In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread
Abstract
:1. Introduction
2. Experimental Section
2.1. Bread Samples
Mean Value (100 g) | Whole Grain Bread | Aleurone-Enriched Bread |
---|---|---|
Energy (kcal) | 262 | 261 |
Energy (kJ) | 1101 | 1101 |
Fats (g) | 5.8 | 4.2 |
Carbohydrates (g) | 37.5 | 43.3 |
Fiber (g) | 8.0 | 6.0 |
Proteins (g) | 10.9 | 9.5 |
2.2. Chemicals
2.3. In Vitro Digestion
2.4. Extraction of Phenolic Acids
2.5. LC-MSn Analyses
2.6. Statistical Analysis
3. Results
3.1. Characterization and Quantification of Phenolic Profile
Compound | RT (min) | [M − H]− (m/z) | MS2 Ions (m/z) |
---|---|---|---|
p-Coumaric acid | 9.18 | 163 | 119 |
Caffeic acid | 7.38 | 179 | 135 |
Ferulic acid | 10.06 | 193 | 149, 178, 134 |
Sinapic acid | 10.43 | 223 | 208, 179, 164 |
Dimeric ferulic acid | 10.21 | 385 | 341, 249, 317 |
Dimeric ferulic acid | 11.56 | 385 | 341, 297, 317, 249 |
Dimeric ferulic acid | 13.70 | 385 | 341, 317, 249, 297 |
Dimeric ferulic acid | 14.27 | 385 | 341, 317, 249 |
Trimeric ferulic acid | 13.65 | 577 | 441, 509, 533, 489, 341 |
Trimeric ferulic acid | 15.42 | 577 | 533, 441, 509 |
Whole Grain Bread | Aleurone-Enriched Bread | ||||
---|---|---|---|---|---|
Free Compounds | mg/100 g DW | % | mg/100 g DW | % | |
p-Coumaric acid | 0.02 ± 0.02 | 2.6 | 0.05 ± 0.01 | 8.3 | * |
Caffeic acid | 0.04 ± 0.02 | 5.2 | 0.02 ± 0.01 | 3.3 | * |
Sinapic acid | nd | 0.12 ± 0.02 | 20.0 | ||
Ferulic acid | 0.71 ± 0.16 | 92.2 | 0.41 ± 0.04 | 68.3 | * |
Dimeric ferulic acid | nd | nd | |||
Dimeric ferulic acid | nd | nd | |||
Dimeric ferulic acid | nd | nd | |||
Dimeric ferulic acid | nd | nd | |||
Trimeric ferulic acid | nd | nd | |||
Trimeric ferulic acid | nd | nd | |||
Bound compounds | mg/100 g DW | % | mg/100 g DW | % | |
p-Coumaric acid | 1.49 ± 0.40 | 1.0 | 0.82 ± 0.06 | 1.1 | * |
Caffeic acid | 0.79 ± 0.16 | 0.5 | 0.26 ± 0.01 | 0.3 | * |
Sinapic acid | 3.08 ± 0.71 | 2.1 | 3.84 ± 0.51 | 5.1 | * |
Ferulic acid | 57.88 ± 11.78 | 38.7 | 28.46 ± 1.54 | 37.9 | * |
Dimeric ferulic acid | 5.33 ± 0.72 | 3.6 | 2.66 ± 0.20 | 3.5 | * |
Dimeric ferulic acid | 9.04 ± 1.71 | 6.0 | 4.07 ± 0.36 | 5.4 | * |
Dimeric ferulic acid | 4.73 ± 0.83 | 3.2 | 2.35 ± 0.53 | 3.1 | * |
Dimeric ferulic acid | 59.16 ± 15.25 | 39.6 | 29.64 ± 3.42 | 39.4 | * |
Trimeric ferulic acid | 1.25 ± 0.69 | 0.8 | nd | ||
Trimeric ferulic acid | 6.67 ± 1.62 | 4.5 | 3.08 ± 0.73 | 4.1 | * |
Total free + bound | mg/100 g DW | % | mg/100 g DW | % | |
p-Coumaric acid | 1.51 ± 0.42 | 1.0 | 0.87 ± 0.07 | 1.1 | * |
Caffeic acid | 0.83 ± 0.18 | 0.6 | 0.28 ± 0.02 | 0.4 | * |
Sinapic acid | 3.08 ± 0.71 | 2.1 | 3.96 ± 0.52 | 5.2 | * |
Ferulic acid | 58.59 ± 11.90 | 39.0 | 28.87 ± 1.55 | 38.1 | * |
Dimeric ferulic acid | 78.27 ± 17.54 | 52.1 | 38.72 ± 3.53 | 51.1 | * |
Trimeric ferulic acid | 7.92 ± 2.06 | 5.3 | 3.08 ± 0.73 | 4.1 | * |
Total (ferulic acid + dimeric ferulic acids + trimeric ferulic acids) | mg/100 g DW | mg/100 g DW | |||
Total ferulic acid | 144.78 ± 31.04 | 70.67 ± 4.71 | * |
3.2. Bioaccessibility of Phenolic Acids in Bread Samples
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Ye, E.Q.; Chacko, S.A.; Chou, E.L.; Kugizaki, M.; Liu, S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J. Nutr. 2012, 142, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- De Munter, J.S.; Hu, F.B.; Spiegelman, D.; Franz, M.; van Dam, R.M. Whole grain, bran, and germ intake and risk of type 2 diabetes: A prospective cohort study and systematic review. PLoS Med. 2007, 4, e261. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Giovannucci, E.; Bergkvist, L.; Wolk, A. Whole grain consumption and risk of colorectal cancer: A population-based cohort of 60,000 women. Br. J. Cancer 2005, 92, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.M.; Wang, F.; Holly, E.A. Whole grains and risk of pancreatic cancer in a large population-based case-control study in the San Francisco bay area, California. Am. J. Epidemiol. 2007, 166, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, S.S.; Harnack, L.; Liu, R.H.; McKeown, N.; Seal, C.; Liu, S.; Fahey, G.C. Putting the whole grain puzzle together: Health benefits associated with whole grains—Summary of american society for nutrition 2010 satellite symposium. J. Nutr. 2011, 141, 1011S–1022S. [Google Scholar] [CrossRef] [PubMed]
- Vitaglione, P.; Mennella, I.; Ferracane, R.; Rivellese, A.A.; Giacco, R.; Ercolini, D.; Gibbons, S.M.; La Storia, A.; Gilbert, J.A.; Jonnalagadda, S.; et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr. 2015, 101, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Björck, I.; Östman, E.; Kristensen, M.; Mateo Anson, N.; Price, R.K.; Haenen, G.R.M.M.; Havenaar, R.; Bach Knudsen, K.E.; Frid, A.; Mykkänen, H.; et al. Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the healthgrain project. Trends Food Sci. Technol. 2012, 25, 87–100. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Jonnalagadda, S.S.; Liu, S.; Marquart, L.; McKeown, N.; Reicks, M.; Riccardi, G.; Seal, C.; Slavin, J.; Thielecke, F.; et al. Developing a standard definition of whole-grain foods for dietary recommendations: Summary report of a multidisciplinary expert roundtable discussion. Adv. Nutr. 2014, 5, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Seal, C.J.; Jones, A.R. Barriers to the consumption of whole grain foods. In Whole Grains and Health; Blackwell Publishing Professional: Ames, IA, USA, 2007; pp. 243–254. [Google Scholar]
- Delcour, J.A.; Rouau, X.; Courtin, C.M.; Poutanen, K.; Ranieri, R. Technologies for enhanced exploitation of the health-promoting potential of cereals. Trends Food Sci. Technol. 2012, 25, 78–86. [Google Scholar] [CrossRef]
- Brouns, F.; Hemery, Y.; Price, R.; Anson, N.M. Wheat aleurone: Separation, composition, health aspects, and potential food use. Crit. Rev. Food Sci. Nutr. 2012, 52, 553–568. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Yu, X.R.; Zhou, L.; Wang, Z.; Wang, F.; Xiong, A.S. Structural development of aleurone and its function in common wheat. Mol. Biol. Rep. 2013, 40, 6785–6792. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Kwok, K.-C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 2004, 84, 1261–1269. [Google Scholar] [CrossRef]
- Vitaglione, P.; Napolitano, A.; Fogliano, V. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 2008, 19, 451–463. [Google Scholar] [CrossRef]
- Adam, A.; Crespy, V.; Levrat-Verny, M.A.; Leenhardt, F.; Leuillet, M.; Demigne, C.; Remesy, C. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr. 2002, 132, 1962–1968. [Google Scholar] [PubMed]
- Zaupa, M.; Scazzina, F.; Dall’Asta, M.; Calani, L.; del Rio, D.; Bianchi, M.A.; Melegari, C.; de Albertis, P.; Tribuzio, G.; Pellegrini, N.; et al. In vitro bioaccessibility of phenolics and vitamins from durum wheat aleurone fractions. J. Agric. Food Chem. 2014, 62, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Calani, L.; Ounnas, F.; Salen, P.; Demeilliers, C.; Bresciani, L.; Scazzina, F.; Brighenti, F.; Melegari, C.; Crozier, A.; de Lorgeril, M.; et al. Bioavailability and metabolism of hydroxycinnamates in rats fed with durum wheat aleurone fractions. Food Funct. 2014, 5, 1738–1746. [Google Scholar] [CrossRef] [PubMed]
- Mateo Anson, N.; Havenaar, R.; Bast, A.; Haenen, G.R.M.M. Antioxidant and anti-inflammatory capacity of bioaccessible compounds from wheat fractions after gastrointestinal digestion. J. Cereal Sci. 2010, 51, 110–114. [Google Scholar] [CrossRef]
- Kern, S.M.; Bennett, R.N.; Mellon, F.A.; Kroon, P.A.; Garcia-Conesa, M.T. Absorption of hydroxycinnamates in humans after high-bran cereal consumption. J. Agric. Food Chem. 2003, 51, 6050–6055. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; He, F.; Chen, G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Keaveney, E.M.; Price, R.K.; Hamill, L.L.; Wallace, J.M.; McNulty, H.; Ward, M.; Strain, J.J.; Ueland, P.M.; Molloy, A.M.; Piironen, V.; et al. Postprandial plasma betaine and other methyl donor-related responses after consumption of minimally processed wheat bran or wheat aleurone, or wheat aleurone incorporated into bread. Br. J. Nutr. 2015, 113, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Price, R.K.; Keaveney, E.M.; Hamill, L.L.; Wallace, J.M.; Ward, M.; Ueland, P.M.; McNulty, H.; Strain, J.J.; Parker, M.J.; Welch, R.W. Consumption of wheat aleurone-rich foods increases fasting plasma betaine and modestly decreases fasting homocysteine and ldl-cholesterol in adults. J. Nutr. 2010, 140, 2153–2157. [Google Scholar] [CrossRef] [PubMed]
- Price, R.K.; Wallace, J.M.; Hamill, L.L.; Keaveney, E.M.; Strain, J.J.; Parker, M.J.; Welch, R.W. Evaluation of the effect of wheat aleurone-rich foods on markers of antioxidant status, inflammation and endothelial function in apparently healthy men and women. Br. J. Nutr. 2012, 108, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dall’Asta, M.; Bresciani, L.; Calani, L.; Cossu, M.; Martini, D.; Melegari, C.; Del Rio, D.; Pellegrini, N.; Brighenti, F.; Scazzina, F. In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread. Nutrients 2016, 8, 42. https://doi.org/10.3390/nu8010042
Dall’Asta M, Bresciani L, Calani L, Cossu M, Martini D, Melegari C, Del Rio D, Pellegrini N, Brighenti F, Scazzina F. In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread. Nutrients. 2016; 8(1):42. https://doi.org/10.3390/nu8010042
Chicago/Turabian StyleDall’Asta, Margherita, Letizia Bresciani, Luca Calani, Marta Cossu, Daniela Martini, Camilla Melegari, Daniele Del Rio, Nicoletta Pellegrini, Furio Brighenti, and Francesca Scazzina. 2016. "In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread" Nutrients 8, no. 1: 42. https://doi.org/10.3390/nu8010042
APA StyleDall’Asta, M., Bresciani, L., Calani, L., Cossu, M., Martini, D., Melegari, C., Del Rio, D., Pellegrini, N., Brighenti, F., & Scazzina, F. (2016). In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread. Nutrients, 8(1), 42. https://doi.org/10.3390/nu8010042