 30–6524 | citrus272 | CPT | 6 h | 0.58 |
* Elsabagh et al. [47] | 18–2652 | ginkgo120 | PASAT | 4 h | 0.58 |
Kennedy et al. [46] | 21.2 (3.9)20 | ginkgo360 | Quality of memory | 6 h | 0.59 |
Watson et al. [30] | 18–3436 | berry467 | Digit vigilance | 1–2.5 h | (Average)0.64 |
Scholey et al. [39] | 27.7 (9.3)31 | tea300 | Mood | 2 h | 0.64 |
Kennedy et al. [46] | 21.2 (3.9)20 | ginkgo360 | DR | 6 h | 0.67 |
* Whyte & Williams [26] | 8–1014 | berry143 | RAVLT | 2 h | 0.74 |
Alharbi et al. [33] | 30–6524 | citrus272 | Finger tapping | 2–6 h | (Average)0.75 |
# Caldwell et al. [32] | 74.1 (7.9)5 | berry55 | Task switching | 6 h | (db)0.75 |
Whyte et al. [27] | 7–1021 | berry253 | Flanker | 3 h | 0.78 |
Whyte et al. [27] | 7–1021 | berry253 | Word recognition | 6 h | 0.78 |
Whyte et al. [27] | 7–1021 | berry253 | IR | 1.25 h | 0.80 |
Kennedy et al. [46] | 21.2 (3.9)20 | ginkgo360 | IR | 6 h | 0.83 |
Kennedy et al. [45] | 19–2420 | ginkgo360 | Speed of attention | 2.5–6 h | (Average)0.98 |
4. Mechanisms of Action
4.1. Absorption and Metabolism
4.2. Endothelial Function
4.2.1. Vasodilation
4.2.2. Nitric Oxide Synthesis
4.3. Blood Glucose Regulation
4.4. Neuronal Enhancement
4.4.1. Monoamine Oxidase Inhibition
4.4.2. BDNF Synthesis
4.5. Visual Function
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beecher, G.R. Role of Flavonoids in the Diet Overview of Dietary Flavonoids: Nomenclature, Occurrence and Intake 1. J. Nutr. 2003, 133, 3248S–3254S. [Google Scholar] [PubMed]
- Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries Decrease Cardiovascular Risk Factors in Obese Men and Women with Metabolic Syndrome. J. Nutr. 2010, 140, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A.; Baer, D.J.; Khoo, C.; Gebauer, S.K.; Charron, C.S. Cranberry Juice Consumption Lowers Markers of Cardiometabolic Risk, Including Blood Pressure and Circulating C-Reactive Protein, Triglyceride, and Glucose Concentrations. J. Nutr. 2015, 145, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Cherniack, E.P. A berry thought-provoking idea: The potential role of plant polyphenols in the treatment of age-related cognitive disorders. Br. J. Nutr. 2012, 108, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, P.; Tinarelli, C.; Schulz, R.J.; Polidori, M.C. Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front. Pharmacol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Shukitt-Hale, B. Blueberries and neuronal aging. Gerontology 2012, 58, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Solanki, I.; Parihar, P.; Mansuri, M.L.; Parihar, M.S. Flavonoid-Based Therapies in the Early Management of Neurodegenerative Diseases. Adv. Nutr. 2015, 6, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Spencer, J.P.E. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med. 2012, 52, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Lau, F.C.; Shukitt-hale, B.; Joseph, J.A. Beneficial effects of berry fruit polyphenols on neuronal and behavioral aging. J. Sci. Food Agric. 2006, 86, 2251–2255. [Google Scholar] [CrossRef]
- Lamport, D.J.; Dye, L.; Wightman, J.D.; Lawton, C.L.; Sciences, P.; Lane, W. The effects of flavonoid and other polyphenol consumption on cognitive performance: A systematic research review of human experimental and epidemiological studies. Nutr. Ageing 2012, 1, 5–25. [Google Scholar]
- Macready, A.L.; Kennedy, O.B.; Ellis, J.A.; Williams, C.M.; Spencer, J.P.E.; Butler, L.T. Flavonoids and cognitive function: A review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr. 2009, 4, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, J.B.; Ding, E.L.; Dixon, R.; Pasinetti, G.M.; Villarreal, F. The Science of Cocoa Flavanols: Bioavailability, Emerging Evidence, and Proposed Mechanisms. Adv. Nutr. 2014, 5, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Lamport, D.J.; Saunders, C.; Butler, L.T.; Spencer, J.P. Fruits, vegetables, 100% juices, and cognitive function. Nutr. Rev. 2014, 72, 774–789. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.G.; Shukitt-Hale, B. Berry Fruit Enhances Beneficial Signaling in the Brain. J. Agric. Food Chem. 2012, 60, 5709–5715. [Google Scholar] [CrossRef] [PubMed]
- Poulose, S.M.; Carey, A.N.; Shukitt-Hale, B. Improving brain signaling in aging: Could berries be the answer? Expert Rev. Neurother. 2012, 12, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Rendeiro, C.; Guerreiro, J.D.T.; Williams, C.; Spencer, J. Flavonoids as modulators of memory and learning: Molecular interactions resulting in behavioural effects. Proc. Nutr. Soc. 2012, 71, 246–262. [Google Scholar] [CrossRef] [PubMed]
- Scholey, A.; Owen, L. Effects of chocolate on cognitive function and mood: A systematic review. Nutr. Rev. 2013, 71, 665–681. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.E. Food for thought: The role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc. Nutr. Soc. 2008, 67, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.E. The impact of fruit flavonoids on memory and cognition. Br. J. Nutr. 2010, 104, S40–S47. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alzheimer’s disease pathophysiology. J. Sci. Food Agric. 2014, 94, 1042–1056. [Google Scholar] [CrossRef] [PubMed]
- Lamport, D.J.; Pal, D.; Macready, A.L.; Boucas, S.B.; Fletcher, J.M.; Williams, C.M.; Spencer, J.P.E.; Butler, L.T. The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: An acute, randomised, placebo controlled crossover trial in healthy young adults. Psychopharmacology 2015. submitted for publication. [Google Scholar]
- Lipsey, M.W.; Wilson, D.B. Practical Meta-Analysis, 1st ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2000. [Google Scholar]
- Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Flavonoid Content of Selected Foods, Release 3.1; U.S. Department of Agriculture: Beltsville, MD, USA, 2014. [Google Scholar]
- Clostre, F. Ginkgo biloba extract (EGb 761). State of knowledge in the dawn of the year 2000. Ann. Pharm. Fr. 1999, 57, 1S8–1S88. [Google Scholar] [PubMed]
- Dodd, G.F. The Acute Effects of Flavonoid-Rich Blueberries on Cognitive Function in Healthy Younger and Older Adults. Ph.D. Thesis, University of Reading, Reading, UK, 2012. [Google Scholar]
- Whyte, A.R.; Williams, C.M. Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 years old children. Nutrition 2015, 31, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Whyte, A.R.; Schafer, G.; Williams, C.M. Cognitive effects following acute wild blueberry supplementation on 7- to 10-year-old children. Eur. J. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Cifuentes-Gomez, T.; Tabatabaee, S.; Lecras, C.; Spencer, J.P.E. Procyanidin, anthocyanin, and chlorogenic Acid contents of highbush and lowbush blueberries. J. Agric. Food Chem. 2012, 60, 5772–5778. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; George, T.; Heiss, C.; Spencer, J. Impact of processing on the bioavailability and vascular effects of blueberry (poly)phenols. FASEB J. 2014, 28, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.W.; Haskell-Ramsay, C.F.; Kennedy, D.O.; Cooney, J.M.; Trower, T.; Scheepens, A. Acute supplementation with blackcurrant extracts modulates cognitive functioning and inhibits monoamine oxidase-B in healthy young adults. J. Funct. Foods 2015, 17, 524–539. [Google Scholar] [CrossRef]
- Hendrickson, S.J.; Mattes, R.D. No acute effects of grape juice on appetite, implicit memory and mood. Food Nutr. Res. 2008, 52, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, K.; Charlton, K.E.; Roodenrys, S.; Jenner, A. Anthocyanin-rich cherry juice does not improve acute cognitive performance on RAVLT. Nutr. Neurosci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.H.; Lamport, D.J.; Dodd, G.F.; Saunders, C.; Harkness, L.; Butler, L.T.; Spencer, J.P.E. Flavonoid rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur. J. Neurosci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, C.P.; Downey, L.A.; Croft, K.D.; Scholey, A.; Stough, C.; Yang, X.; Considine, M.J.; Ward, N.C.; Puddey, I.B.; Swinny, E.; et al. The acute effect of flavonoid-rich apples and nitrate-rich spinach on cognitive performance and mood in healthy men and women. Food Funct. 2014, 5, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Scholey, A.B.; French, S.J.; Morris, P.J.; Kennedy, D.O.; Milne, A.L.; Haskell, C.F. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J. Psychopharmacol. 2010, 24, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Pase, M.P.; Scholey, A.B.; Pipingas, A.; Kras, M.; Nolidin, K.; Gibbs, A.; Wesnes, K.; Stough, C. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. J. Psychopharmacol. 2013, 27, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Field, D.T.; Williams, C.M.; Butler, L.T. Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol. Behav. 2011, 103, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Wightman, E.L.; Haskell, C.F.; Forster, J.S.; Veasey, R.C.; Kennedy, D.O. Epigallocatechin gallate, cerebral blood flow parameters, cognitive performance and mood in healthy humans: A double-blind, placebo-controlled, crossover investigation. Hum. Psychopharmacol. 2012, 27, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Scholey, A.; Downey, L.A.; Ciorciari, J.; Pipingas, A.; Nolidin, K.; Finn, M.; Wines, M.; Catchlove, S.; Terrens, A.; Barlow, E.; et al. Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite 2012, 58, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Camfield, D.A.; Stough, C.; Farrimond, J.; Scholey, A.B. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: A systematic review and meta-analysis. Nutr. Rev. 2014, 72, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, S.; Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci. 2008, 73, R14–R19. [Google Scholar] [CrossRef] [PubMed]
- Warot, D.; Lacomblez, L.; Danjou, P.; Weiller, E.; Payan, C.; Puech, A.J. Comparative effects of ginkgo biloba extracts on psychomotor performances and memory in healthy subjects. Therapie 1991, 46, 33–36. [Google Scholar] [PubMed]
- Subhan, Z.; Hindmarch, I. The psychopharmacological effects of Ginkgo biloba extract in normal healthy volunteers. Int. J. Clin. Pharmacol. Res. 1984, 4, 89–93. [Google Scholar] [PubMed]
- Nathan, P.J.; Ricketts, E.; Wesnes, K.; Mrazek, L.; Greville, W.; Stough, C. The acute nootropic effects of Ginkgo biloba in healthy older human subjects: A preliminary investigation. Hum. Psychopharmacol. 2002, 17, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology 2000, 151, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. Modulation of cognition and mood following administration of single doses of Ginkgo biloba, ginseng, and a ginkgo/ginseng combination to healthy young adults. Physiol. Behav. 2002, 75, 739–751. [Google Scholar] [CrossRef]
- Elsabagh, S.; Hartley, D.E.; Ali, O.; Williamson, E.M.; File, S.E. Differential cognitive effects of Ginkgo biloba after acute and chronic treatment in healthy young volunteers. Psychopharmacology 2005, 179, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Jackson, P.A.; Haskell, C.F.; Scholey, A.B. Modulation of cognitive performance following single doses of 120 mg Ginkgo biloba extract administered to healthy young volunteers. Hum. Psychopharmacol. 2007, 22, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-mateos, A.; Rendeiro, C.; Bergillos-meca, T.; Tabatabaee, S.; George, T.W.; Heiss, C.; Spencer, J.P.E. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am. J. Clin. Nutr. 2013, 98, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Schramm, D.D.; Holt, R.R.; Ensunsa, J.L.; Fraga, C.G.; Schmitz, H.H.; Keen, C.L. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J. Nutr. 2000, 130, 2115S–2119S. [Google Scholar] [PubMed]
- Holt, R.R.; Lazarus, S.A.; Cameron Sullards, M.; Zhu, Q.Y.; Schramm, D.D.; Hammerstone, J.F.; Fraga, C.G.; Schmitz, H.H.; Keen, C.L. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 2002, 76, 798–804. [Google Scholar] [PubMed]
- Rein, D.; Lotito, S.; Holt, R.R.; Keen, C.L.; Schmitz, H.H.; Fraga, C.G. Epicatechin in human plasma: In vivo determination and effect of chocolate consumption on plasma oxidation status. J. Nutr. 2000, 130, 2109S–2114S. [Google Scholar] [PubMed]
- Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 2001, 41, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbet, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans.I.Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [PubMed]
- Dohadwala, M.M.; Holbrook, M.; Hamburg, N.M.; Shenouda, S.M.; Chung, W.B.; Titas, M.; Kluge, M.A.; Wang, N.; Palmisano, J.; Milbury, P.E.; et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am. J. Clin. Nutr. 2011, 93, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Monahan, K.D.; Feehan, R.P.; Kunselman, A.R.; Preston, A.G.; Miller, D.L.; Lott, M.E.J. Dose-dependent increases in flow-mediated dilation following acute cocoa ingestion in healthy older adults. J. Appl. Physiol. 2011, 111, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, N.; Vlachopoulos, C.; Aznaouridis, K.; Baou, K.; Vasiliadou, C.; Pietri, P.; Xaplanteris, P.; Stefanadi, E.; Stefanadis, C. The acute effect of green tea consumption on endothelial function in healthy individuals. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Widlansky, M.E.; Hamburg, N.M.; Anter, E.; Holbrook, M.; Kahn, D.F.; Elliott, J.G.; Keaney, J.F.; Vita, J.A. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J. Am. Coll. Nutr. 2007, 26, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Franc, J.; Scalbert, A. Hesperidin contributes to the vascular protective effects of orange juice: A randomized crossover study in healthy volunteers. Am. J. Clin. Nutr. 2011, 93, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.T.; Head, K.; Morris, P.G.; Macdonals, I.A. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J. Cardiovasc. Pharmacol. 2006, 47, S215–S220. [Google Scholar] [CrossRef] [PubMed]
- Borgwardt, S.; Hammann, F.; Scheffler, K.; Kreuter, M.; Drewe, J.; Beglinger, C. Neural effects of green tea extract on dorsolateral prefrontal cortex. Eur. J. Clin. Nutr. 2012, 66, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Ruitenberg, A.; den Heijer, T.; Bakker, S.L.M.; van Swieten, J.C.; Koudstaal, P.J.; Hofman, A.; Breteler, M.M.B. Cerebral hypoperfusion and clinical onset of dementia: The Rotterdam Study. Ann. Neurol. 2005, 57, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Mozolic, J.L.; Hayasaka, S.; Laurienti, P.J. A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Front. Hum. Neurosci. 2010, 4. [Google Scholar] [CrossRef] [PubMed]
- Loke, W.M.; Hodgson, J.M.; Proudfoot, J.M.; McKinley, A.J.; Puddey, I.B.; Croft, K.D. Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr. 2008, 88, 1018–1025. [Google Scholar] [PubMed]
- Ciani, E.; Guidi, S.; Bartesaghi, R.; Contestabile, A. Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: Implication for a survival role of nitric oxide. J. Neurochem. 2002, 82, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Stoclet, J.-C.; Chataigneau, T.; Ndiaye, M.; Oak, M.-H.; El Bedoui, J.; Chataigneau, M.; Schini-Kerth, V.B. Vascular protection by dietary polyphenols. Eur. J. Pharmacol. 2004, 500, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zacharek, A.; Zhang, C.; Jiang, H.; Li, Y.; Roberts, C.; Lu, M.; Kapke, A.; Chopp, M. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J. Neurosci. 2005, 25, 2366–2375. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.K.; David, K.K. Emerging roles of nitric oxide in neurodegeneration. Nitric Oxide 2010, 22, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, A.; Moro, M.A.; Hurtado, O.; Leza, J.C.; Lizasoain, I. Dual role of nitric oxide in adult neurogenesis. Brain Res. Brain Res. Rev. 2005, 50, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Törrönen, R.; Sarkkinen, E.; Tapola, N.; Hautaniemi, E.; Kilpi, K.; Niskanen, L. Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br. J. Nutr. 2010, 103, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Singh, A.P.; Vorsa, N.; Goettl, C.D.; Kittleson, K.M.; Roe, C.M.; Kastello, G.M.; Ragsdale, F.R. Human glycemic response and phenolic content of unsweetened cranberry juice. J. Med. Food 2008, 11, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Benton, D.; Owens, D.S.; Parker, P.Y. Blood glucose influences memory and attention in young adults. Neuropsychologia 1994, 32, 595–607. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Scholey, A.B. Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology 2000, 149, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.K.; Sünram-Lea, S.I.; Wesnes, K.A. Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults. Biol. Psychol. 2012, 89, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015, 29, 624–651. [Google Scholar] [CrossRef] [PubMed]
- Jäger, A.K.; Saaby, L. Flavonoids and the CNS. Molecules 2011, 16, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.E.; Vauzour, D.; Rendeiro, C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch. Biochem. Biophys. 2009, 492, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Szuhany, K.L.; Bugatti, M.; Otto, M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015, 60, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Bekinschtein, P.; Cammarota, M.; Izquierdo, I.; Medina, J.H. BDNF and memory formation and storage. Neuroscientist 2008, 14, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Bramham, C.R.; Messaoudi, E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Prog. Neurobiol. 2005, 76, 99–125. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Hanneken, A.; Milbury, P.; Tremblay, F. Recent research on polyphenolics in vision and eye health. J. Agric. Food Chem. 2010, 58, 4001–4007. [Google Scholar] [CrossRef] [PubMed]
- Field, D.T.; Bell, L.; Mount, S.W.; Willliams, C.M.; Butler, L.T. Flavonoids and visual function: Observations and hypotheses. In Handbook of Nutrition, Diet, and the Eye; Preedy, V.R., Ed.; Academic Press: Oxford, UK, 2014; pp. 403–411. [Google Scholar]
- Baltes, P.B.; Lindenberger, U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychol. Aging 1997, 12, 12–21. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, L.; Lamport, D.J.; Butler, L.T.; Williams, C.M. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action. Nutrients 2015, 7, 10290-10306. https://doi.org/10.3390/nu7125538
Bell L, Lamport DJ, Butler LT, Williams CM. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action. Nutrients. 2015; 7(12):10290-10306. https://doi.org/10.3390/nu7125538
Chicago/Turabian StyleBell, Lynne, Daniel J. Lamport, Laurie T. Butler, and Claire M. Williams. 2015. "A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action" Nutrients 7, no. 12: 10290-10306. https://doi.org/10.3390/nu7125538
APA StyleBell, L., Lamport, D. J., Butler, L. T., & Williams, C. M. (2015). A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action. Nutrients, 7(12), 10290-10306. https://doi.org/10.3390/nu7125538