Association of Body Composition with Curve Severity in Children and Adolescents with Idiopathic Scoliosis (IS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Population
2.2. Scoliotic Curve Evaluation
2.3. Anthropometric Measurements
2.4. Body Composition Analysis
2.5. Ethical Considerations
2.6. Statistical Analysis
3. Results
Moderate Group (Cobb’s Angle 10°–39°) n = 221 | Severe Group (Cobb’s Angle ≥40°) n = 58 | p Value | |
---|---|---|---|
Age (years) | 14.08 ± 2.9 | 14.73 ± 2.0 | NS |
Sex (M/F) | 46/176 | 9/49 | NS |
Anthropometrical status (U/N/O) | 41(18.6%)/161(72.8%)/19(8.6%) | 6(10.3%)/49(84.5%)/3(5.2%) | NS |
Corrected height (cm) | 162.21 ± 13.54 | 166.54 ± 6.96 | <0.05 |
Corrected height Z score (SD) | 0.84 ± 0.99 | 0.89 ± 0.89 | NS |
Weight (kg) | 48.95 ± 12.54 | 53.26 ± 9.17 | <0.05 |
BMI (kg/m2) | 18.3 ± 2.85 | 19.19 ± 3.1 | <0.05 |
BMI Z score (SD) | −0.52 ± 1.48 | −0.4 ± 1.16 | NS |
WHR | 0.83 ± 0.06 | 0.82 ± 0.06 | NS |
W/HtR | 0.44 ± 0.05 | 0.45 ± 0.05 | NS |
FAT (%) | 21.21 ± 6.12 | 23.16 ± 6.98 | <0.05 |
FFM (%) | 78.78 ± 6.14 | 76.83 ± 6.96 | <0.05 |
PMM (%) | 74.95 ± 6.05 | 73.11± 6.68 | <0.05 |
TBW (%) | 57.64 ± 4.48 | 56.19 ± 5.12 | <0.05 |
UNDERWEIGHT | NORMAL WEIGHT | OVERWEIGHT | ||||
---|---|---|---|---|---|---|
Moderate IS n = 41 | Severe IS n = 6 | Moderate IS n = 161 | Severe IS n = 49 | Moderate IS n = 19 | Severe IS n = 3 | |
Corrected height (cm) | 164.49 ± 14.75 | 165.95 ± 5.77 | 161.6 ± 13.19 | 167.04 ± 6.8 ** | 162.48 ± 13.93 | 159.57 ± 12.23 |
Corrected height Z score (SD) | 0.84 ± 0.93 | 0.3 ± 0.54 | 0.75 ± 0.98 | 0.95 ± 0.92 | 1.6 ± 0.91 | 1.32 ± 0.82 |
Weight (kg) | 42.52 ± 9.62 | 42.25 ± 4.13 | 48.87 ± 11.2 | 53.18 ± 6.36 * | 63.45 ± 16.84 | 76.53 ± 14.2 |
BMI (kg/m2) | 15.42 ± 1.34 | 15.33 ± 1.02 | 18.42 ± 2.15 | 19.01 ± 1.49 | 23.54 ± 2.59 | 29.85 ± 1.15 *** |
BMI Z score (SD) | −2.14 ± 0.44 | −2.5 ± 0.63 | −0.37 ± 1.29 | −0.34 ± 0.61 | 1.67 ± 0.29 | 2.78 ± 0.13 *** |
WHR | 0.81 ± 0.04 | 0.78 ± 0.04 | 0.82 ± 0.06 | 0.82 ± 0.06 | 0.89 ± 0.05 | 0.86 ± 0.01 |
WHtR | 0.44 ± 0.05 | 0.44 ± 0.05 | 0.44 ± 0.04 | 0.45 ± 0.04 | 0.53 ± 0.04 | 0.58 ± 0.02 * |
FAT (%) | 15.88 ± 5.13 | 13.55 ± 5.42 | 21.47 ± 4.84 | 23.4 ± 5.12 * | 30.59 ± 5.75 | 38.47 ± 7.37 * |
FFM (%) | 84.13 ± 5.12 | 86.41 ± 5.4 | 78.5 ± 4.86 | 76.6 ± 5.11 * | 69.67 ± 6.33 | 61.52 ± 7.36 |
PMM (%) | 80.24 ± 5.92 | 82.24 ± 5.01 | 74.63 ± 4.66 | 72.89 ± 4.93 * | 66.19 ± 5.56 | 58.37 ± 6.95 * |
Variable | Cobb’s Angle | ||
---|---|---|---|
Coefficient | Significance | Adjusted R2 | |
FAT (%) | 0.204 | p < 0.001 | 0.067 |
FFM (%) | −0.205 | p < 0.001 | 0.067 |
PMM (%) | −0.188 | p < 0.01 | 0.061 |
Variable | Coefficient | Cobb’s Angle | Adjusted R2 |
---|---|---|---|
UNDERWEIGHT (n = 47) | |||
BMI Z-score(SD) | −0.346 | p < 0.05 | 0.138 |
NORMAL WEIGHT (n = 210) | |||
WHtR | 0.226 | p < 0.01 | 0.125 |
FAT (%) | 0.200 | p < 0.01 | 0.125 |
FFM (%) | −0.196 | p < 0.01 | 0.124 |
PMM (%) | −0.186 | p < 0.01 | 0.120 |
OVERWEIGHT (n = 22) | |||
BMI Z-score(SD) | 0.598 | p < 0.01 | 0.290 |
FAT (%) | 0.484 | p < 0.05 | 0.154 |
FFM (%) | −0.473 | p < 0.05 | 0.142 |
PMM (%) | −0.500 | p < 0.05 | 0.172 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
IS: Idiopathic Scoliosis |
BMI: Body Mass Index |
BIA: Bioelectrical Impedance Analysis |
WHR: Waist Hip Ratio |
WHtR: Waist Height Ratio |
FAT: Fat Mass |
FFM: Fat Free Mass |
PMM: Predicted Muscle Mass |
TBW: Total Body Water |
U/N/O: underweight/normal weight/overweight |
References
- Burwell, R.G.; Aujla, R.K.; Grevitt, M.P.; Dangerfield, P.H.; Moulton, A.; Randell, T.L.; Anderson, S.I. Pathogenesis of adolescent idiopathic scoliosis in girls—A double neuro-osseous theory-involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and hormones with implications for medical therapy. Scoliosis 2009, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Jiang, J.; Sun, X.; Zhao, Q.; Qian, B.P.; Liu, Z.; Shu, H.; Qiu, Y. Timing of menarche In Chinese girls with and without adolescent idiopathic scoliosis: Current results and review of the literature. Eur. Spine J. 2011, 20, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Sun, X.; Qiu, X.; Li, W.; Zhu, Z.; Zhu, F.; Wang, B.; Yu, Y.; Qian, B. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine 2007, 24, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- Burwell, R.G.; Aujla, R.K.; Kirby, A.S.; Dangerfield, P.H.; Moulton, A.; Cole, A.A.; Polak, F.J.; Pratt, R.K.; Webb, J.K. Body mass index of girls in health influences menarche and skeletal maturation: A leptin-sympathetic nervous system focuses on the trunk with hypothalamic asymmetric dysfunction in the pathogenesis of adolescent idiopathic scoliosis? Stud. Health Technol. Inform. 2008, 140, 9–21. [Google Scholar] [PubMed]
- Nicolopoulos, K.S.; Buwell, R.G.; Webb, J.K. Stature and its components in adolescent idiopathic scoliosis. Cephalo-caudal disproportion in the trunk in girls. J. Bone Joint Surg. Br. 1985, 67, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Burwell, R.G.; Dangerfield, P.H.; Moulton, A.; Anderson, S.I. Etiologic theories of idiopathic scoliosis: Autonomic nervous system and the leptin-sympathetic nervous system concept for the pathogenesis of adolescent idiopathic scoliosis. Stud. Health Technol. Inform. 2008, 140, 197–207. [Google Scholar] [PubMed]
- Burwell, R.G.; Dangerfield, P.H.; Moulton, A.; Grivas, T.B.; Cheng, J.C.Y. Whither the etiopathogenesis (and scoliogeny) of adolescent idiopathic scoliosis? Incorporating presentations on scoliogeny at the 2012 IRSSD and SRS meetings. Scoliosis 2013, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Matusik, E.; Durmala, J.; Matusik, P.; Piotrowski, J. Evaluation of nutritional status of children and adolescents with idiopathic scoliosis—A pilot study. Ortop. Traumatol. Rehabil. 2012, 14, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.M.; Taylor, H.J.; Harding, I.; Hutchinson, J.; Nelson, I.; Deanfield, J.E.; Ness, A.R.; Tobias, J.H. Association between components of body composition and scoliosis: A prospective cohort study reporting differences identifiable before the onset of scoliosis. J. Bone Miner. Res. 2014, 29, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Demerath, E.W.; Schubert, C.M.; Maynard, L.M.; Sun, S.S.; Chumlea, W.C.; Pickoff, A.; Czerwinski, S.A.; Towne, B.; Siervogel, R.M. Do changes in body mass index percentile reflect changes in body composition in children? Data from the Fels longitudinal study. Pediatrics 2006, 117, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, X.; Wang, Z.; Qiu, X.; Liu, Z.; Qiu, Y. Abnormal anthropometric measurements and growth pattern in male adolescent idiopathic scoliosis. Eur. Spine J. 2012, 21, 77–83. [Google Scholar]
- Davey, R.C.; Cochrane, T.; Dangerfield, P.H.; Chockalingam, N.; Dorgan, J.C. Anthropometry and body composition in females with adolescent idiopathic scoliosis. In Proceedings of the International Research Society of Spinal Deformities Symposium, Vancouver, BC, Canada, 10–12 June 2004; Sawatzky, B.J., Ed.; University of British Columbia: Vancouver, BC, Canada, 2004; pp. 323–326. [Google Scholar]
- Dangerfield, P.H.; Davey, R.C.; Chockalingam, N.; Cochrane, T.; Dorgan, J.C. Body composition in females with adolescent idiopathic scoliosis (AIS). J. Bone Joint Surg. Br. 2006, 88-B (Suppl. II), 230–231. [Google Scholar]
- Oblacinska, A.; Jodkowska, M. Otyłość u polskich nastolatków. In Epidemiologia, Styl Życia, Samopoczucie; Instytut Matki i Dziecka: Warsaw, Poland, 2007. [Google Scholar]
- James, P.T.; Leach, R.; Kalamara, E. The worldwide obesity epidemic. Obes. Res. 2001, 9 (Suppl. 4), 228–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beydoun, M.A. The obesity epidemic in the United States-gender, age, socioeconomic, racial/ethnic, and geographic characteristics: A systematic review and meta-regression analysis. Epidemiol. Rev. 2007, 29, 6–28. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, T.; Frelut, M.L. Prevalence of overweight among children in Europe. Obes. Rev. 2003, 4, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Malecka-Tendera, E.; Klimek, K.; Matusik, P.; Oszanecka-Glinianowicz, M.; Lehingue, Y.; Polish Obesity Study Group. Obesity and overweight prevalence in Polish 7- to 9-year-old children. Obes. Res. 2005, 13, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Caroli, M.; Malecka-Tendera, E.; Epifani, S.; Rollo, R.; Sansolios, S.; Matusik, P.; Mikkelsen, B.E. Physical activity and play in kindergarten age children. Int. J. Pediatr. Obes. 2011, 6 (Suppl. 2), 47–53. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Miyamoto, K.; Hosoe, H.; Mizutani, M.; Shimizu, K. Scoliosis associated with Prader-Willi syndrome. Spine J. 2007, 3, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Bruce, B.T.; Talwalkar, V.; Iwinski, H.; Walker, J.; Milbrandt, T. Does obesity hide adolescent idiopathic scoliosis? In Proceedings of the Scoliosis Research Society 43rd Annual Meeting and Course, Salt Lake City, UT, USA, 10–13 September 2008; p. 196.
- Barrios, C.; Cortes, S.; Perez-Encinas, C.; Escriva, M.D.; Benet, I.; Burgos, J.; Hevia, E.; Pizá, G.; Domenech, P. Anthropometry and body composition profile of girls with nonsurgically treated adolescent idiopathic scoliosis. Spine 2011, 36, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.S.K.; Lee, W.T.K.; Tse, Y.K.; Tang, S.P.; Lee, K.M.; Guo, X.; Qin, L.; Cheng, J.C.Y. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: A study of 598 patients. Spine 2003, 28, 2152–2157. [Google Scholar] [CrossRef] [PubMed]
- Grivas, T.B.; Arvaniti, A.; Maziotou, C.; Manesioti, M.M.; Ferqadi, A. Comparison of body weight and height between normal and scoliotic children. Stud. Health Technol. Inform. 2002, 91, 47–53. [Google Scholar] [PubMed]
- Barrios, C. Analysis of anthropometric findings and body composition in girls with mild or moderate scoliosis treated orthopedically. Eur. Spine J. 2009, 18, 139. [Google Scholar] [CrossRef]
- Goldberg, C.J.; Moore, D.P.; Fogartyy, E.E.; Dowling, F.E. Interrelationship between Cobb angle progression, BMI and growth rate in girls with adolescent idiopathic scoliosis. In Proceedings of the British Scoliosis Society 33rd Annual Meeting, Leicester, UK, 23–24 April 2009.
- De Lorenzo, A.; Sorge, S.P.; Iacopino, L.; Andreoli, A.; de Luca, P.P.; Stasso, G.F. Fat-free mass by bioelectrical impedance vs. dual-energy X-ray absorptiometry (DXA). Appl. Radiat. Isol. 1998, 49, 739–741. [Google Scholar] [CrossRef]
- Thomson, R.; Brinkworth, G.D.; Buckley, J.D.; Noakes, M.; Clifton, P.M. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clin. Nutr. 2007, 26, 771–777. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, H.D.; Cole, T.J.; Fry, T.; Jebb, S.A.; Prentice, A.M. Body fat reference curves for children. Int. J. Obes. 2006, 30, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.T.K.; Cheung, C.S.K.; Tse, Y.K.; Guo, X.; Qin, L.; Lam, T.P.; Ng, B.K.; Cheng, J.C. Association of osteopenia with curve severity in adolescent idiopathic scoliosis: A study of 919 girls. Osteoporos. Int. 2005, 16, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Bjure, J.; Nachemson, A. Non-treated scoliosis. Clin. Orthop. Rel. Res. 1973, 93, 44–52. [Google Scholar] [CrossRef]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.; Martinez-Llorens, J.; Sanchez, J.F.; Bago, J.; Molina, A.; Gea, J.; Cáceres, E. Body composition in adolescent idiopathic scoliosis. Eur. Spine J. 2012, 22, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Hamrick, M.W.; Pennington, C.; Newton, D.; Xie, D.; Isales, C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 2004, 34, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tam, E.M.S.; Sun, G.Q.; Lam, T.P.; Zhu, Z.Z.; Sun, X.; Lee, K.M.; Ng, T.B.; Qiu, Y.; Cheng, J.C.; et al. Abnormal leptin bioavailability in adolescent idiopathic scoliosis. Spine 2012, 37, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, N.C.; Medeiros, C.C.; de Carvalho, D.F.; Alves, J.G. Leptin and cardiometabolic risk in obese children and adolescents. J. Paediatr. Child Health 2014, 50, 707–712. [Google Scholar] [CrossRef] [PubMed]
- De Leonibus, C.; Marcovecchio, M.L.; Chavaroli, V.; de Giorgis, T.; Charelli, F.; Mohn, A. Timing of puberty and physical growth in obese children: A longitudinal study in boys and girls. Pediatr. Obes. 2014, 9, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Marcovecchio, M.L.; Chiarelli, F. Obesity and growth during childhood and puberty. World Rev. Nutr. Diet. 2013, 106, 135–141. [Google Scholar] [PubMed]
- Chen, Z.; Yi, H.; Li, M.; Wang, C.; Zhang, J.; Yang, C.; Zhao, Y.; Lu, Y. Associations between body mass and the outcome of surgery for scoliosis in Chinese adults. PLoS ONE 2011, 6, e21601. [Google Scholar] [CrossRef] [PubMed]
- Upasani, V.V.; Caltoum, C.; Petcharaporn, M.; Bastrom, T.; Pawelek, J.; Marks, M.; Betz, R.R.; Lenke, L.G.; Newton, P.O. Does obesity affect surgical outcomes in adolescent idiopathic scoliosis? Spine 2008, 33, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Hardesty, C.K.; Poe-Kochert, C.; Son-Hing, J.P.; Thompson, G.H. Obesity negatively affects spinal surgery in idiopathic scoliosis. Clin. Orthop. Relat. Res. 2013, 471, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Mokha, J.S.; Srinivasan, S.R.; DasMahapatra, P.; Fernandez, C.; Chen, W.; Xu, J.; Berenson, G.S. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr. 2010, 10, 73–79. [Google Scholar] [PubMed]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0–5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef] [PubMed]
- Weili, Y.; He, B.; Yao, H.; Dai, J.; Cui, J.; Ge, D.; Zheng, Y.; Li, L.; Guo, Y.; Xiao, K.; et al. Waist-to-height ratio is an accurate and easier index for evaluating obesity in children and adolescents. Obesity 2007, 15, 748–752. [Google Scholar] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matusik, E.; Durmala, J.; Matusik, P. Association of Body Composition with Curve Severity in Children and Adolescents with Idiopathic Scoliosis (IS). Nutrients 2016, 8, 71. https://doi.org/10.3390/nu8020071
Matusik E, Durmala J, Matusik P. Association of Body Composition with Curve Severity in Children and Adolescents with Idiopathic Scoliosis (IS). Nutrients. 2016; 8(2):71. https://doi.org/10.3390/nu8020071
Chicago/Turabian StyleMatusik, Edyta, Jacek Durmala, and Pawel Matusik. 2016. "Association of Body Composition with Curve Severity in Children and Adolescents with Idiopathic Scoliosis (IS)" Nutrients 8, no. 2: 71. https://doi.org/10.3390/nu8020071
APA StyleMatusik, E., Durmala, J., & Matusik, P. (2016). Association of Body Composition with Curve Severity in Children and Adolescents with Idiopathic Scoliosis (IS). Nutrients, 8(2), 71. https://doi.org/10.3390/nu8020071