The Nutritional Value and Health Benefits of Chickpeas and Hummus
Abstract
:1. Introduction
2. Chickpea and Hummus Consumers, Compared to Non-Consumers, Have Been Suggested as Having Improved Nutrient Intakes and Diet Quality
3. Hummus, Compared to Other Dips and Spreads, Has Greater Nutrient Density
4. Health Outcomes Associated with Consumption of Chickpeas and Hummus
4.1. Weight Control
4.2. Glucose and Insulin Response
4.3. Cardiovascular Disease
4.4. Cancer
4.5. Gastronintestinal Tract Health
5. Hummus: Opportunity to the Improve Nutritional Profile of Meals and to Improve the Intake of Other Vegetables and Whole Grains
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed. Available online: http://health.gov/dayietaryguidelines/2015/guidelines (accessed on 15 July 2016).
- U.S. Department of Agriculture, Economic Research Service. Dried Beans; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2013.
- Deosthale, Y.G. Food processing and nutritive value of legumes. In Pulse Production, Constraints and Opportunities, 1st ed.; Srivastava, H.C., Ed.; IBH Publishing Company: New Delhi, India, 1982; Volume 1, pp. 377–388. [Google Scholar]
- Khokhar, S.; Chauhan, B.M. Antinutritional factors in mothbean (Vigna acenitifolia): Varietal difference and effect of methods of domestic processing and cooking. J. Food Sci. 1986, 51, 591–594. [Google Scholar] [CrossRef]
- Vijayakumari, K.; Sidduraju, P.; Pugalenthi, M.; Janardhanan, K. Effect of soaking and heat processing on the levels of antinutrients and digestible proteins in seeds of Vigna aconitifolia and Vigna sinensis. Food Chem. 1998, 63, 259–264. [Google Scholar] [CrossRef]
- Davidson, A. The Oxford Companion to Food, 1st ed.; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAOSTAT 2013. Available online: http://faostat.fao.org (accessed on 27 October 2016).
- Huntrods, D. Agriculture Marketing Research Center; Iowa State University: Ames, IA, USA, 2013. [Google Scholar]
- Saharan, K.; Khetarpaul, N. Protein quality traits of vegetable and field peas: Varietal differences. Plant Foods Hum. Nutr. 1994, 45, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Information Resources Inc. Available online: http://www.iriworldwide.com (accessed on 15 June 2016).
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicerarietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Nicklas, T.A.; Fulgoni, V.L. Chickpeas and hummus are associated with better nutrient intake, diet quality, and levels of some cardiovascular risk factors: National Health and Nutrition Examination Survey 2003–2010. J. Nutr. Food Sci. 2014, 4, 1. [Google Scholar] [CrossRef]
- Papanikolaou, Y.; Fulgoni, V.L., III. Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: Results from the National Health and Nutrition Examination Survey 1999–2002. J. Am. Coll. Nutr. 2008, 27, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Acad. Nutr. Diet. 2009, 109, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Pittaway, J.K.; Robertson, I.K.; Ball, M.J. Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J. Am. Diet. Assoc. 2008, 108, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Murty, C.M.; Pittaway, J.K.; Ball, M.J. Chickpea supplementation in an Australian diet affects food choice, satiety and bowel health. Appetite 2010, 54, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Lackey, C.J.; Kolasa, K.M. Healthy eating: Defining the nutrient quality of foods. Nutr. Today 2004, 39, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Concept of a nutritious food: Toward a nutrient density score. Am. J. Clin. Nutr. 2005, 82, 721–732. [Google Scholar] [PubMed]
- Monsivais, P.; McLain, J.; Drewnowski, A. The rising disparity in price of healthful foods: 2004–2008. Food Policy 2010, 35, 514–520. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Calories count. Report of the Working Group on Obesity 2004. Available online: http://www.fda.gov/Food/FoodScienceResearch/ConsumerBehaviorResearch/ucm081696.htm (accessed on 28 June 2016).
- Albete, I.; Astrup, A.; Martinez, J.A.; Martinez, J.A.; Thorsdottir, I.; Zulet, M.A. Obesity and the metabolic syndrome: Role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr. Rev. 2010, 68, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Sichieri, R. Dietary patterns and their associations with obesity in the Brazilian city of Rio de Janeiro. Obes. Res. 2002, 10, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.K.; Muller, D.; Hallfrisch, J.; Andres, R.; Tucker, K.L. Food patterns measured by factor analysis and anthropometric changes in adults. Am. J. Clin. Nutr. 2004, 80, 504–513. [Google Scholar] [PubMed]
- Roberts, S.B.; Hajduk, C.L.; Howarth, N.C.; Russel, R.; McCrory, M.A. Dietary variety predicts low body mass index and inadequate macronutrient and micronutrient intakes in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. 2005, 60, 613–621. [Google Scholar] [CrossRef]
- Augustin, L.S.; Chiavaroli, L.; Campbell, J.; Ezatagha, A.; Jenkins, A.L.; Esfahani, A.; Kendall, C.W. Post-prandial glucose and insulin responses of hummus alone or combined with a carbohydrate food: A dose-response study. Nutr. J. 2016, 27, 13. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.M.; Fielden, H. Exceptionally low blood glucose response to dried beans: Comparison with other carbohydrate foods. Br. Med. J. 1980, 281, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [PubMed]
- Mollard, R.C.; Luhovyy, B.L.; Panahi, S.; Nunez, M.; Hanley, A.; Anderson, G.H. Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br. J. Nutr. 2012, 108 (Suppl. 1), S111–S122. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, L.; Gu, Y.; Zhang, Y.; Tang, J.; Li, F.; Shang, W.; Jiang, B.; Yue, X.; Chen, M. Dietary chickpeas reverse visceral adiposity, dyslipidemia and insulin resistance in rats induced by a chronic high-fat diet. Br. J. Nutr. 2007, 98, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Giles, G.G. Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. Am. J. Epidemiol. 2007, 161, 2573–2578. [Google Scholar] [CrossRef] [PubMed]
- Villegas, R.; Gao, Y.T.; Yang, G.; Li, H.L.; Elasy, T.A.; Zheng, W. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2008, 87, 162–167. [Google Scholar] [PubMed]
- Welch, I.M.; Bruce, C.; Hill, S.E.; Read, N.W. Duodenal and illeal lipid suppresses postprandial blood glucose and insulin responses in man: Possible implications for dietary management of diabetes mellitus. Clin. Sci. 1987, 72, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.G.; Wolstencroft, E.J.; Bateman, P.A.; Yaqoob, P.; Williams, C.M. Acute effects of meal fatty acids on postprandial NEFA, glucose and apo E response: Implications for insulin sensitivity and lipoprotein regulation? Br. J. Nutr. 2005, 93, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed]
- Pittway, J.K.; Ahuja, K.D.; Cehun, M.; Chronopoulos, A.; Robertson, I.K.; Nestel, P.J.; Ball, M.J. Dietary supplementation with chickpeas for at least five weeks results in small but significant reductions in serum total and low-density lipoprotein cholesterols in adult women and men. Ann. Nutr. Metab. 2006, 50, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; Thompson, A.M.; Tees, M.T.; Nguyen, C.H.; Winham, D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011, 4, 94–103. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Halton, T.L.; Willett, W.C.; Lui, S. Low-carbohydrate-diet score and risk of coronary heart disease in women. N. Engl. J. Med. 2006, 355, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W.M.U.; Hill, J.E.; Zello, G.A. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef. Microb. 2010, 1, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Stephen, A.M.; Branch, W.J. Implications of dietary fibre breakdown in the human colon. In Banbury Report 7 Gastrointestinal Cancer; Bruce, R., Tannenbaum, S., Correa, P., Eds.; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1981; Volume 1, pp. 71–81. [Google Scholar]
- Mathers, J.C. Pulses and carcinogenesis: Potential for the prevention of colon, breast and other cancers. Br. J. Nutr. 2002, 88 (Suppl. 3), S273–S279. [Google Scholar] [CrossRef] [PubMed]
- Murillo, G.; Choi, J.K.; Vioque, J.; Pan, O. Efficacy of garbanzo and soybean flour in suppression of aberrant crypt foci in the colons of CF-1 mice. Anticancer Res. 2004, 24, 3049–3056. [Google Scholar] [PubMed]
- Mittal, G.; Vadhera, S.; Brar, A.P.S. Protective role of chickpea seed coat fibre on N-nitrosodiethylamine-induced toxicity in hypercholesterolemic rats. Exp. Toxicol. Pathol. 2009, 61, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Agurs-Collins, T.; Smoot, D.; Afful, J.; Makambi, K.; Adams-Campbell, L.L. Legume intake and reduced colorectal adenoma risk in African-Americans. J. Natl. Black Nurses Assoc. 2006, 17, 162–167. [Google Scholar]
- Nestel, P.; Cehun, M.; Chronopoulos, A. Effects of long-term consumption and single meals of chickpea on plasma glucose, insulin, and triacylglycerol concentrations. Am. J. Clin. Nutr. 2004, 79, 390–395. [Google Scholar] [PubMed]
Nutrient | Unit | DV b | Value per 100 g a | ||
---|---|---|---|---|---|
Chickpeas, Dry (16056) c | Chickpeas, Cooked (16057) c | Hummus (16158) c | |||
Macronutrients | |||||
Energy | Kcal | 2000 | 378 | 164 | 166 |
Protein | g | 50 | 20.47 | 8.86 | 7.90 |
Fat | g | 78 | 6.04 | 2.59 | 9.60 |
Carbohydrate | g | 275 | 62.95 | 27.42 | 14.29 |
Fiber | g | 28 | 12.2 | 7.6 | 6.0 |
Sugar | g | 10.7 | 4.8 | NR | |
Minerals | |||||
Calcium | mg | 1300 | 57 | 49 | 38 |
Iron | mg | 18 | 4.31 | 2.89 | 2.44 |
Magnesium | mg | 400 | 79 | 48 | 71 |
Phosphorus | mg | 1000 | 252 | 168 | 176 |
Potassium | mg | 4700 | 718 | 291 | 228 |
Sodium | mg | 2300 | 24 | 7 | 379 |
Zinc | mg | 15 | 2.76 | 1.53 | 1.83 |
Copper | mg | 2 | 0.656 | 0.352 | 0.527 |
Manganese | mg | 2 | 21.306 | 1.030 | 0.773 |
Selenium | μg | 70 | 0 | 3.7 | 2.6 |
Vitamins | |||||
Vitamin C | mg | 60 | 4.0 | 1.3 | 0 |
Thiamin | mg | 1.5 | 0.477 | 0.116 | 0.180 |
Riboflavin | mg | 1.7 | 0.212 | 0.063 | 0.064 |
Niacin | mg | 20 | 1.541 | 0.526 | 0.582 |
Pantothenic acid | mg | 10 | 1.588 | 0.286 | 0.132 |
Vitamin B6 | mg | 2 | 0.535 | 0.139 | 0.200 |
Folate | μg | 400 | 557 | 172 | 83 |
Choline | mg | 550 | 99.3 | 42.8 | NR |
Vitamin B12 | μg | 6 | 0 | 0 | 0 |
Vitamin A | IU | 5000 | 67 | 27 | 30 |
Vitamin D | μg | 20 | 0 | 0 | 0 |
Vitamin K | μg | 80 | 9.0 | 4.0 | NR |
Vitamin E | mg | 30 | 0.82 | 0.35 | NR |
Lipids | |||||
Saturated | g | 20 | 0.603 | 0.269 | 1.437 |
Monounsaturated | g | ND | 1.377 | 0.583 | 4.039 |
Polyunsaturated | g | ND | 2.731 | 1.156 | 3.613 |
Hummus (16158) | Bean Dip (27065) | Ranch Dressing (04639) | Salsa (06164) | Sour Cream (01056) | Cream Cheese (01017) | Peanut Butter (16098) | |
---|---|---|---|---|---|---|---|
Energy (kcal) a | 50 | 43 | 129 | 10 | 48 | 102 | 191 |
Total Fat (g) a | 2.88 | 1.33 | 13.36 | 0.06 | 4.64 | 9.99 | 16.44 |
Saturated Fat (g) a | 0.431 | 0.190 | 2.089 | 0.008 | 2.434 | 3.304 | |
Carbohydrates (g) a | 4.29 | 5.72 | 1.77 | 2.39 | 1.11 | 1.60 | 7.14 |
Fiber (g) a | 1.8 | 1.8 | 0.0 | 0.7 | 0.0 | 0.0 | 1.6 |
Protein (g) a | 2.37 | 1.96 | 0.40 | 0.55 | 0.59 | 1.78 | 7.11 |
Sodium (mg) a | 114 | 159 | 270 | 256 | 7 | 91 | 136 |
NNR Score | 98.42 | 82.36 | 23.02 | 89.29 | 42.95 | 41.86 | 67.94 |
Adults | |
Menu 1 | Hummus substituted for mayonnaise in potato salad |
Hummus and baby carrots substituted for potato chips and French onion dip | |
Menu 2 | Hummus on whole wheat toast substituted for wheat toast with butter and jelly |
Hummus substituted mayonnaise and ketchup on a hamburger and French fries | |
Menu 3 | Tuna salad prepared with hummus and served on a whole grain pita substituted tuna salad prepared with mayonnaise on a croissant |
Hummus and celery substituted a pudding snack | |
Menu 4 | Hummus substituted for bacon on a breakfast burrito |
Hummus substituted for butter on a baked potato | |
Menu 5 | Mediterranean pizza with hummus, chicken and vegetables substituted a cheese and sausage pizza |
Hummus substituted for mashed potatoes as a side dish | |
Children | |
Menu 1 | Pasta tossed with hummus substituted macaroni and cheese |
Hummus with whole grain crackers substituted an applesauce cup | |
Menu 2 | Hummus substituted ranch dressing as a dip for vegetables |
Hummus substituted mayonnaise on a turkey sandwich |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, T.C.; Murray, R.; Zelman, K.M. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients 2016, 8, 766. https://doi.org/10.3390/nu8120766
Wallace TC, Murray R, Zelman KM. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients. 2016; 8(12):766. https://doi.org/10.3390/nu8120766
Chicago/Turabian StyleWallace, Taylor C., Robert Murray, and Kathleen M. Zelman. 2016. "The Nutritional Value and Health Benefits of Chickpeas and Hummus" Nutrients 8, no. 12: 766. https://doi.org/10.3390/nu8120766
APA StyleWallace, T. C., Murray, R., & Zelman, K. M. (2016). The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients, 8(12), 766. https://doi.org/10.3390/nu8120766