Carbohydrate Supplementation Influences Serum Cytokines after Exercise under Hypoxic Conditions
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Design
2.3. Determination of VO2peak
2.4. Simulation of Hypoxia
2.5. Physical Exercise and Recovery
2.6. Supplementation
2.7. Hemoglobin Oxygen Saturation
2.8. Blood Collection
2.9. Serum Determinations
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Figueroa, J.A.; Mansoor, J.K.; Allen, R.P.; Davis, C.E.; Walby, W.F.; Aksenov, A.A.; Zhao, W.; Lewis, W.R.; Schelegle, E.S. Exhaled volatile organic compounds in individuals with a history of high altitude pulmonary edema and varying hypoxia-induced responses. J. Breath. Res. 2015, 9, 026004. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.P.; Ganju, L. Influence of high altitude exposure on the immune system: A review. Immunol. Investig. 2010, 39, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.E.; Celeste Simon, M. Hypoxia-inducible factors: Crosstalk between inflammation and metabolism. Semin. Cell Dev. Biol. 2012, 23, 389–394. [Google Scholar] [CrossRef] [PubMed]
- McNamee, E.N.; Korns Johnson, D.; Homann, D.; Clambey, E.T. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol. Res. 2013, 55, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, G.; Tschöp, M.; Fischer, R.; Bidlingmaier, C.; Riepl, R.; Tschöp, K.; Hautmann, H.; Endres, S.; Toepfer, M. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 2000, 12, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Hagobian, T.A.; Jacobs, K.A.; Subudhi, A.W.; Fattor, J.A.; Rock, P.B.; Muza, S.R.; Fulco, C.S.; Braun, B.; Grediagin, A.; Mazzeo, R.S.; et al. Cytokine responses at high altitude: Effects of exercise and antioxidants at 4300 m. Med. Sci. Sports Exerc. 2006, 38, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, M.; Eckle, T.; Eltzschig, H.K. The hypoxia-inflammation link and potential drug targets. Curr. Opin. Anaesthesiol. 2011, 24, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Ver. 2000, 80, 1055–1081. [Google Scholar]
- Kasapis, C.; Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhou, S.; Davie, A.; Su, Q. Effects of moderate and high intensity exercise on T1/T2 balance. Exerc. Immunol. Rev. 2012, 18, 98–114. [Google Scholar] [PubMed]
- Mazzeo, S.R. Physiological responses to exercise at altitude. Sports Med. 2008, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Walsh, N.P.; Gleeson, M.; Pyne, D.B.; Nieman, D.C.; Dhabhar, F.S.; Shephard, R.J.; Oliver, S.J.; Bermon, S.; Kajeniene, A. Position statement part two: Maintaining immune health. Exerc. Immunol. Rev. 2011, 17, 64–103. [Google Scholar] [PubMed]
- Caris, A.V.; Lira, F.S.; de Mello, M.T.; Oyama, L.M.; dos Santos, R.V. Carbohydrate and glutamine supplementation modulates the Th1/Th2 balance after exercise performed at a simulated altitude of 4500 m. Nutrition 2014, 30, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Nehlsen-Cannarella, S.L.; Fagoaga, O.R.; Nieman, D.C.; Henson, D.A.; Butterworth, D.E.; Schmitt, R.L.; Bailey, E.M.; Warren, B.J.; Utter, A.; Davis, J.M. Carbohydrate and the cytokine response to 2.5 h of running. J. Appl. Physiol. 1997, 82, 1662–1667. [Google Scholar] [PubMed]
- Nieman, D.C. Exercise immunology: Practical applications. Int. J. Sports Med. 1997, 18, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Braun, W.A.; Von Duvillard, S.P. Influence of carbohydrate delivery on the immune response during exercise and recovery from exercise. Nutrition 2004, 20, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Ihalainen, J.K.; Vuorimaa, T.; Puurtinen, R.; Hämäläinen, I.; Mero, A.A. Effects of carbohydrate ingestion on acute leukocyte, cortisol, and interleukin-6 response in high-intensity long-distance running. J. Strength Cond. Res. 2014, 28, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Sassi, A.; Marcora, S.M.; Rampinini, E.; Mognoni, P.; Impellizzeri, F.M. Prediction of time to exhaustion from blood lactate response during submaximal exercise in competitive cyclists. Eur. J. Appl. Physiol. 2006, 97, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, R.S. Altitude, exercise and immune function. Exerc. Immunol. Rev. 2005, 11, 6–16. [Google Scholar] [PubMed]
- Pedersen, B.K.; Steensberg, A. Exercise and hypoxia: Effects on leukocytes and interleukin-6-shared mechanisms? Med. Sci. Sports Exerc. 2002, 34, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Facco, M.; Zilli, C.; Siviero, M.; Ermolao, A.; Travain, G.; Baesso, I.; Bonamico, S.; Cabrelle, A.; Zaccaria, M.; Agostini, C. Modulation of immune response by the acute and chronic exposure to high altitude. Med. Sci. Sports Exerc. 2005, 37, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.W.; Lane, A.R.; Behr, M.B.; Ondrak, K.S.; Hackney, A.C. Exercise training biomarkers: Influence of short-term diet modification on the blood lactate to rating of perceived exertion (La:RPE) ratio. Acta Physiol. Hung. 2011, 98, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Dine, C.J.; Kreider, M.E. Hypoxia altitude simulation test. Chest 2008, 133, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Pomidori, L.; Daniela, B.; Federica, C.; Valter, F.; Alessandra, G.; Gabriele, V.; Paolo, P.; Annalisa, C. The hypoxic profile during trekking to the Pyramid Laboratary. High Alt. Med. Biol. 2009, 10, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Golja, P.; Flander, P.; Klemenc, M.; Maver, J.; Princi, T. Carbohydrate ingestion improves oxygen delivery in acute hypoxia. High Alt. Med. Biol. 2008, 9, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Charlot, K.; Pichon, A.; Richalet, J.P.; Chapelot, D. Effects of a high-carbohydrate versus highprotein meal on acute responses to hypoxia at restand exercise. Eur. J. Appl. Physiol. 2013, 113, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. IL-6 signalling in exercise and disease. Biochem. Soc. Trans. 2007, 35, 1295–1297. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.L.; Steinberg, G.R.; Macaulay, S.L.; Thomas, W.G.; Holmes, A.G.; Ramm, G.; Prelovsek, O.; Hohnen-Behrens, C.; Watt, M.J.; James, D.E.; et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 2006, 55, 2688–2697. [Google Scholar] [CrossRef] [PubMed]
- Robson-Ansley, P.; Walshe, I.; Ward, D. The effect of carbohydrate ingestion on plasma interleukin-6, hepcidin and iron concentrations following prolonged exercise. Cytokine 2011, 53, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Faquin, W.C.; Schneider, T.J.; Goldberg, M.A. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 1992, 79, 1987. [Google Scholar] [PubMed]
- Klausen, T.; Olsen, N.V.; Poulsen, T.D.; Richalet, J.P.; Pedersen, B.K. Hypoxemia increases serum interleukin-6 in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Diniz, B.S.; Teixeira, A.L. Brain-derived neurotrophic factor and Alzheimer’s disease: Physiopathology and beyond. Neuromol. Med. 2011, 13, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and Inflammation. N. Engl. J. Med. 2011, 364, 656. [Google Scholar] [PubMed]
- Tracey, K.J.; Cerami, F. A tumor necrosis factor: An update review of its biology. Crit. Care Med. 1993, 21, S415–S422. [Google Scholar] [CrossRef] [PubMed]
- Blegen, M.; Cheatham, C.; Caine-Bish, N.; Woolverton, C.; Marcinkiewicz, J.; Glickman, E. The Immunological and metabolic responses to exercise of varying intensities in normoxic and hypoxic environments. J. Strength Cond. Res. 2008, 22, 1638–1644. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, M.E.; Fischer, H.; Poellinger, L.; Johnson, R.S.; Gustafsson, T.; Sundberg, C.J.; Rundqvist, H. Negative regulation of HIF in skeletal muscle of elite endurance athletes: A Tentative mechanism promoting oxidative metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R248–R255. [Google Scholar] [CrossRef] [PubMed]
- Cerretelli, P.; Marzorati, M.; Marconi, C. Muscle bioenergetics and metabolic control at altitude. High Alt. Med. Biol. 2009, 10, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Zagorska, A.; Dulak, J. HIF-1: The knowns and unknowns of hypoxia sensing. Acta Biochim. Pol. 2004, 51, 563–585. [Google Scholar] [PubMed]
- Jung, Y.J.; Isaacs, J.S.; Lee, S.; Trepel, J.; Neckers, L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 2003, 17, 2115–2117. [Google Scholar] [PubMed]
- Stephens, J.W.; Hurel, S.J.H.; Lowe, G.D.O.; Rumley, A.; Humphries, S.E. Association between plasma IL-6, the IL-6-174G>C gene variant and the metabolic syndrome in type 2 diabetes mellitus. Mol. Genet. Metab. 2007, 90, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.D.; Lickteig, A.J.; Deuster, P.A.; Howard, M.P.; Conway, J.M.; Pietersma, A.; DeStoppelaar, J.; Deurenberg, P. Energy metabolism increases and regional body fat decreases while regional muscle mass is spared in humans climbing Mt. Everest. J. Nutr. 1999, 129, 1307–1314. [Google Scholar] [PubMed]
- Mawson, J.T.; Braun, B.; Rock, P.B.; Moore, L.G.; Mazzeo, R.; Butterfield, G.E. Women at altitude: Energy requirement at 4300 m. J. Appl. Physiol. 2000, 88, 272–281. [Google Scholar] [PubMed]
- Klokker, M.M.; Kjaer, N.H.; Secher, B.; Hanel, L.; Worm, M.; Kappel, M.; Pedersen, B.K. Natural killer cell response to exercise in humans: Effect of hypoxia and epidural anesthesia. J. Appl. Physiol. 1995, 78, 709–716. [Google Scholar] [PubMed]
- Nieman, D.C.; Pedersen, B.K. Exercise and immune function. Recent developments. Sports Med. 1999, 27, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, G.I.; Khan, Q.; Drysdale, P.T.; Wallace, F.; Jeukendrup, A.E.; Drayson, M.T.; Gleeson, M. Effect of prolonged exercise and carbohydrate ingestion on type 1 and type 2 T lymphocyte distribution and intracellular cytokine production in humans. J. Appl. Physiol. 2005, 98, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Parry-Billings, M.; Budgett, R.; Koutedakis, Y.; Blomstrand, E.; Brooks, S.; Williams, C.; Calder, P.C.; Pilling, S.; Baigrie, R.; Newsholme, E.A. Plasma amino acid concentrations in the overtraining syndrome: Possible effects on the imune system. Med. Sci. Sports Exerc. 1992, 24, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Castell, L.M. Glutamine supplementation in vitro and in vivo, in exercise and immunosuppression. J. Sports Med. 2003, 33, 325–345. [Google Scholar] [CrossRef]
- Castell, L.M.; Newsholme, E.A. The effects of oral glutamine supplementation on athletes after prolonged, exhaustive exercise. Nutrition 1997, 13, 738–742. [Google Scholar] [CrossRef]
- Bessa, A.L.; Oliveira, V.N.; Agostini, G.G.; Oliveira, R.J.; Oliveira, A.C.; White, G.E.; Wells, G.D.; Teixeira, D.N.; Espindola, F.S. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. J. Strength Cond. Res. 2016, 30, 311–319. [Google Scholar]
- Yu, J.G.; Liu, J.X.; Carlsson, L.; Thornell, L.E.; Stål, P.S. Re-evaluation of sarcolemma injury and muscle swelling in human skeletal muscles after eccentric exercise. PLoS ONE 2013, 8, e62056. [Google Scholar]
Condition | Rest | Exercise | Recovery |
---|---|---|---|
Normoxia | 98 ± 1 | 96 ± 1 | 96 ± 2 |
Hypoxia | 97 ± 1 | 90 ± 2 a,c | 97 ± 1 b |
Hypoxia + Carbo | 96 ± 2 | 93 ± 2 a | 94 ± 2 |
Condition | Rest | Exercise | Recovery | |
---|---|---|---|---|
Total CK | Normoxia | 107 ± 10 | 178 ± 50 | 147 ± 19 |
Hypoxia | 103 ± 35 | 210 ± 91 a | 157 ± 87 | |
Hypoxia + Carbo | 81 ± 36 | 159 ± 83 | 110 ± 52 | |
CK-MB | Normoxia | 42 ± 4 | 71 ± 22 | 68 ± 30 |
Hypoxia | 48 ± 17 | 83 ± 30 | 76 ± 30 | |
Hypoxia + Carbo | 41 ± 20 | 63 ± 31 | 43 ± 19 | |
LDH | Rest | 89.79 ± 15.55 | 131.39 ± 39.45 | 111.73 ± 18.55 |
Exercise | 91.39 ± 16.65 | 102.82 ± 17.08 | 134.03 ± 14.25 | |
Recovery | 113.94 ± 39.22 | 148.01 ± 32.25 | 107.46 ± 37.16 |
Condition | Rest | Exercise | Recovery | |
---|---|---|---|---|
IL-6 | Normoxia | 1.13 ± 0.5 | 3.15 ± 1.64 a | 3.52 ± 0.5 a |
Hypoxia | 1.17 ± 0.14 | 3.30 ± 0.85 a | 2.87 ± 0.99 a | |
Hypoxia + Carbo | 0.66 ± 0.32 | 2.21 ± 0.59 a | 1.83 ± 0.46 | |
TNF-α | Normoxia | 1.86 ± 0.30 | 4.49 ± 1.38 | 2.92 ± 1.57 |
Hypoxia | 1.82 ± 0.79 | 3.93 ± 2.55 | 3.65 ± 1.24 | |
Hypoxia + Carbo | 2.65 ± 1.25 | 6.22 ± 1.89 a | 5.36 ± 5.59 a | |
IL-10 | Normoxia | 5.74 ± 3.52 | 6.78 ± 1.46 | 9.19 ± 5.41 |
Hypoxia | 4.83 ± 2.18 | 8.02 ± 1.38 | 8.63 ± 1.66 | |
Hypoxia + Carbo | 4.49 ± 1.58 | 6.38 ± 2.84 | 5.71 ± 2.70 | |
TNF-α/IL-10 | Normoxia | 0.50 ± 0.39 | 0.68 ± 0.25 | 0.36 ± 0.21 |
Hypoxia | 0.42 ± 0.19 | 0.47 ± 0.23 | 0.44 ± 0.19 | |
Hypoxia + Carbo | 0.63 ± 0.30 | 1.31 ± 1.08 | 0.84 ± 0.69 |
Condition | Rest | Exercise | Recovery | |
---|---|---|---|---|
IL-2 | Normoxia | 2.80 ± 0.93 | 4.62 ± 1.62 | 4.40 ± 3.13 |
Hypoxia | 1.74 ± 1.18 | 3.14 ± 1.30 | 0.73 ± 0.54 | |
Hypoxia + Carbo | 0.14 ± 0.20 | 0.39 ± 0.54 | 3.60 ± 4.65 a,b | |
IL-4 | Normoxia | 1.39 ± 1.08 | 0.63 ± 0.48 | 0.42 ± 0.24 |
Hypoxia | 0.84 ± 0.94 | 0.41 ± 0.24 | 1.39 ± 2.42 | |
Hypoxia + Carbo | 0.63 ± 0.30 | 0.38 ± 0.20 | 0.52 ± 0.48 | |
IL-2/IL-4 | Normoxia | 3.50 ± 0.3 | 11.25 ± 7.82 | 13.11 ± 11.54 |
Hypoxia | 3.49 ± 0.24 | 9.20 ± 5.37 | 2.06 ± 2.05 | |
Hypoxia + Carbo | 0.21 ± 0.22 c,d | 1.25 ± 1.75 | 11.84 ± 15.38 a,b |
Condition | Rest | Exercise | Recovery | |
---|---|---|---|---|
Glutamine | Normoxia | 0.56 ± 0.38 | 0.26 ± 0.02 | 0.24 ± 0.03 a |
Hypoxia | 0.26 ± 0.03 a | 0.31 ± 0.04 | 0.23 ± 0.02 | |
Hypoxia + Carbo | 0.29 ± 0.08 | 0.39 ± 0.35 | 0.24 ± 0.03 | |
Glucose | Normoxia | 4.68 ± 0.41 | 4.61 ± 0.33 | 4.76 ± 0.16 |
Hypoxia | 4.83 ± 0.36 | 5.07 ± 0.63 | 5.10 ± 0.25 | |
Hypoxia + Carbo | 4.60 ± 0.63 | 5.00 ± 1.02 | 4.22 ± 0.66 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caris, A.V.; Da Silva, E.T.; Dos Santos, S.A.; Lira, F.S.; Oyama, L.M.; Tufik, S.; Dos Santos, R.V.T. Carbohydrate Supplementation Influences Serum Cytokines after Exercise under Hypoxic Conditions. Nutrients 2016, 8, 706. https://doi.org/10.3390/nu8110706
Caris AV, Da Silva ET, Dos Santos SA, Lira FS, Oyama LM, Tufik S, Dos Santos RVT. Carbohydrate Supplementation Influences Serum Cytokines after Exercise under Hypoxic Conditions. Nutrients. 2016; 8(11):706. https://doi.org/10.3390/nu8110706
Chicago/Turabian StyleCaris, Aline Venticinque, Edgar Tavares Da Silva, Samile Amorim Dos Santos, Fabio Santos Lira, Lila Missae Oyama, Sergio Tufik, and Ronaldo Vagner Thomatieli Dos Santos. 2016. "Carbohydrate Supplementation Influences Serum Cytokines after Exercise under Hypoxic Conditions" Nutrients 8, no. 11: 706. https://doi.org/10.3390/nu8110706
APA StyleCaris, A. V., Da Silva, E. T., Dos Santos, S. A., Lira, F. S., Oyama, L. M., Tufik, S., & Dos Santos, R. V. T. (2016). Carbohydrate Supplementation Influences Serum Cytokines after Exercise under Hypoxic Conditions. Nutrients, 8(11), 706. https://doi.org/10.3390/nu8110706