Association of Nut Consumption with Cardiometabolic Risk Factors in the 2008/2009 New Zealand Adult Nutrition Survey
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Dietary Assessment
2.3. Determination of Nut Intake
2.4. Blood Collection and Analysis
2.5. Blood Pressure
2.6. Anthropometric Measurements
2.7. Cardiovascular Disease Risk
2.8. Health Risk Factor Cutoffs
2.9. Demographic Variables
2.9.1. Ethnicity
2.9.2. New Zealand Index of Deprivation (NZDep06)
2.9.3. Education
2.10. Statistical Analysis
3. Results
3.1. Characteristics of the Sample
All Survey Participants | ||
---|---|---|
Demographic | n | survey weighted % |
Total population | 4721 | |
Sex | ||
Male | 2066 | 48.6 |
Female | 2655 | 51.4 |
Age | ||
15–18 years | 699 | 7.0 |
19–30 years | 718 | 19.7 |
31–50 years | 1344 | 36.7 |
51–70 years | 895 | 27.1 |
71+ years | 1065 | 9.6 |
Ethnicity | ||
NZEO a | 2980 | 84.3 |
Maori | 1040 | 11.1 |
Pacific | 701 | 4.6 |
NZDep06 quintile b | ||
Q1 (least deprived) | 664 | 20.2 |
Q2 | 829 | 21.4 |
Q3 | 761 | 21.3 |
Q4 | 1072 | 19.0 |
Q5 (most deprived) | 1395 | 18.1 |
Highest educational qualification | ||
No school qualification | 1217 | 18.1 |
School | 1413 | 26.5 |
Post-school | 2057 | 55.4 |
Body mass index (kg/m2) | ||
<25 | 1409 | 34.9 |
25–29.9 | 1581 | 37.1 |
≥30 | 1513 | 28.0 |
Smoking status | ||
Never smoked | 2393 | 50.8 |
Ex-smoker | 1274 | 26.5 |
Current smoker | 1074 | 22.8 |
3.2. Nut Intake
3.3. Anthropometric Measurements
Total n | Non-Nut Consumers | n | Nut Consumers | n | Unadjusted Difference | Unadjusted p-Value | Adjusted Difference * | Adjusted p-Value | |
---|---|---|---|---|---|---|---|---|---|
Whole nuts | |||||||||
Weight (kg) | 4519 | 77.0 (76.2, 77.8) | 4288 | 73.5 (70.7, 76.5) | 231 | −4.5 (−8.2, −0.5) | 0.026 | −4.0 (−7.1, −07) | 0.017 |
Body mass index (kg/m2) | 4503 | 27.1 (26.8, 27.3) | 4272 | 26.1 (25.3, 26.9) | 231 | −3.6 (−6.6, −0.6) | 0.019 | −3.9 (−6.7, −1.0) | 0.008 |
Waist circumference (cm) | 4519 | 90.5 (89.8, 91.2) | 4288 | 87.3 (84.9, 89.8) | 231 | −3.5 (−6.3, −0.6) | 0.018 | −3.7 (−6.1, −1.3) | 0.003 |
ABSI | 4459 | 0.0766 (0.0763, 0.0768) | 4229 | 0.0759 (0.0750, 0.0768) | 230 | −0.0007 (−0.0016, 0.0028) | 0.165 | −0.0009 (−0.0017, <−0.0001) | 0.029 |
Systolic blood pressure (mmHg) | 4632 | 120.3 (118.9, 121.7) | 4396 | 120.3 (115.9, 124.6) | 236 | <0.1 (−4.5, 4.5) | 1.000 | −1.4 (−5.4, 2.6) | 0.497 |
Diastolic blood pressure (mmHg) | 4632 | 70.7 (69.9, 71.6) | 4396 | 70.7 (68.0, 73.5) | 236 | <0.1 (−2.9, 2.9) | 1.000 | −0.8 (−3.4, 1.8) | 0.553 |
Total nuts | |||||||||
Weight (kg) | 4519 | 77.5 (76.6, 78.4) | 3383 | 75.0 (73.6, 76.3) | 1136 | −3.3 (−5.4, −1.1) | 0.003 | −2.0 (−4.0, −0.1) | 0.044 |
Body mass index (kg/m2) | 4503 | 27.3 (27.0, 27.6) | 3370 | 26.4 (26.0, 26.8) | 1133 | −3.1 (−4.9, −1.3) | 0.001 | −2.3 (−4.0, −0.5) | 0.012 |
Waist circumference (cm) | 4519 | 91.2 (90.4, 92.0) | 3383 | 88.1 (86.8−89.3) | 1136 | −3.4 (−5.0, −1.8) | <0.001 | −2.5 (−3.9, −1.0) | 0.001 |
ABSI | 4459 | 0.0768 (0.0766, 0.0772) | 3338 | 0.0757 (0.0752, 0.0761) | 1121 | −0.0012 (−0.0017, −0.0007) | <0.001 | −0.0009 (−0.0013, −0.0005) | <0.001 |
Systolic blood pressure (mmHg) | 4632 | 122.3 (120.8, 123.8) | 3479 | 120.5 (118.6, 122.4) | 1153 | −1.4 (−3.9, 1.2) | 0.289 | −1.3 (−3.5, 1.0) | 0.263 |
Diastolic blood pressure (mmHg) | 4632 | 72.0 (71.0, 73.0) | 3479 | 70.8 (69.6, 72.0) | 1153 | −0.9 (−2.5, 0.6) | 0.237 | −1.1 (−2.6, 0.3) | 0.132 |
3.4. Blood Pressure
3.5. Biochemical Outcomes
Biochemical Indices | Total n | Non-consumers | n | Nut Consumers | n | Unadjusted Difference | Unadjusted p-Value | Adjusted Difference * | Adjusted p-Value * |
---|---|---|---|---|---|---|---|---|---|
Whole nuts | |||||||||
Total cholesterol (mmol/L) | 3309 | 5.02 (4.97, 5.08) | 3108 | 4.99 (4.77, 5.02) | 201 | −0.8 (−5.1, 3.8) | 0.740 | −3.2 (−7.5, 1.2) | 0.147 |
HDL-cholesterol (mmol/L) | 3309 | 1.33 (1.31, 1.34) | 3108 | 1.38 (1.31, 1.44) | 201 | 3.8 (−1.1, 9.0) | 0.131 | −1.0 (−4.9, 3.0) | 0.611 |
Total-C:HDL-C ratio | 3309 | 3.79 (3.73, 3.85) | 3108 | 3.62 (3.44, 3.81) | 201 | −4.4 (−9.3, 0.7) | 0.090 | −2.2 (−6.4, −2.2) | 0.318 |
C-reactive protein (mg/L) | 3310 | 1.60 (1.53, 1.68) | 3109 | 1.39 (120, 1.61) | 201 | −13.0 (−25.6, 1.6) | 0.078 | −5.5 (−18.5, 9.5) | 0.451 |
HbA1c (%) | 3348 | 5.53 (5.50, 5.56) | 3147 | 5.49 (5.39, 5.60) | 201 | −0.7 (−2.6, 1.3) | 0.488 | −0.4 (−2.1, 1.3) | 0.646 |
Whole blood folate (nmol/L) | 2929 | 351 (342, 360) | 2749 | 409 (377, 444) | 180 | 16.6 (7.0, 27.0) | <0.001 | 13.0 (4.0, 22.8) | 0.004 |
Serum folate (nmol/L) | 3277 | 22.9 (22.1, 23.6) | 3076 | 28.8 (25.9, 32.1) | 201 | 26.2 (12.9, 41.1) | <0.001 | 19.7 (7.6, 33.1) | 0.001 |
Red blood cell folate (nmol/L) | 2821 | 800 (780, 821) | 2646 | 928 (853, 1,009) | 175 | 15.9 (6.4, 26.3) | 0.001 | 11.6 (2.6, 21.7) | 0.014 |
Total nuts | |||||||||
Total cholesterol (mmol/L) | 3309 | 5.03 (4.96, 5.09) | 2426 | 5.01 (4.96, 5.11) | 883 | −0.3 (−2.6, 2.0) | 0.778 | −1.1 (−3.2, 1.0) | 0.310 |
HDL-cholesterol (mmol/L) | 3309 | 1.32 (1.30, 1.34) | 2426 | 1.36 (1.33, 1.38) | 883 | 3.0 (0.4, 5.7) | 0.024 | −0.3 (−2.5, 1.9) | 0.781 |
Total-C:HDL-C ratio | 3309 | 3.81 (3.75, 3.88) | 2426 | 3.69 (3.59, 3.79) | 883 | −3.2 (−6.2, −0.2) | 0.036 | −0.8 (−3.5, 1.9) | 0.553 |
C-reactive protein (mg/L) | 3310 | 1.67 (1.58, 1.76) | 2427 | 1.41 (1.30, 1.52) | 883 | −15.8 (−22.9, −8.0) | <0.001 | −7.6 (−14.4, −0.2) | 0.045 |
HbA1c (%) | 3348 | 5.55 (5.51, 5.58) | 2456 | 5.48 (5.43, 5.53) | 892 | −1.2 (−2.2, −0.2) | 0.021 | −0.3 (−1.3, 0.1) | 0.475 |
Whole blood folate (nmol/L) | 2929 | 354 (344, 364) | 2161 | 359 (341, 377) | 768 | 1.3 (−4.3, 7.4) | 0.643 | 0.3 (−5.0, 6.0) | 0.903 |
Serum folate (nmol/L) | 3277 | 22.4 (21.6, 23.3) | 2395 | 25.3 (23.8, 26.8) | 882 | 12.7 (5.1, 20.8) | 0.001 | 8.4 (1.1, 16.1) | 0.023 |
Red blood cell folate (nmol/L) | 2821 | 808 (785, 831) | 2071 | 815 (774, 857) | 750 | 0.9 (−4.8, 6.9) | 0.773 | −0.6 (−6.0, 5.1) | 0.831 |
3.6. Cardiovascular Disease Risk
3.7. Odds Ratios for Health Risk Factors
Unadjusted Odds ratio | Unadjusted p-Value | Adjusted Odds ratio * | Adjusted p-Value † | |
---|---|---|---|---|
Whole nuts | ||||
Overweight or obese | 0.66 (0.44, 0.99) | 0.045 | 0.60 (0.40, 0.90) | 0.015 |
Abdominal obesity | 0.57 (0.37, 0.89) | 0.012 | 0.54 (0.34, 0.87) | 0.012 |
Hypertension | 0.91 (0.61, 1.38) | 0.682 | 0.85 (0.53, 1.36) | 0.502 |
Low HDL-C | 0.77 (0.49, 1.22) | 0.268 | 0.97 (0.61, 1.55) | 0.904 |
Diabetes | 0.91 (0.45, 1.81) | 0.780 | 1.05 (0.49, 2.26) | 0.898 |
Pre-diabetes | 0.52 (0.31, 0.88) | 0.016 | 0.43 (0.34, 0.76) | 0.004 |
Total nuts | ||||
Overweight or obese | 0.72 (0.57, 0.91) | 0.006 | 0.74 (0.58, 0.95) | 0.020 |
Abdominal obesity | 0.66 (0.52, 0.84) | 0.001 | 0.68 (0.52, 0.88) | 0.004 |
Hypertension | 0.83 (0.65, 1.04) | 0.116 | 0.90 (0.69, 1.19) | 0.456 |
Low HDL-C | 0.78 (0.61, 0.99) | 0.042 | 0.90 (0.70, 1.17) | 0.448 |
Diabetes | 0.63 (0.42, 0.96) | 0.031 | 0.80 (0.51, 1.27) | 0.346 |
Pre-diabetes | 0.80 (0.63, 1.03) | 0.082 | 0.88 (0.67, 1.16) | 0.360 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S. Nut consumption and all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Hshieh, T.T.; Petrone, A.B.; Gaziano, J.M.; Djousse, L. Nut consumption and risk of mortality in the Physicians’ Health Study. Am. J. Clin. Nutr. 2015, 101, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Yu-Poth, S.; Sabate, J.; Ratcliffe, H.E.; Zhao, G.; Etherton, T.D. Nuts and their bioactive constituents: Effects on serum lipids and other factors that affect disease risk. Am. J. Clin. Nutr. 1999, 70, S504–S511. [Google Scholar]
- Nash, S.D.; Nash, D.T. Nuts as part of a healthy cardiovascular diet. Curr. Atheroscler. Rep. 2008, 10, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Oda, K.; Ros, E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Han, J.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S. Association of nut consumption with total and cause-specific mortality. N. Engl. J. Med. 2013, 369, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhang, Y.; Ding, Y.S.; Shan, Z.L.; Chen, S.J.; Yu, M.; Hu, F.B.; Liu, L.G. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Mohammadifard, N.; Salehi-Abarghouei, A.; Salas-Salvado, J.; Guasch-Ferre, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Rudich, T.; Gaziano, J.M. Nut consumption and risk of hypertension in US male physicians. Clin. Nutr. 2009, 28, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Barbour, J.A.; Howe, P.R.; Buckley, J.D.; Bryan, J.; Coates, A.M. Nut consumption for vascular health and cognitive function. Nutr. Res. Rev. 2014, 27, 131–158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.H.; Yu, H.B.; He, F.; Reilly, K.H.; Zliang, J.L.; Li, S.S.; Zhang, T.; Wang, B.Z.; Ding, Y.L.; Xi, B. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2014, 100, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wei, P.; Li, X. Is nut consumption associated with decreased risk of type 2 diabetes? Am. J. Clin. Nutr. 2014, 100, 1401–1402. [Google Scholar] [CrossRef] [PubMed]
- Viguiliouk, E.; Kendall, C.W.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Jayalath, V.H.; Augustin, L.S.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef] [PubMed]
- Bes-Rastrollo, M.; Sabate, J.; Gomez-Gracia, E.; Alonso, A.; Martinez, J.A.; Martinez-Gonzalez, M.A. Nut consumption and weight gain in a Mediterranean cohort: The SUN study. Obesity 2007, 15, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Bes-Rastrollo, M.; Wedick, N.M.; Martinez-Gonzalez, M.A.; Li, T.Y.; Sampson, L.; Hu, F.B. Prospective study of nut consumption, long-term weight change, and obesity risk in women. Am. J. Clin. Nutr. 2009, 89, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Nut consumption, weight gain and obesity: Epidemiological evidence. Nutr. Metab. Cardiovasc. Dis. 2011, 21, S40–S45. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [PubMed]
- Alper, C.M.; Mattes, R.D. Effects of chronic peanut consumption on energy balance and hedonics. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.E.; Bennett, H.W.; Jaceldo, K.B.; Sabate, J. Effect on body weight of a free 76 kilojoule (320 calorie) daily supplement of almonds for six months. J. Am. Coll. Nutr. 2002, 21, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Hollis, J.; Mattes, R. Effect of chronic consumption of almonds on body weight in healthy humans. Br. J. Nutr. 2007, 98, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Cordero-MacIntyre, Z.; Siapco, G.; Torabian, S.; Haddad, E. Does regular walnut consumption lead to weight gain? Br. J. Nutr. 2005, 94, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Tey, S.L.; Brown, R.; Gray, A.; Chisholm, A.; Delahunty, C. Nuts improve diet quality compared to other energy-dense snacks while maintaining body weight. J. Nutr. Metab. 2011. [Google Scholar] [CrossRef] [PubMed]
- Strain, J.J.; Dowey, L.; Ward, M.; Pentieva, K.; McNulty, H. B-vitamins, homocysteine metabolism and CVD. Proc. Nutr. Soc. 2004, 63, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I. Folate and carcinogenesis: Evidence, mechanisms, and implications. J. Nutr. Biochem. 1999, 10, 66–88. [Google Scholar] [CrossRef]
- Segura, R.; Javierre, C.; Lizarraga, M.A.; Ros, E. Other relevant components of nuts: Phytosterols, folate and minerals. Br. J. Nutr. 2006, 96, S36–S44. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Fulgoni, V.L., III; Nicklas, T.A. Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005–2010. Nutr. J. 2015, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Keast, D.R.; Nicklas, T.A.; Fulgoni, V.L. Nut consumption is associated with decreased health risk factors for cardiovascular disease and metabolic syndrome in U.S. adults: NHANES 1999–2004. J. Am. Coll. Nutr. 2011, 30, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Jaceldo-Siegl, K.; Haddad, E.; Oda, K.; Fraser, G.E.; Sabate, J. Tree nuts are inversely associated with metabolic syndrome and obesity: The Adventist health study-2. PLoS ONE 2014, 9, e85133. [Google Scholar] [CrossRef] [PubMed]
- Ibarrola-Jurado, N.; Bullo, M.; Guasch-Ferre, M.; Ros, E.; Martinez-Gonzalez, M.A.; Corella, D.; Fiol, M.; Warnberg, J.; Estruch, R.; Roman, P.; et al. Cross-sectional assessment of nut consumption and obesity, metabolic syndrome and other cardiometabolic risk factors: The PREDIMED study. PLoS ONE 2013, 8, e57367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askari, G.; Yazdekhasti, N.; Mohammadifard, N.; Sarrafzadegan, N.; Bahonar, A.; Badiei, M.; Sajjadi, F.; Taheri, M. The relationship between nut consumption and lipid profile among the Iranian adult population; Isfahan Healthy Heart Program. Eur. J. Clin. Nutr. 2013, 67, 385–389. [Google Scholar] [CrossRef] [PubMed]
- University of Otago; Ministry of Health. Methodology Report for the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- O’Broin, S.; Kelleher, B. Microbiological assay on microtitre plates of folate in serum and red cells. J. Clin. Pathol. 1992, 45, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.M.; Zhao, Y.; Axon, R.N. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA 2010, 303, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, N.Y.; Krakauer, J.C. Dynamic association of mortality hazard with body shape. PLoS ONE 2014, 9, e88793. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R. Updated New Zealand cardiovascular disease risk-benefit prediction guide. BMJ 2000, 320, 709–710. [Google Scholar] [CrossRef] [PubMed]
- New Zealand Guidelines Group. New Zealand Primary Care Handbook 2012, 3rd ed.New Zealand Guidelines Group: Wellington, New Zealand, 2012.
- American Diabetes Association. Diagnosis and classification of diabetes classification. Diabetes Care 2010, 33, S62–S69. [Google Scholar]
- Brown, R.C.; Tey, S.L.; Gray, A.R.; Chisholm, A.; Smith, C.; Fleming, E.; Blakey, C.; Parnell, W. Patterns and predictors of nut consumption: Results from the 2008/09 New Zealand Adult Nutrition Survey. Br. J. Nutr. 2014, 112, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Keast, D.R.; Nicklas, T.A.; Fulgoni, V.L. Out-of-hand nut consumption is associated with improved nutrient intake and health risk markers in US children and adults: National Health and Nutrition Examination Survey 1999–2004. Nutr. Res. 2012, 32, 185–194. [Google Scholar] [CrossRef] [PubMed]
- University of Otago; Ministry of Health. A Focus on Nutrition: Key Findings of the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- Jackson, C.L.; Hu, F.B. Long-term associations of nut consumption with body weight and obesity. Am. J. Clin. Nutr. 2014, 100, 408S–411S. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Dhillon, J.; Mattes, R.D. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am. J. Clin. Nutr. 2014, 100, 412S–422S. [Google Scholar] [CrossRef] [PubMed]
- Jaceldo-Siegl, K.; Joan, S.; Rajaram, S.; Fraser, G.E. Long-term almond supplementation without advice on food replacement induces favourable nutrient modifications to the habitual diets of free-living individuals. Br. J. Nutr. 2004, 92, 533–540. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Keast, D.R.; Fulgoni, V.L.; Nicklas, T.A. Tree nut consumption improves nutrient intake and diet quality in US adults: An analysis of National Health and Nutrition Examination Survey (NHANES) 1999–2004. Asia Pac. J. Clin. Nutr. 2010, 19, 142–150. [Google Scholar] [PubMed]
- Mattes, R.D. The energetics of nut consumption. Asia Pac. J. Clin. Nutr. 2008, 17, 337–339. [Google Scholar] [PubMed]
- Ellis, P.R.; Kendall, C.W.C.; Ren, Y.; Parker, C.; Pacy, J.F.; Waldron, K.W.; Jenkins, D.J.A. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am. J. Clin. Nutr. 2004, 80, 604–613. [Google Scholar] [PubMed]
- Grundy, M.; Grassby, T.; Mandalari, G.; Waldron, K.; Butterworth, P.J.; Berry, S.; Ellis, P. Effect of masticationon lipid bioaccessibility of almonds in a randomized human study and its implications for digestion kinetics, metabolizable energy, and postprandial lipemia. Am. J. Clin. Nutr. 2015, 101, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A.; Gebauer, S.K.; Baer, D.J. Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. Am. J. Clin. Nutr. 2012, 96, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Claesson, A.L.; Holm, G.; Ernersson, A.; Lindström, T.; Nystrom, F.H. Two weeks of overfeeding with candy, but not peanuts, increases insulin levels and body weight. Scand. J. Clin. Lab. Investig. 2009, 69, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Coelho, S.B.; de Sales, R.L.; Iyer, S.S.; Bressan, J.; Costa, N.M.B.; Lokko, P.; Mattes, R. Effects of peanut oil load on energy expenditure, body composition, lipid profile, and appetite in lean and overweight adults. Nutrition 2006, 22, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Blanco Mejia, S.; Kendall, C.W.; Viguiliouk, E.; Augustin, L.S.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Maroleanu, A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014, 4, e004660. [Google Scholar] [CrossRef] [PubMed]
- Bartunek, J.; Vanderheyden, M. Inflammation and related biomarkers in cardiovascular disease. Biomark. Med. 2012, 6, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Kendall, C.W.C.; Banach, M.S.; Srichaikul, K.; Vidgen, E.; Mitchell, S.; Parker, T.; Nishi, S.; Bashyam, B.; de Souza, R.; et al. Nuts as a replacement for carbohydrates in the diabetic diet. Diabetes Care 2011, 34, 1706–1711. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, S.; Connell, K.M.; Sabate, J. Effect of almond-enriched high-monounsaturated fat diet on selected markers of inflammation: A randomised, controlled, crossover study. Br. J. Nutr. 2010, 103, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Etherton, T.D.; Martin, K.R.; West, S.G.; Gillies, P.J.; Kris-Etherton, P.M. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J. Nutr. 2004, 134, 2991–2997. [Google Scholar] [PubMed]
- Wills, S.D.; Bhopal, R.S. The challenges of accurate waist and hip measurement over clothing: Pilot data. Obes. Res. Clin. Pract. 2010, 4, e163–e246. [Google Scholar] [CrossRef] [PubMed]
- Coppell, K.J.; Anderson, K.; Williams, S.; Manning, P.; Mann, J. Evaluation of diabetes care in the Otago region using a diabetes register, 1998–2003. Diabetes Res. Clin. Pract. 2006, 71, 345–352. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, R.C.; Tey, S.L.; Gray, A.R.; Chisholm, A.; Smith, C.; Fleming, E.; Parnell, W. Association of Nut Consumption with Cardiometabolic Risk Factors in the 2008/2009 New Zealand Adult Nutrition Survey. Nutrients 2015, 7, 7523-7542. https://doi.org/10.3390/nu7095351
Brown RC, Tey SL, Gray AR, Chisholm A, Smith C, Fleming E, Parnell W. Association of Nut Consumption with Cardiometabolic Risk Factors in the 2008/2009 New Zealand Adult Nutrition Survey. Nutrients. 2015; 7(9):7523-7542. https://doi.org/10.3390/nu7095351
Chicago/Turabian StyleBrown, Rachel C., Siew Ling Tey, Andrew R. Gray, Alexandra Chisholm, Claire Smith, Elizabeth Fleming, and Winsome Parnell. 2015. "Association of Nut Consumption with Cardiometabolic Risk Factors in the 2008/2009 New Zealand Adult Nutrition Survey" Nutrients 7, no. 9: 7523-7542. https://doi.org/10.3390/nu7095351
APA StyleBrown, R. C., Tey, S. L., Gray, A. R., Chisholm, A., Smith, C., Fleming, E., & Parnell, W. (2015). Association of Nut Consumption with Cardiometabolic Risk Factors in the 2008/2009 New Zealand Adult Nutrition Survey. Nutrients, 7(9), 7523-7542. https://doi.org/10.3390/nu7095351